Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
/* CPU family header for iq2000bf.

THIS FILE IS MACHINE GENERATED WITH CGEN.

Copyright 1996-2019 Free Software Foundation, Inc.

This file is part of the GNU simulators.

   This file is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3, or (at your option)
   any later version.

   It is distributed in the hope that it will be useful, but WITHOUT
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
   License for more details.

   You should have received a copy of the GNU General Public License along
   with this program; if not, see <http://www.gnu.org/licenses/>.

*/

#ifndef CPU_IQ2000BF_H
#define CPU_IQ2000BF_H

/* Maximum number of instructions that are fetched at a time.
   This is for LIW type instructions sets (e.g. m32r).  */
#define MAX_LIW_INSNS 1

/* Maximum number of instructions that can be executed in parallel.  */
#define MAX_PARALLEL_INSNS 1

/* The size of an "int" needed to hold an instruction word.
   This is usually 32 bits, but some architectures needs 64 bits.  */
typedef CGEN_INSN_INT CGEN_INSN_WORD;

#include "cgen-engine.h"

/* CPU state information.  */
typedef struct {
  /* Hardware elements.  */
  struct {
  /* program counter */
  USI h_pc;
#define GET_H_PC() get_h_pc (current_cpu)
#define SET_H_PC(x) \
do { \
set_h_pc (current_cpu, (x));\
;} while (0)
  /* General purpose registers */
  SI h_gr[32];
#define GET_H_GR(index) (((index) == (0))) ? (0) : (CPU (h_gr[index]))
#define SET_H_GR(index, x) \
do { \
if ((((index)) == (0))) {\
((void) 0); /*nop*/\
}\
 else {\
CPU (h_gr[(index)]) = (x);\
}\
;} while (0)
  } hardware;
#define CPU_CGEN_HW(cpu) (& (cpu)->cpu_data.hardware)
} IQ2000BF_CPU_DATA;

/* Cover fns for register access.  */
USI iq2000bf_h_pc_get (SIM_CPU *);
void iq2000bf_h_pc_set (SIM_CPU *, USI);
SI iq2000bf_h_gr_get (SIM_CPU *, UINT);
void iq2000bf_h_gr_set (SIM_CPU *, UINT, SI);

/* These must be hand-written.  */
extern CPUREG_FETCH_FN iq2000bf_fetch_register;
extern CPUREG_STORE_FN iq2000bf_store_register;

typedef struct {
  int empty;
} MODEL_IQ2000_DATA;

/* Instruction argument buffer.  */

union sem_fields {
  struct { /* no operands */
    int empty;
  } sfmt_empty;
  struct { /*  */
    IADDR i_jmptarg;
  } sfmt_j;
  struct { /*  */
    IADDR i_offset;
    UINT f_rs;
    UINT f_rt;
  } sfmt_bbi;
  struct { /*  */
    UINT f_imm;
    UINT f_rs;
    UINT f_rt;
  } sfmt_addi;
  struct { /*  */
    UINT f_mask;
    UINT f_rd;
    UINT f_rs;
    UINT f_rt;
  } sfmt_mrgb;
  struct { /*  */
    UINT f_maskl;
    UINT f_rd;
    UINT f_rs;
    UINT f_rt;
    UINT f_shamt;
  } sfmt_ram;
#if WITH_SCACHE_PBB
  /* Writeback handler.  */
  struct {
    /* Pointer to argbuf entry for insn whose results need writing back.  */
    const struct argbuf *abuf;
  } write;
  /* x-before handler */
  struct {
    /*const SCACHE *insns[MAX_PARALLEL_INSNS];*/
    int first_p;
  } before;
  /* x-after handler */
  struct {
    int empty;
  } after;
  /* This entry is used to terminate each pbb.  */
  struct {
    /* Number of insns in pbb.  */
    int insn_count;
    /* Next pbb to execute.  */
    SCACHE *next;
    SCACHE *branch_target;
  } chain;
#endif
};

/* The ARGBUF struct.  */
struct argbuf {
  /* These are the baseclass definitions.  */
  IADDR addr;
  const IDESC *idesc;
  char trace_p;
  char profile_p;
  /* ??? Temporary hack for skip insns.  */
  char skip_count;
  char unused;
  /* cpu specific data follows */
  union sem semantic;
  int written;
  union sem_fields fields;
};

/* A cached insn.

