Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
// Copyright (C) 2002-2017 Free Software Foundation, Inc.
//  
// This file is part of GCC.
//
// GCC is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3, or (at your option)
// any later version.

// GCC is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.

// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// <http://www.gnu.org/licenses/>.

// Written by Mark Mitchell, CodeSourcery LLC, <mark@codesourcery.com>
// Thread support written by Jason Merrill, Red Hat Inc. <jason@redhat.com>

#include <bits/c++config.h>
#include <cxxabi.h>
#include <exception>
#include <new>
#include <ext/atomicity.h>
#include <ext/concurrence.h>
#include <bits/atomic_lockfree_defines.h>
#if defined(__GTHREADS) && defined(__GTHREAD_HAS_COND) \
  && (ATOMIC_INT_LOCK_FREE > 1) && defined(_GLIBCXX_HAVE_LINUX_FUTEX)
# include <climits>
# include <syscall.h>
# include <unistd.h>
# define _GLIBCXX_USE_FUTEX
# define _GLIBCXX_FUTEX_WAIT 0
# define _GLIBCXX_FUTEX_WAKE 1
#endif

// The IA64/generic ABI uses the first byte of the guard variable.
// The ARM EABI uses the least significant bit.

// Thread-safe static local initialization support.
#ifdef __GTHREADS
# ifndef _GLIBCXX_USE_FUTEX
namespace
{
  // A single mutex controlling all static initializations.
  static __gnu_cxx::__recursive_mutex* static_mutex;  

  typedef char fake_recursive_mutex[sizeof(__gnu_cxx::__recursive_mutex)]
  __attribute__ ((aligned(__alignof__(__gnu_cxx::__recursive_mutex))));
  fake_recursive_mutex fake_mutex;

  static void init()
  { static_mutex =  new (&fake_mutex) __gnu_cxx::__recursive_mutex(); }

  __gnu_cxx::__recursive_mutex&
  get_static_mutex()
  {
    static __gthread_once_t once = __GTHREAD_ONCE_INIT;
    __gthread_once(&once, init);
    return *static_mutex;
  }

  // Simple wrapper for exception safety.
  struct mutex_wrapper
  {
    bool unlock;
    mutex_wrapper() : unlock(true)
    { get_static_mutex().lock(); }

    ~mutex_wrapper()
    {
      if (unlock)
	static_mutex->unlock();
    }
  };
}
# endif

# if defined(__GTHREAD_HAS_COND) && !defined(_GLIBCXX_USE_FUTEX)
namespace
{
  // A single condition variable controlling all static initializations.
  static __gnu_cxx::__cond* static_cond;  

  // using a fake type to avoid initializing a static class.
  typedef char fake_cond_t[sizeof(__gnu_cxx::__cond)]
  __attribute__ ((aligned(__alignof__(__gnu_cxx::__cond))));
  fake_cond_t fake_cond;

  static void init_static_cond()
  { static_cond =  new (&fake_cond) __gnu_cxx::__cond(); }

  __gnu_cxx::__cond&
  get_static_cond()
  {
    static __gthread_once_t once = __GTHREAD_ONCE_INIT;
    __gthread_once(&once, init_static_cond);
    return *static_cond;
  }
}
# endif

# ifndef _GLIBCXX_GUARD_TEST_AND_ACQUIRE

// Test the guard variable with a memory load with
// acquire semantics.

inline bool
__test_and_acquire (__cxxabiv1::__guard *g)
{
  unsigned char __c;
  unsigned char *__p = reinterpret_cast<unsigned char *>(g);
  __atomic_load (__p, &__c,  __ATOMIC_ACQUIRE);
  (void) __p;
  return _GLIBCXX_GUARD_TEST(&__c);
}
#  define _GLIBCXX_GUARD_TEST_AND_ACQUIRE(G) __test_and_acquire (G)
# endif

# ifndef _GLIBCXX_GUARD_SET_AND_RELEASE

// Set the guard variable to 1 with memory order release semantics.

inline void
__set_and_release (__cxxabiv1::__guard *g)
{
  unsigned char *__p = reinterpret_cast<unsigned char *>(g);
  unsigned char val = 1;
  __atomic_store (__p, &val, __ATOMIC_RELEASE);
  (void) __p;
}
#  define _GLIBCXX_GUARD_SET_AND_RELEASE(G) __set_and_release (G)
# endif

#else /* !__GTHREADS */

# undef _GLIBCXX_GUARD_TEST_AND_ACQUIRE
# undef _GLIBCXX_GUARD_SET_AND_RELEASE
# define _GLIBCXX_GUARD_SET_AND_RELEASE(G) _GLIBCXX_GUARD_SET (G)

