Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
/*	$NetBSD: catrig.c,v 1.2 2016/09/20 18:25:20 christos Exp $	*/
/*-
 * Copyright (c) 2012 Stephen Montgomery-Smith <stephen@FreeBSD.ORG>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include <sys/cdefs.h>
#if 0
__FBSDID("$FreeBSD: head/lib/msun/src/catrig.c 275819 2014-12-16 09:21:56Z ed $");
#endif
__RCSID("$NetBSD: catrig.c,v 1.2 2016/09/20 18:25:20 christos Exp $");

#include "namespace.h"
#ifdef __weak_alias
__weak_alias(casin, _casin)
#endif
#ifdef __weak_alias
__weak_alias(catan, _catan)
#endif

#include <complex.h>
#include <float.h>

#include "math.h"
#include "math_private.h"



#undef isinf
#define isinf(x)	(fabs(x) == INFINITY)
#undef isnan
#define isnan(x)	((x) != (x))
#define	raise_inexact()	do { volatile float junk __unused = /*LINTED*/1 + tiny; } while(/*CONSTCOND*/0)
#undef signbit
#define signbit(x)	(__builtin_signbit(x))

/* We need that DBL_EPSILON^2/128 is larger than FOUR_SQRT_MIN. */
static const double
A_crossover =		10, /* Hull et al suggest 1.5, but 10 works better */
B_crossover =		0.6417,			/* suggested by Hull et al */
m_e =			2.7182818284590452e0,	/*  0x15bf0a8b145769.0p-51 */
m_ln2 =			6.9314718055994531e-1,	/*  0x162e42fefa39ef.0p-53 */
pio2_hi =		1.5707963267948966e0,	/*  0x1921fb54442d18.0p-52 */
RECIP_EPSILON =		1 / DBL_EPSILON,
SQRT_3_EPSILON =	2.5809568279517849e-8,	/*  0x1bb67ae8584caa.0p-78 */
SQRT_6_EPSILON =	3.6500241499888571e-8,	/*  0x13988e1409212e.0p-77 */
#if DBL_MAX_EXP == 1024	/* IEEE */
FOUR_SQRT_MIN =		0x1p-509,		/* >= 4 * sqrt(DBL_MIN) */
QUARTER_SQRT_MAX =	0x1p509,		/* <= sqrt(DBL_MAX) / 4 */
SQRT_MIN =		0x1p-511;		/* >= sqrt(DBL_MIN) */
#elif DBL_MAX_EXP == 127 /* VAX */
FOUR_SQRT_MIN =		0x1p-62,		/* >= 4 * sqrt(DBL_MIN) */
QUARTER_SQRT_MAX =	0x1p62,			/* <= sqrt(DBL_MAX) / 4 */
SQRT_MIN =		0x1p-64;		/* >= sqrt(DBL_MIN) */
#else
	#error "unsupported floating point format"
#endif


static const volatile double
pio2_lo =		6.1232339957367659e-17;	/*  0x11a62633145c07.0p-106 */
static const volatile float
tiny =			0x1p-100; 

static double complex clog_for_large_values(double complex z);

/*
 * Testing indicates that all these functions are accurate up to 4 ULP.
 * The functions casin(h) and cacos(h) are about 2.5 times slower than asinh.
 * The functions catan(h) are a little under 2 times slower than atanh.
 *
 * The code for casinh, casin, cacos, and cacosh comes first.  The code is
 * rather complicated, and the four functions are highly interdependent.
 *
 * The code for catanh and catan comes at the end.  It is much simpler than
 * the other functions, and the code for these can be disconnected from the
 * rest of the code.
 */

/*
 *			================================
 *			| casinh, casin, cacos, cacosh |
 *			================================
 */