   ??? SCACHE used to contain more than just argbuf.  We could delete the
   type entirely and always just use ARGBUF, but for future concerns and as
   a level of abstraction it is left in.  */

struct scache {
  struct argbuf argbuf;
};

/* Macros to simplify extraction, reading and semantic code.
   These define and assign the local vars that contain the insn's fields.  */

#define EXTRACT_IFMT_EMPTY_VARS \
  unsigned int length;
#define EXTRACT_IFMT_EMPTY_CODE \
  length = 0; \

#define EXTRACT_IFMT_ADD_VARS \
  UINT f_opcode; \
  UINT f_rs; \
  UINT f_rt; \
  UINT f_rd; \
  UINT f_shamt; \
  UINT f_func; \
  unsigned int length;
#define EXTRACT_IFMT_ADD_CODE \
  length = 4; \
  f_opcode = EXTRACT_LSB0_UINT (insn, 32, 31, 6); \
  f_rs = EXTRACT_LSB0_UINT (insn, 32, 25, 5); \
  f_rt = EXTRACT_LSB0_UINT (insn, 32, 20, 5); \
  f_rd = EXTRACT_LSB0_UINT (insn, 32, 15, 5); \
  f_shamt = EXTRACT_LSB0_UINT (insn, 32, 10, 5); \
  f_func = EXTRACT_LSB0_UINT (insn, 32, 5, 6); \

#define EXTRACT_IFMT_ADDI_VARS \
  UINT f_opcode; \
  UINT f_rs; \
  UINT f_rt; \
  UINT f_imm; \
  unsigned int length;
#define EXTRACT_IFMT_ADDI_CODE \
  length = 4; \
  f_opcode = EXTRACT_LSB0_UINT (insn, 32, 31, 6); \
  f_rs = EXTRACT_LSB0_UINT (insn, 32, 25, 5); \
  f_rt = EXTRACT_LSB0_UINT (insn, 32, 20, 5); \
  f_imm = EXTRACT_LSB0_UINT (insn, 32, 15, 16); \

#define EXTRACT_IFMT_RAM_VARS \
  UINT f_opcode; \
  UINT f_rs; \
  UINT f_rt; \
  UINT f_rd; \
  UINT f_shamt; \
  UINT f_5; \
  UINT f_maskl; \
  unsigned int length;
#define EXTRACT_IFMT_RAM_CODE \
  length = 4; \
  f_opcode = EXTRACT_LSB0_UINT (insn, 32, 31, 6); \
  f_rs = EXTRACT_LSB0_UINT (insn, 32, 25, 5); \
  f_rt = EXTRACT_LSB0_UINT (insn, 32, 20, 5); \
  f_rd = EXTRACT_LSB0_UINT (insn, 32, 15, 5); \
  f_shamt = EXTRACT_LSB0_UINT (insn, 32, 10, 5); \
  f_5 = EXTRACT_LSB0_UINT (insn, 32, 5, 1); \
  f_maskl = EXTRACT_LSB0_UINT (insn, 32, 4, 5); \

