/* mpn_dcpi1_div_qr_n -- recursive divide-and-conquer division for arbitrary
size operands.
Contributed to the GNU project by Torbjorn Granlund.
THE FUNCTIONS IN THIS FILE ARE INTERNAL WITH MUTABLE INTERFACES. IT IS ONLY
SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES. IN FACT, IT IS ALMOST
GUARANTEED THAT THEY WILL CHANGE OR DISAPPEAR IN A FUTURE GMP RELEASE.
Copyright 2006, 2007, 2009 Free Software Foundation, Inc.
This file is part of the GNU MP Library.
The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of either:
* the GNU Lesser General Public License as published by the Free
Software Foundation; either version 3 of the License, or (at your
option) any later version.
or
* the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any
later version.
or both in parallel, as here.
The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received copies of the GNU General Public License and the
GNU Lesser General Public License along with the GNU MP Library. If not,
see https://www.gnu.org/licenses/. */
#include "gmp.h"
#include "gmp-impl.h"
#include "longlong.h"
mp_limb_t
mpn_dcpi1_div_qr_n (mp_ptr qp, mp_ptr np, mp_srcptr dp, mp_size_t n,
gmp_pi1_t *dinv, mp_ptr tp)
{
mp_size_t lo, hi;
mp_limb_t cy, qh, ql;
lo = n >> 1; /* floor(n/2) */
hi = n - lo; /* ceil(n/2) */
if (BELOW_THRESHOLD (hi, DC_DIV_QR_THRESHOLD))
qh = mpn_sbpi1_div_qr (qp + lo, np + 2 * lo, 2 * hi, dp + lo, hi, dinv->inv32);
else
qh = mpn_dcpi1_div_qr_n (qp + lo, np + 2 * lo, dp + lo, hi, dinv, tp);
mpn_mul (tp, qp + lo, hi, dp, lo);
cy = mpn_sub_n (np + lo, np + lo, tp, n);
if (qh != 0)
cy += mpn_sub_n (np + n, np + n, dp, lo);
while (cy != 0)
{
qh -= mpn_sub_1 (qp + lo, qp + lo, hi, 1);
cy -= mpn_add_n (np + lo, np + lo, dp, n);
}
if (BELOW_THRESHOLD (lo, DC_DIV_QR_THRESHOLD))
ql = mpn_sbpi1_div_qr (qp, np + hi, 2 * lo, dp + hi, lo, dinv->inv32);
else
ql = mpn_dcpi1_div_qr_n (qp, np + hi, dp + hi, lo, dinv, tp);
mpn_mul (tp, dp, hi, qp, lo);
cy = mpn_sub_n (np, np, tp, n);
if (ql != 0)
cy += mpn_sub_n (np + lo, np + lo, dp, hi);
while (cy != 0)
{
mpn_sub_1 (qp, qp, lo, 1);
cy -= mpn_add_n (np, np, dp, n);
}
return qh;
}
mp_limb_t
mpn_dcpi1_div_qr (mp_ptr qp,
mp_ptr np, mp_size_t nn,
mp_srcptr dp, mp_size_t dn,
gmp_pi1_t *dinv)
{
mp_size_t qn;
mp_limb_t qh, cy;
mp_ptr tp;
TMP_DECL;
TMP_MARK;
ASSERT (dn >= 6); /* to adhere to mpn_sbpi1_div_qr's limits */
ASSERT (nn - dn >= 3); /* to adhere to mpn_sbpi1_div_qr's limits */
ASSERT (dp[dn-1] & GMP_NUMB_HIGHBIT);
tp = TMP_ALLOC_LIMBS (dn);
qn = nn - dn;
qp += qn;
np += nn;
dp += dn;
if (qn > dn)
{
/* Reduce qn mod dn without division, optimizing small operations. */
do
qn -= dn;