/*
 * The algorithm is very close to that in "Implementing the complex arcsine
 * and arccosine functions using exception handling" by T. E. Hull, Thomas F.
 * Fairgrieve, and Ping Tak Peter Tang, published in ACM Transactions on
 * Mathematical Software, Volume 23 Issue 3, 1997, Pages 299-335,
 * http://dl.acm.org/citation.cfm?id=275324.
 *
 * Throughout we use the convention z = x + I*y.
 *
 * casinh(z) = sign(x)*log(A+sqrt(A*A-1)) + I*asin(B)
 * where
 * A = (|z+I| + |z-I|) / 2
 * B = (|z+I| - |z-I|) / 2 = y/A
 *
 * These formulas become numerically unstable:
 *   (a) for Re(casinh(z)) when z is close to the line segment [-I, I] (that
 *       is, Re(casinh(z)) is close to 0);
 *   (b) for Im(casinh(z)) when z is close to either of the intervals
 *       [I, I*infinity) or (-I*infinity, -I] (that is, |Im(casinh(z))| is
 *       close to PI/2).
 *
 * These numerical problems are overcome by defining
 * f(a, b) = (hypot(a, b) - b) / 2 = a*a / (hypot(a, b) + b) / 2
 * Then if A < A_crossover, we use
 *   log(A + sqrt(A*A-1)) = log1p((A-1) + sqrt((A-1)*(A+1)))
 *   A-1 = f(x, 1+y) + f(x, 1-y)
 * and if B > B_crossover, we use
 *   asin(B) = atan2(y, sqrt(A*A - y*y)) = atan2(y, sqrt((A+y)*(A-y)))
 *   A-y = f(x, y+1) + f(x, y-1)
 * where without loss of generality we have assumed that x and y are
 * non-negative.
 *
 * Much of the difficulty comes because the intermediate computations may
 * produce overflows or underflows.  This is dealt with in the paper by Hull
 * et al by using exception handling.  We do this by detecting when
 * computations risk underflow or overflow.  The hardest part is handling the
 * underflows when computing f(a, b).
 *
 * Note that the function f(a, b) does not appear explicitly in the paper by
 * Hull et al, but the idea may be found on pages 308 and 309.  Introducing the
 * function f(a, b) allows us to concentrate many of the clever tricks in this
 * paper into one function.
 */

/*
 * Function f(a, b, hypot_a_b) = (hypot(a, b) - b) / 2.
 * Pass hypot(a, b) as the third argument.
 */
static inline double
f(double a, double b, double hypot_a_b)
{
	if (b < 0)
		return ((hypot_a_b - b) / 2);
	if (b == 0)
		return (a / 2);
	return (a * a / (hypot_a_b + b) / 2);
}

/*
 * All the hard work is contained in this function.
 * x and y are assumed positive or zero, and less than RECIP_EPSILON.
 * Upon return:
 * rx = Re(casinh(z)) = -Im(cacos(y + I*x)).
 * B_is_usable is set to 1 if the value of B is usable.
 * If B_is_usable is set to 0, sqrt_A2my2 = sqrt(A*A - y*y), and new_y = y.
 * If returning sqrt_A2my2 has potential to result in an underflow, it is
 * rescaled, and new_y is similarly rescaled.
 */
static inline void
do_hard_work(double x, double y, double *rx, int *B_is_usable, double *B,
    double *sqrt_A2my2, double *new_y)
{
	double R, S, A; /* A, B, R, and S are as in Hull et al. */
	double Am1, Amy; /* A-1, A-y. */

	R = hypot(x, y + 1);		/* |z+I| */
	S = hypot(x, y - 1);		/* |z-I| */

	/* A = (|z+I| + |z-I|) / 2 */
	A = (R + S) / 2;
	/*
	 * Mathematically A >= 1.  There is a small chance that this will not
	 * be so because of rounding errors.  So we will make certain it is
	 * so.
	 */
	if (A < 1)
		A = 1;