#define EXTRACT_IFMT_SLL_VARS \
  UINT f_opcode; \
  UINT f_rs; \
  UINT f_rt; \
  UINT f_rd; \
  UINT f_shamt; \
  UINT f_func; \
  unsigned int length;
#define EXTRACT_IFMT_SLL_CODE \
  length = 4; \
  f_opcode = EXTRACT_LSB0_UINT (insn, 32, 31, 6); \
  f_rs = EXTRACT_LSB0_UINT (insn, 32, 25, 5); \
  f_rt = EXTRACT_LSB0_UINT (insn, 32, 20, 5); \
  f_rd = EXTRACT_LSB0_UINT (insn, 32, 15, 5); \
  f_shamt = EXTRACT_LSB0_UINT (insn, 32, 10, 5); \
  f_func = EXTRACT_LSB0_UINT (insn, 32, 5, 6); \

#define EXTRACT_IFMT_SLMV_VARS \
  UINT f_opcode; \
  UINT f_rs; \
  UINT f_rt; \
  UINT f_rd; \
  UINT f_shamt; \
  UINT f_func; \
  unsigned int length;
#define EXTRACT_IFMT_SLMV_CODE \
  length = 4; \
  f_opcode = EXTRACT_LSB0_UINT (insn, 32, 31, 6); \
  f_rs = EXTRACT_LSB0_UINT (insn, 32, 25, 5); \
  f_rt = EXTRACT_LSB0_UINT (insn, 32, 20, 5); \
  f_rd = EXTRACT_LSB0_UINT (insn, 32, 15, 5); \
  f_shamt = EXTRACT_LSB0_UINT (insn, 32, 10, 5); \
  f_func = EXTRACT_LSB0_UINT (insn, 32, 5, 6); \

#define EXTRACT_IFMT_SLTI_VARS \
  UINT f_opcode; \
  UINT f_rs; \
  UINT f_rt; \
  UINT f_imm; \
  unsigned int length;
#define EXTRACT_IFMT_SLTI_CODE \
  length = 4; \
  f_opcode = EXTRACT_LSB0_UINT (insn, 32, 31, 6); \
  f_rs = EXTRACT_LSB0_UINT (insn, 32, 25, 5); \
  f_rt = EXTRACT_LSB0_UINT (insn, 32, 20, 5); \
  f_imm = EXTRACT_LSB0_UINT (insn, 32, 15, 16); \

#define EXTRACT_IFMT_BBI_VARS \
  UINT f_opcode; \
  UINT f_rs; \
  UINT f_rt; \
  SI f_offset; \
  unsigned int length;
#define EXTRACT_IFMT_BBI_CODE \
  length = 4; \
  f_opcode = EXTRACT_LSB0_UINT (insn, 32, 31, 6); \
  f_rs = EXTRACT_LSB0_UINT (insn, 32, 25, 5); \
  f_rt = EXTRACT_LSB0_UINT (insn, 32, 20, 5); \
  f_offset = ((((EXTRACT_LSB0_SINT (insn, 32, 15, 16)) << (2))) + (((pc) + (4)))); \

#define EXTRACT_IFMT_BBV_VARS \
  UINT f_opcode; \
  UINT f_rs; \
  UINT f_rt; \
  SI f_offset; \
  unsigned int length;
#define EXTRACT_IFMT_BBV_CODE \
  length = 4; \
  f_opcode = EXTRACT_LSB0_UINT (insn, 32, 31, 6); \
  f_rs = EXTRACT_LSB0_UINT (insn, 32, 25, 5); \
  f_rt = EXTRACT_LSB0_UINT (insn, 32, 20, 5); \
  f_offset = ((((EXTRACT_LSB0_SINT (insn, 32, 15, 16)) << (2))) + (((pc) + (4)))); \

#define EXTRACT_IFMT_BGEZ_VARS \
  UINT f_opcode; \
  UINT f_rs; \
  UINT f_rt; \
  SI f_offset; \
  unsigned int length;
#define EXTRACT_IFMT_BGEZ_CODE \
  length = 4; \
  f_opcode = EXTRACT_LSB0_UINT (insn, 32, 31, 6); \
  f_rs = EXTRACT_LSB0_UINT (insn, 32, 25, 5); \
  f_rt = EXTRACT_LSB0_UINT (insn, 32, 20, 5); \
  f_offset = ((((EXTRACT_LSB0_SINT (insn, 32, 15, 16)) << (2))) + (((pc) + (4)))); \