#endif /* __GTHREADS */

//
// Here are C++ run-time routines for guarded initialization of static
// variables. There are 4 scenarios under which these routines are called:
//
//   1. Threads not supported (__GTHREADS not defined)
//   2. Threads are supported but not enabled at run-time.
//   3. Threads enabled at run-time but __gthreads_* are not fully POSIX.
//   4. Threads enabled at run-time and __gthreads_* support all POSIX threads
//      primitives we need here.
//
// The old code supported scenarios 1-3 but was broken since it used a global
// mutex for all threads and had the mutex locked during the whole duration of
// initialization of a guarded static variable. The following created a
// dead-lock with the old code.
//
//	Thread 1 acquires the global mutex.
//	Thread 1 starts initializing static variable.
//	Thread 1 creates thread 2 during initialization.
//	Thread 2 attempts to acquire mutex to initialize another variable.
//	Thread 2 blocks since thread 1 is locking the mutex.
//	Thread 1 waits for result from thread 2 and also blocks. A deadlock.
//
// The new code here can handle this situation and thus is more robust. However,
// we need to use the POSIX thread condition variable, which is not supported
// in all platforms, notably older versions of Microsoft Windows. The gthr*.h
// headers define a symbol __GTHREAD_HAS_COND for platforms that support POSIX
// like condition variables. For platforms that do not support condition
// variables, we need to fall back to the old code.

// If _GLIBCXX_USE_FUTEX, no global mutex or condition variable is used,
// only atomic operations are used together with futex syscall.
// Valid values of the first integer in guard are:
// 0				  No thread encountered the guarded init
//				  yet or it has been aborted.
// _GLIBCXX_GUARD_BIT		  The guarded static var has been successfully
//				  initialized.
// _GLIBCXX_GUARD_PENDING_BIT	  The guarded static var is being initialized
//				  and no other thread is waiting for its
//				  initialization.
// (_GLIBCXX_GUARD_PENDING_BIT    The guarded static var is being initialized
//  | _GLIBCXX_GUARD_WAITING_BIT) and some other threads are waiting until
//				  it is initialized.

namespace __cxxabiv1 
{
#ifdef _GLIBCXX_USE_FUTEX
  namespace
  {
    static inline int __guard_test_bit (const int __byte, const int __val)
    {
      union { int __i; char __c[sizeof (int)]; } __u = { 0 };
      __u.__c[__byte] = __val;
      return __u.__i;
    }
  }
#endif

  static inline int
  init_in_progress_flag(__guard* g)
  { return ((char *)g)[1]; }

  static inline void
  set_init_in_progress_flag(__guard* g, int v)
  { ((char *)g)[1] = v; }

  static inline void
  throw_recursive_init_exception()
  {
#if __cpp_exceptions
	throw __gnu_cxx::recursive_init_error();
#else
	// Use __builtin_trap so we don't require abort().
	__builtin_trap();
#endif
  }

  // acquire() is a helper function used to acquire guard if thread support is
  // not compiled in or is compiled in but not enabled at run-time.
  static int
  acquire(__guard *g)
  {
    // Quit if the object is already initialized.
    if (_GLIBCXX_GUARD_TEST(g))
      return 0;

    if (init_in_progress_flag(g))
      throw_recursive_init_exception();

    set_init_in_progress_flag(g, 1);
    return 1;
  }

  extern "C"
  int __cxa_guard_acquire (__guard *g) 
  {
#ifdef __GTHREADS
    // If the target can reorder loads, we need to insert a read memory
    // barrier so that accesses to the guarded variable happen after the
    // guard test.
    if (_GLIBCXX_GUARD_TEST_AND_ACQUIRE (g))
      return 0;

# ifdef _GLIBCXX_USE_FUTEX
    // If __atomic_* and futex syscall are supported, don't use any global
    // mutex.
    if (__gthread_active_p ())
      {
	int *gi = (int *) (void *) g;
	const int guard_bit = _GLIBCXX_GUARD_BIT;
	const int pending_bit = _GLIBCXX_GUARD_PENDING_BIT;
	const int waiting_bit = _GLIBCXX_GUARD_WAITING_BIT;

	while (1)
	  {
	    int expected(0);
	    if (__atomic_compare_exchange_n(gi, &expected, pending_bit, false,
					    __ATOMIC_ACQ_REL,
					    __ATOMIC_ACQUIRE))
	      {
		// This thread should do the initialization.
		return 1;
	      }
	      
	    if (expected == guard_bit)
	      {
		// Already initialized.
		return 0;	
	      }