	if (A < A_crossover) {
		/*
		 * Am1 = fp + fm, where fp = f(x, 1+y), and fm = f(x, 1-y).
		 * rx = log1p(Am1 + sqrt(Am1*(A+1)))
		 */
		if (y == 1 && x < DBL_EPSILON * DBL_EPSILON / 128) {
			/*
			 * fp is of order x^2, and fm = x/2.
			 * A = 1 (inexactly).
			 */
			*rx = sqrt(x);
		} else if (x >= DBL_EPSILON * fabs(y - 1)) {
			/*
			 * Underflow will not occur because
			 * x >= DBL_EPSILON^2/128 >= FOUR_SQRT_MIN
			 */
			Am1 = f(x, 1 + y, R) + f(x, 1 - y, S);
			*rx = log1p(Am1 + sqrt(Am1 * (A + 1)));
		} else if (y < 1) {
			/*
			 * fp = x*x/(1+y)/4, fm = x*x/(1-y)/4, and
			 * A = 1 (inexactly).
			 */
			*rx = x / sqrt((1 - y) * (1 + y));
		} else {		/* if (y > 1) */
			/*
			 * A-1 = y-1 (inexactly).
			 */
			*rx = log1p((y - 1) + sqrt((y - 1) * (y + 1)));
		}
	} else {
		*rx = log(A + sqrt(A * A - 1));
	}

	*new_y = y;

	if (y < FOUR_SQRT_MIN) {
		/*
		 * Avoid a possible underflow caused by y/A.  For casinh this
		 * would be legitimate, but will be picked up by invoking atan2
		 * later on.  For cacos this would not be legitimate.
		 */
		*B_is_usable = 0;
		*sqrt_A2my2 = A * (2 / DBL_EPSILON);
		*new_y = y * (2 / DBL_EPSILON);
		return;
	}

	/* B = (|z+I| - |z-I|) / 2 = y/A */
	*B = y / A;
	*B_is_usable = 1;

	if (*B > B_crossover) {
		*B_is_usable = 0;
		/*
		 * Amy = fp + fm, where fp = f(x, y+1), and fm = f(x, y-1).
		 * sqrt_A2my2 = sqrt(Amy*(A+y))
		 */
		if (y == 1 && x < DBL_EPSILON / 128) {
			/*
			 * fp is of order x^2, and fm = x/2.
			 * A = 1 (inexactly).
			 */
			*sqrt_A2my2 = sqrt(x) * sqrt((A + y) / 2);
		} else if (x >= DBL_EPSILON * fabs(y - 1)) {
			/*
			 * Underflow will not occur because
			 * x >= DBL_EPSILON/128 >= FOUR_SQRT_MIN
			 * and
			 * x >= DBL_EPSILON^2 >= FOUR_SQRT_MIN
			 */
			Amy = f(x, y + 1, R) + f(x, y - 1, S);
			*sqrt_A2my2 = sqrt(Amy * (A + y));
		} else if (y > 1) {
			/*
			 * fp = x*x/(y+1)/4, fm = x*x/(y-1)/4, and
			 * A = y (inexactly).
			 *
			 * y < RECIP_EPSILON.  So the following
			 * scaling should avoid any underflow problems.
			 */
			*sqrt_A2my2 = x * (4 / DBL_EPSILON / DBL_EPSILON) * y /
			    sqrt((y + 1) * (y - 1));
			*new_y = y * (4 / DBL_EPSILON / DBL_EPSILON);
		} else {		/* if (y < 1) */
			/*
			 * fm = 1-y >= DBL_EPSILON, fp is of order x^2, and
			 * A = 1 (inexactly).
			 */
			*sqrt_A2my2 = sqrt((1 - y) * (1 + y));
		}
	}
}

/*
 * casinh(z) = z + O(z^3)   as z -> 0
 *
 * casinh(z) = sign(x)*clog(sign(x)*z) + O(1/z^2)   as z -> infinity
 * The above formula works for the imaginary part as well, because
 * Im(casinh(z)) = sign(x)*atan2(sign(x)*y, fabs(x)) + O(y/z^3)
 *    as z -> infinity, uniformly in y
 */
double complex
casinh(double complex z)
{
	double x, y, ax, ay, rx, ry, B, sqrt_A2my2, new_y;
	int B_is_usable;
	double complex w;

	x = creal(z);
	y = cimag(z);
	ax = fabs(x);
	ay = fabs(y);