#define EXTRACT_IFMT_JALR_VARS \
  UINT f_opcode; \
  UINT f_rs; \
  UINT f_rt; \
  UINT f_rd; \
  UINT f_shamt; \
  UINT f_func; \
  unsigned int length;
#define EXTRACT_IFMT_JALR_CODE \
  length = 4; \
  f_opcode = EXTRACT_LSB0_UINT (insn, 32, 31, 6); \
  f_rs = EXTRACT_LSB0_UINT (insn, 32, 25, 5); \
  f_rt = EXTRACT_LSB0_UINT (insn, 32, 20, 5); \
  f_rd = EXTRACT_LSB0_UINT (insn, 32, 15, 5); \
  f_shamt = EXTRACT_LSB0_UINT (insn, 32, 10, 5); \
  f_func = EXTRACT_LSB0_UINT (insn, 32, 5, 6); \

#define EXTRACT_IFMT_JR_VARS \
  UINT f_opcode; \
  UINT f_rs; \
  UINT f_rt; \
  UINT f_rd; \
  UINT f_shamt; \
  UINT f_func; \
  unsigned int length;
#define EXTRACT_IFMT_JR_CODE \
  length = 4; \
  f_opcode = EXTRACT_LSB0_UINT (insn, 32, 31, 6); \
  f_rs = EXTRACT_LSB0_UINT (insn, 32, 25, 5); \
  f_rt = EXTRACT_LSB0_UINT (insn, 32, 20, 5); \
  f_rd = EXTRACT_LSB0_UINT (insn, 32, 15, 5); \
  f_shamt = EXTRACT_LSB0_UINT (insn, 32, 10, 5); \
  f_func = EXTRACT_LSB0_UINT (insn, 32, 5, 6); \

#define EXTRACT_IFMT_LB_VARS \
  UINT f_opcode; \
  UINT f_rs; \
  UINT f_rt; \
  UINT f_imm; \
  unsigned int length;
#define EXTRACT_IFMT_LB_CODE \
  length = 4; \
  f_opcode = EXTRACT_LSB0_UINT (insn, 32, 31, 6); \
  f_rs = EXTRACT_LSB0_UINT (insn, 32, 25, 5); \
  f_rt = EXTRACT_LSB0_UINT (insn, 32, 20, 5); \
  f_imm = EXTRACT_LSB0_UINT (insn, 32, 15, 16); \

#define EXTRACT_IFMT_LUI_VARS \
  UINT f_opcode; \
  UINT f_rs; \
  UINT f_rt; \
  UINT f_imm; \
  unsigned int length;
#define EXTRACT_IFMT_LUI_CODE \
  length = 4; \
  f_opcode = EXTRACT_LSB0_UINT (insn, 32, 31, 6); \
  f_rs = EXTRACT_LSB0_UINT (insn, 32, 25, 5); \
  f_rt = EXTRACT_LSB0_UINT (insn, 32, 20, 5); \
  f_imm = EXTRACT_LSB0_UINT (insn, 32, 15, 16); \

#define EXTRACT_IFMT_BREAK_VARS \
  UINT f_opcode; \
  UINT f_rs; \
  UINT f_rt; \
  UINT f_rd; \
  UINT f_shamt; \
  UINT f_func; \
  unsigned int length;
#define EXTRACT_IFMT_BREAK_CODE \
  length = 4; \
  f_opcode = EXTRACT_LSB0_UINT (insn, 32, 31, 6); \
  f_rs = EXTRACT_LSB0_UINT (insn, 32, 25, 5); \
  f_rt = EXTRACT_LSB0_UINT (insn, 32, 20, 5); \
  f_rd = EXTRACT_LSB0_UINT (insn, 32, 15, 5); \
  f_shamt = EXTRACT_LSB0_UINT (insn, 32, 10, 5); \
  f_func = EXTRACT_LSB0_UINT (insn, 32, 5, 6); \