	     if (expected == pending_bit)
	       {
		 // Use acquire here.
		 int newv = expected | waiting_bit;
		 if (!__atomic_compare_exchange_n(gi, &expected, newv, false,
						  __ATOMIC_ACQ_REL, 
						  __ATOMIC_ACQUIRE))
		   {
		     if (expected == guard_bit)
		       {
			 // Make a thread that failed to set the
			 // waiting bit exit the function earlier,
			 // if it detects that another thread has
			 // successfully finished initialising.
			 return 0;
		       }
		     if (expected == 0)
		       continue;
		   }
		 
		 expected = newv;
	       }

	    syscall (SYS_futex, gi, _GLIBCXX_FUTEX_WAIT, expected, 0);
	  }
      }
# else
    if (__gthread_active_p ())
      {
	mutex_wrapper mw;

	while (1)	// When this loop is executing, mutex is locked.
	  {
#  ifdef __GTHREAD_HAS_COND
	    // The static is already initialized.
	    if (_GLIBCXX_GUARD_TEST(g))
	      return 0;	// The mutex will be unlocked via wrapper

	    if (init_in_progress_flag(g))
	      {
		// The guarded static is currently being initialized by
		// another thread, so we release mutex and wait for the
		// condition variable. We will lock the mutex again after
		// this.
		get_static_cond().wait_recursive(&get_static_mutex());
	      }
	    else
	      {
		set_init_in_progress_flag(g, 1);
		return 1; // The mutex will be unlocked via wrapper.
	      }
#  else
	    // This provides compatibility with older systems not supporting
	    // POSIX like condition variables.
	    if (acquire(g))
	      {
		mw.unlock = false;
		return 1; // The mutex still locked.
	      }
	    return 0; // The mutex will be unlocked via wrapper.
#  endif
	  }
      }
# endif
#endif

    return acquire (g);
  }

  extern "C"
  void __cxa_guard_abort (__guard *g) throw ()
  {
#ifdef _GLIBCXX_USE_FUTEX
    // If __atomic_* and futex syscall are supported, don't use any global
    // mutex.
    if (__gthread_active_p ())
      {
	int *gi = (int *) (void *) g;
	const int waiting_bit = _GLIBCXX_GUARD_WAITING_BIT;
	int old = __atomic_exchange_n (gi, 0, __ATOMIC_ACQ_REL);

	if ((old & waiting_bit) != 0)
	  syscall (SYS_futex, gi, _GLIBCXX_FUTEX_WAKE, INT_MAX);
	return;
      }
#elif defined(__GTHREAD_HAS_COND)
    if (__gthread_active_p())
      {	
	mutex_wrapper mw;

	set_init_in_progress_flag(g, 0);

	// If we abort, we still need to wake up all other threads waiting for
	// the condition variable.
        get_static_cond().broadcast();
	return;
      }	
#endif

    set_init_in_progress_flag(g, 0);
#if defined(__GTHREADS) && !defined(__GTHREAD_HAS_COND)
    // This provides compatibility with older systems not supporting POSIX like
    // condition variables.
    if (__gthread_active_p ())
      static_mutex->unlock();
#endif
  }

  extern "C"
  void __cxa_guard_release (__guard *g) throw ()
  {
#ifdef _GLIBCXX_USE_FUTEX
    // If __atomic_* and futex syscall are supported, don't use any global
    // mutex.
    if (__gthread_active_p ())
      {
	int *gi = (int *) (void *) g;
	const int guard_bit = _GLIBCXX_GUARD_BIT;
	const int waiting_bit = _GLIBCXX_GUARD_WAITING_BIT;
	int old = __atomic_exchange_n (gi, guard_bit, __ATOMIC_ACQ_REL);

	if ((old & waiting_bit) != 0)
	  syscall (SYS_futex, gi, _GLIBCXX_FUTEX_WAKE, INT_MAX);
	return;
      }
#elif defined(__GTHREAD_HAS_COND)
    if (__gthread_active_p())
      {
	mutex_wrapper mw;

	set_init_in_progress_flag(g, 0);
	_GLIBCXX_GUARD_SET_AND_RELEASE(g);

        get_static_cond().broadcast();
	return;
      }	
#endif

    set_init_in_progress_flag(g, 0);
    _GLIBCXX_GUARD_SET_AND_RELEASE (g);

#if defined(__GTHREADS) && !defined(__GTHREAD_HAS_COND)
    // This provides compatibility with older systems not supporting POSIX like
    // condition variables.
    if (__gthread_active_p())
      static_mutex->unlock();
#endif
  }
}