	if (isnan(x) || isnan(y)) {
		/* casinh(+-Inf + I*NaN) = +-Inf + I*NaN */
		if (isinf(x))
			return (CMPLX(x, y + y));
		/* casinh(NaN + I*+-Inf) = opt(+-)Inf + I*NaN */
		if (isinf(y))
			return (CMPLX(y, x + x));
		/* casinh(NaN + I*0) = NaN + I*0 */
		if (y == 0)
			return (CMPLX(x + x, y));
		/*
		 * All other cases involving NaN return NaN + I*NaN.
		 * C99 leaves it optional whether to raise invalid if one of
		 * the arguments is not NaN, so we opt not to raise it.
		 */
		return (CMPLX(x + 0.0L + (y + 0), x + 0.0L + (y + 0)));
	}

	if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) {
		/* clog...() will raise inexact unless x or y is infinite. */
		if (signbit(x) == 0)
			w = clog_for_large_values(z) + m_ln2;
		else
			w = clog_for_large_values(-z) + m_ln2;
		return (CMPLX(copysign(creal(w), x), copysign(cimag(w), y)));
	}

	/* Avoid spuriously raising inexact for z = 0. */
	if (x == 0 && y == 0)
		return (z);

	/* All remaining cases are inexact. */
	raise_inexact();

	if (ax < SQRT_6_EPSILON / 4 && ay < SQRT_6_EPSILON / 4)
		return (z);

	do_hard_work(ax, ay, &rx, &B_is_usable, &B, &sqrt_A2my2, &new_y);
	if (B_is_usable)
		ry = asin(B);
	else
		ry = atan2(new_y, sqrt_A2my2);
	return (CMPLX(copysign(rx, x), copysign(ry, y)));
}

/*
 * casin(z) = reverse(casinh(reverse(z)))
 * where reverse(x + I*y) = y + I*x = I*conj(z).
 */
double complex
casin(double complex z)
{
	double complex w = casinh(CMPLX(cimag(z), creal(z)));

	return (CMPLX(cimag(w), creal(w)));
}

/*
 * cacos(z) = PI/2 - casin(z)
 * but do the computation carefully so cacos(z) is accurate when z is
 * close to 1.
 *
 * cacos(z) = PI/2 - z + O(z^3)   as z -> 0
 *
 * cacos(z) = -sign(y)*I*clog(z) + O(1/z^2)   as z -> infinity
 * The above formula works for the real part as well, because
 * Re(cacos(z)) = atan2(fabs(y), x) + O(y/z^3)
 *    as z -> infinity, uniformly in y
 */
double complex
cacos(double complex z)
{
	double x, y, ax, ay, rx, ry, B, sqrt_A2mx2, new_x;
	int sx, sy;
	int B_is_usable;
	double complex w;

	x = creal(z);
	y = cimag(z);
	sx = signbit(x);
	sy = signbit(y);
	ax = fabs(x);
	ay = fabs(y);

	if (isnan(x) || isnan(y)) {
		/* cacos(+-Inf + I*NaN) = NaN + I*opt(-)Inf */
		if (isinf(x))
			return (CMPLX(y + y, -INFINITY));
		/* cacos(NaN + I*+-Inf) = NaN + I*-+Inf */
		if (isinf(y))
			return (CMPLX(x + x, -y));
		/* cacos(0 + I*NaN) = PI/2 + I*NaN with inexact */
		if (x == 0)
			return (CMPLX(pio2_hi + pio2_lo, y + y));
		/*
		 * All other cases involving NaN return NaN + I*NaN.
		 * C99 leaves it optional whether to raise invalid if one of
		 * the arguments is not NaN, so we opt not to raise it.
		 */
		return (CMPLX(x + 0.0L + (y + 0), x + 0.0L + (y + 0)));
	}

	if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) {
		/* clog...() will raise inexact unless x or y is infinite. */
		w = clog_for_large_values(z);
		rx = fabs(cimag(w));
		ry = creal(w) + m_ln2;
		if (sy == 0)
			ry = -ry;
		return (CMPLX(rx, ry));
	}

	/* Avoid spuriously raising inexact for z = 1. */
	if (x == 1 && y == 0)
		return (CMPLX(0, -y));