#define EXTRACT_IFMT_SYSCALL_VARS \
  UINT f_opcode; \
  UINT f_excode; \
  UINT f_func; \
  unsigned int length;
#define EXTRACT_IFMT_SYSCALL_CODE \
  length = 4; \
  f_opcode = EXTRACT_LSB0_UINT (insn, 32, 31, 6); \
  f_excode = EXTRACT_LSB0_UINT (insn, 32, 25, 20); \
  f_func = EXTRACT_LSB0_UINT (insn, 32, 5, 6); \

#define EXTRACT_IFMT_ANDOUI_VARS \
  UINT f_opcode; \
  UINT f_rs; \
  UINT f_rt; \
  UINT f_imm; \
  unsigned int length;
#define EXTRACT_IFMT_ANDOUI_CODE \
  length = 4; \
  f_opcode = EXTRACT_LSB0_UINT (insn, 32, 31, 6); \
  f_rs = EXTRACT_LSB0_UINT (insn, 32, 25, 5); \
  f_rt = EXTRACT_LSB0_UINT (insn, 32, 20, 5); \
  f_imm = EXTRACT_LSB0_UINT (insn, 32, 15, 16); \

#define EXTRACT_IFMT_MRGB_VARS \
  UINT f_opcode; \
  UINT f_rs; \
  UINT f_rt; \
  UINT f_rd; \
  UINT f_10; \
  UINT f_mask; \
  UINT f_func; \
  unsigned int length;
#define EXTRACT_IFMT_MRGB_CODE \
  length = 4; \
  f_opcode = EXTRACT_LSB0_UINT (insn, 32, 31, 6); \
  f_rs = EXTRACT_LSB0_UINT (insn, 32, 25, 5); \
  f_rt = EXTRACT_LSB0_UINT (insn, 32, 20, 5); \
  f_rd = EXTRACT_LSB0_UINT (insn, 32, 15, 5); \
  f_10 = EXTRACT_LSB0_UINT (insn, 32, 10, 1); \
  f_mask = EXTRACT_LSB0_UINT (insn, 32, 9, 4); \
  f_func = EXTRACT_LSB0_UINT (insn, 32, 5, 6); \

#define EXTRACT_IFMT_BC0F_VARS \
  UINT f_opcode; \
  UINT f_rs; \
  UINT f_rt; \
  SI f_offset; \
  unsigned int length;
#define EXTRACT_IFMT_BC0F_CODE \
  length = 4; \
  f_opcode = EXTRACT_LSB0_UINT (insn, 32, 31, 6); \
  f_rs = EXTRACT_LSB0_UINT (insn, 32, 25, 5); \
  f_rt = EXTRACT_LSB0_UINT (insn, 32, 20, 5); \
  f_offset = ((((EXTRACT_LSB0_SINT (insn, 32, 15, 16)) << (2))) + (((pc) + (4)))); \

#define EXTRACT_IFMT_CFC0_VARS \
  UINT f_opcode; \
  UINT f_rs; \
  UINT f_rt; \
  UINT f_rd; \
  UINT f_10_11; \
  unsigned int length;
#define EXTRACT_IFMT_CFC0_CODE \
  length = 4; \
  f_opcode = EXTRACT_LSB0_UINT (insn, 32, 31, 6); \
  f_rs = EXTRACT_LSB0_UINT (insn, 32, 25, 5); \
  f_rt = EXTRACT_LSB0_UINT (insn, 32, 20, 5); \
  f_rd = EXTRACT_LSB0_UINT (insn, 32, 15, 5); \
  f_10_11 = EXTRACT_LSB0_UINT (insn, 32, 10, 11); \