while (qn > dn);
qp -= qn; /* point at low limb of next quotient block */
np -= qn; /* point in the middle of partial remainder */
/* Perform the typically smaller block first. */
if (qn == 1)
{
mp_limb_t q, n2, n1, n0, d1, d0;
/* Handle qh up front, for simplicity. */
qh = mpn_cmp (np - dn + 1, dp - dn, dn) >= 0;
if (qh)
ASSERT_NOCARRY (mpn_sub_n (np - dn + 1, np - dn + 1, dp - dn, dn));
/* A single iteration of schoolbook: One 3/2 division,
followed by the bignum update and adjustment. */
n2 = np[0];
n1 = np[-1];
n0 = np[-2];
d1 = dp[-1];
d0 = dp[-2];
ASSERT (n2 < d1 || (n2 == d1 && n1 <= d0));
if (UNLIKELY (n2 == d1) && n1 == d0)
{
q = GMP_NUMB_MASK;
cy = mpn_submul_1 (np - dn, dp - dn, dn, q);
ASSERT (cy == n2);
}
else
{
udiv_qr_3by2 (q, n1, n0, n2, n1, n0, d1, d0, dinv->inv32);
if (dn > 2)
{
mp_limb_t cy, cy1;
cy = mpn_submul_1 (np - dn, dp - dn, dn - 2, q);
cy1 = n0 < cy;
n0 = (n0 - cy) & GMP_NUMB_MASK;
cy = n1 < cy1;
n1 = (n1 - cy1) & GMP_NUMB_MASK;
np[-2] = n0;
if (UNLIKELY (cy != 0))
{
n1 += d1 + mpn_add_n (np - dn, np - dn, dp - dn, dn - 1);
qh -= (q == 0);
q = (q - 1) & GMP_NUMB_MASK;
}
}
else
np[-2] = n0;
np[-1] = n1;
}
qp[0] = q;
}
else
{
/* Do a 2qn / qn division */
if (qn == 2)
qh = mpn_divrem_2 (qp, 0L, np - 2, 4, dp - 2); /* FIXME: obsolete function. Use 5/3 division? */
else if (BELOW_THRESHOLD (qn, DC_DIV_QR_THRESHOLD))
qh = mpn_sbpi1_div_qr (qp, np - qn, 2 * qn, dp - qn, qn, dinv->inv32);
else
qh = mpn_dcpi1_div_qr_n (qp, np - qn, dp - qn, qn, dinv, tp);
if (qn != dn)
{
if (qn > dn - qn)
mpn_mul (tp, qp, qn, dp - dn, dn - qn);
else
mpn_mul (tp, dp - dn, dn - qn, qp, qn);
cy = mpn_sub_n (np - dn, np - dn, tp, dn);
if (qh != 0)
cy += mpn_sub_n (np - dn + qn, np - dn + qn, dp - dn, dn - qn);
while (cy != 0)
{
qh -= mpn_sub_1 (qp, qp, qn, 1);
cy -= mpn_add_n (np - dn, np - dn, dp - dn, dn);
}
}
}
qn = nn - dn - qn;
do
{
qp -= dn;
np -= dn;
mpn_dcpi1_div_qr_n (qp, np - dn, dp - dn, dn, dinv, tp);
qn -= dn;
}
while (qn > 0);
}
else
{
qp -= qn; /* point at low limb of next quotient block */
np -= qn; /* point in the middle of partial remainder */
if (BELOW_THRESHOLD (qn, DC_DIV_QR_THRESHOLD))
qh = mpn_sbpi1_div_qr (qp, np - qn, 2 * qn, dp - qn, qn, dinv->inv32);
else
qh = mpn_dcpi1_div_qr_n (qp, np - qn, dp - qn, qn, dinv, tp);
if (qn != dn)
{
if (qn > dn - qn)
mpn_mul (tp, qp, qn, dp - dn, dn - qn);
else
mpn_mul (tp, dp - dn, dn - qn, qp, qn);
cy = mpn_sub_n (np - dn, np - dn, tp, dn);
if (qh != 0)
cy += mpn_sub_n (np - dn + qn, np - dn + qn, dp - dn, dn - qn);
while (cy != 0)
{
qh -= mpn_sub_1 (qp, qp, qn, 1);
cy -= mpn_add_n (np - dn, np - dn, dp - dn, dn);
}
}
}
TMP_FREE;
return qh;
}