	/* All remaining cases are inexact. */
	raise_inexact();

	if (ax < SQRT_6_EPSILON / 4 && ay < SQRT_6_EPSILON / 4)
		return (CMPLX(pio2_hi - (x - pio2_lo), -y));

	do_hard_work(ay, ax, &ry, &B_is_usable, &B, &sqrt_A2mx2, &new_x);
	if (B_is_usable) {
		if (sx == 0)
			rx = acos(B);
		else
			rx = acos(-B);
	} else {
		if (sx == 0)
			rx = atan2(sqrt_A2mx2, new_x);
		else
			rx = atan2(sqrt_A2mx2, -new_x);
	}
	if (sy == 0)
		ry = -ry;
	return (CMPLX(rx, ry));
}

/*
 * cacosh(z) = I*cacos(z) or -I*cacos(z)
 * where the sign is chosen so Re(cacosh(z)) >= 0.
 */
double complex
cacosh(double complex z)
{
	double complex w;
	double rx, ry;

	w = cacos(z);
	rx = creal(w);
	ry = cimag(w);
	/* cacosh(NaN + I*NaN) = NaN + I*NaN */
	if (isnan(rx) && isnan(ry))
		return (CMPLX(ry, rx));
	/* cacosh(NaN + I*+-Inf) = +Inf + I*NaN */
	/* cacosh(+-Inf + I*NaN) = +Inf + I*NaN */
	if (isnan(rx))
		return (CMPLX(fabs(ry), rx));
	/* cacosh(0 + I*NaN) = NaN + I*NaN */
	if (isnan(ry))
		return (CMPLX(ry, ry));
	return (CMPLX(fabs(ry), copysign(rx, cimag(z))));
}

/*
 * Optimized version of clog() for |z| finite and larger than ~RECIP_EPSILON.
 */
static double complex
clog_for_large_values(double complex z)
{
	double x, y;
	double ax, ay, t;

	x = creal(z);
	y = cimag(z);
	ax = fabs(x);
	ay = fabs(y);
	if (ax < ay) {
		t = ax;
		ax = ay;
		ay = t;
	}

	/*
	 * Avoid overflow in hypot() when x and y are both very large.
	 * Divide x and y by E, and then add 1 to the logarithm.  This depends
	 * on E being larger than sqrt(2).
	 * Dividing by E causes an insignificant loss of accuracy; however
	 * this method is still poor since it is uneccessarily slow.
	 */
	if (ax > DBL_MAX / 2)
		return (CMPLX(log(hypot(x / m_e, y / m_e)) + 1, atan2(y, x)));

	/*
	 * Avoid overflow when x or y is large.  Avoid underflow when x or
	 * y is small.
	 */
	if (ax > QUARTER_SQRT_MAX || ay < SQRT_MIN)
		return (CMPLX(log(hypot(x, y)), atan2(y, x)));

	return (CMPLX(log(ax * ax + ay * ay) / 2, atan2(y, x)));
}

/*
 *				=================
 *				| catanh, catan |
 *				=================
 */

/*
 * sum_squares(x,y) = x*x + y*y (or just x*x if y*y would underflow).
 * Assumes x*x and y*y will not overflow.
 * Assumes x and y are finite.
 * Assumes y is non-negative.
 * Assumes fabs(x) >= DBL_EPSILON.
 */
static inline double
sum_squares(double x, double y)
{

	/* Avoid underflow when y is small. */
	if (y < SQRT_MIN)
		return (x * x);

	return (x * x + y * y);
}

/*
 * real_part_reciprocal(x, y) = Re(1/(x+I*y)) = x/(x*x + y*y).
 * Assumes x and y are not NaN, and one of x and y is larger than
 * RECIP_EPSILON.  We avoid unwarranted underflow.  It is important to not use
 * the code creal(1/z), because the imaginary part may produce an unwanted
 * underflow.
 * This is only called in a context where inexact is always raised before
 * the call, so no effort is made to avoid or force inexact.
 */
static inline double
real_part_reciprocal(double x, double y)
{
	double scale;
	uint32_t hx, hy;
	int32_t ix, iy;