#define EXTRACT_IFMT_CHKHDR_VARS \
  UINT f_opcode; \
  UINT f_rs; \
  UINT f_rt; \
  UINT f_rd; \
  UINT f_shamt; \
  UINT f_func; \
  unsigned int length;
#define EXTRACT_IFMT_CHKHDR_CODE \
  length = 4; \
  f_opcode = EXTRACT_LSB0_UINT (insn, 32, 31, 6); \
  f_rs = EXTRACT_LSB0_UINT (insn, 32, 25, 5); \
  f_rt = EXTRACT_LSB0_UINT (insn, 32, 20, 5); \
  f_rd = EXTRACT_LSB0_UINT (insn, 32, 15, 5); \
  f_shamt = EXTRACT_LSB0_UINT (insn, 32, 10, 5); \
  f_func = EXTRACT_LSB0_UINT (insn, 32, 5, 6); \

#define EXTRACT_IFMT_LULCK_VARS \
  UINT f_opcode; \
  UINT f_rs; \
  UINT f_rt; \
  UINT f_rd; \
  UINT f_shamt; \
  UINT f_func; \
  unsigned int length;
#define EXTRACT_IFMT_LULCK_CODE \
  length = 4; \
  f_opcode = EXTRACT_LSB0_UINT (insn, 32, 31, 6); \
  f_rs = EXTRACT_LSB0_UINT (insn, 32, 25, 5); \
  f_rt = EXTRACT_LSB0_UINT (insn, 32, 20, 5); \
  f_rd = EXTRACT_LSB0_UINT (insn, 32, 15, 5); \
  f_shamt = EXTRACT_LSB0_UINT (insn, 32, 10, 5); \
  f_func = EXTRACT_LSB0_UINT (insn, 32, 5, 6); \

#define EXTRACT_IFMT_PKRLR1_VARS \
  UINT f_opcode; \
  UINT f_rs; \
  UINT f_rt; \
  UINT f_count; \
  UINT f_index; \
  unsigned int length;
#define EXTRACT_IFMT_PKRLR1_CODE \
  length = 4; \
  f_opcode = EXTRACT_LSB0_UINT (insn, 32, 31, 6); \
  f_rs = EXTRACT_LSB0_UINT (insn, 32, 25, 5); \
  f_rt = EXTRACT_LSB0_UINT (insn, 32, 20, 5); \
  f_count = EXTRACT_LSB0_UINT (insn, 32, 15, 7); \
  f_index = EXTRACT_LSB0_UINT (insn, 32, 8, 9); \

#define EXTRACT_IFMT_RFE_VARS \
  UINT f_opcode; \
  UINT f_25; \
  UINT f_24_19; \
  UINT f_func; \
  unsigned int length;
#define EXTRACT_IFMT_RFE_CODE \
  length = 4; \
  f_opcode = EXTRACT_LSB0_UINT (insn, 32, 31, 6); \
  f_25 = EXTRACT_LSB0_UINT (insn, 32, 25, 1); \
  f_24_19 = EXTRACT_LSB0_UINT (insn, 32, 24, 19); \
  f_func = EXTRACT_LSB0_UINT (insn, 32, 5, 6); \

#define EXTRACT_IFMT_J_VARS \
  UINT f_opcode; \
  UINT f_rsrvd; \
  USI f_jtarg; \
  unsigned int length;
#define EXTRACT_IFMT_J_CODE \
  length = 4; \
  f_opcode = EXTRACT_LSB0_UINT (insn, 32, 31, 6); \
  f_rsrvd = EXTRACT_LSB0_UINT (insn, 32, 25, 10); \
  f_jtarg = ((((pc) & (0xf0000000))) | (((EXTRACT_LSB0_UINT (insn, 32, 15, 16)) << (2)))); \

/* Collection of various things for the trace handler to use.  */

typedef struct trace_record {
  IADDR pc;
  /* FIXME:wip */
} TRACE_RECORD;

#endif /* CPU_IQ2000BF_H */