	/*
	 * This code is inspired by the C99 document n1124.pdf, Section G.5.1,
	 * example 2.
	 */
	GET_HIGH_WORD(hx, x);
	ix = hx & 0x7ff00000;
	GET_HIGH_WORD(hy, y);
	iy = hy & 0x7ff00000;
#define	BIAS	(DBL_MAX_EXP - 1)
/* XXX more guard digits are useful iff there is extra precision. */
#define	CUTOFF	(DBL_MANT_DIG / 2 + 1)	/* just half or 1 guard digit */
	if (ix - iy >= CUTOFF << 20 || isinf(x))
		return (1 / x);		/* +-Inf -> +-0 is special */
	if (iy - ix >= CUTOFF << 20)
		return (x / y / y);	/* should avoid double div, but hard */
	if (ix <= (BIAS + DBL_MAX_EXP / 2 - CUTOFF) << 20)
		return (x / (x * x + y * y));
	scale = 1;
	SET_HIGH_WORD(scale, 0x7ff00000 - ix);	/* 2**(1-ilogb(x)) */
	x *= scale;
	y *= scale;
	return (x / (x * x + y * y) * scale);
}

/*
 * catanh(z) = log((1+z)/(1-z)) / 2
 *           = log1p(4*x / |z-1|^2) / 4
 *             + I * atan2(2*y, (1-x)*(1+x)-y*y) / 2
 *
 * catanh(z) = z + O(z^3)   as z -> 0
 *
 * catanh(z) = 1/z + sign(y)*I*PI/2 + O(1/z^3)   as z -> infinity
 * The above formula works for the real part as well, because
 * Re(catanh(z)) = x/|z|^2 + O(x/z^4)
 *    as z -> infinity, uniformly in x
 */
double complex
catanh(double complex z)
{
	double x, y, ax, ay, rx, ry;

	x = creal(z);
	y = cimag(z);
	ax = fabs(x);
	ay = fabs(y);

	/* This helps handle many cases. */
	if (y == 0 && ax <= 1)
		return (CMPLX(atanh(x), y));

	/* To ensure the same accuracy as atan(), and to filter out z = 0. */
	if (x == 0)
		return (CMPLX(x, atan(y)));

	if (isnan(x) || isnan(y)) {
		/* catanh(+-Inf + I*NaN) = +-0 + I*NaN */
		if (isinf(x))
			return (CMPLX(copysign(0, x), y + y));
		/* catanh(NaN + I*+-Inf) = sign(NaN)0 + I*+-PI/2 */
		if (isinf(y))
			return (CMPLX(copysign(0, x),
			    copysign(pio2_hi + pio2_lo, y)));
		/*
		 * All other cases involving NaN return NaN + I*NaN.
		 * C99 leaves it optional whether to raise invalid if one of
		 * the arguments is not NaN, so we opt not to raise it.
		 */
		return (CMPLX(x + 0.0L + (y + 0), x + 0.0L + (y + 0)));
	}

	if (ax > RECIP_EPSILON || ay > RECIP_EPSILON)
		return (CMPLX(real_part_reciprocal(x, y),
		    copysign(pio2_hi + pio2_lo, y)));

	if (ax < SQRT_3_EPSILON / 2 && ay < SQRT_3_EPSILON / 2) {
		/*
		 * z = 0 was filtered out above.  All other cases must raise
		 * inexact, but this is the only only that needs to do it
		 * explicitly.
		 */
		raise_inexact();
		return (z);
	}

	if (ax == 1 && ay < DBL_EPSILON)
		rx = (m_ln2 - log(ay)) / 2;
	else
		rx = log1p(4 * ax / sum_squares(ax - 1, ay)) / 4;

	if (ax == 1)
		ry = atan2(2, -ay) / 2;
	else if (ay < DBL_EPSILON)
		ry = atan2(2 * ay, (1 - ax) * (1 + ax)) / 2;
	else
		ry = atan2(2 * ay, (1 - ax) * (1 + ax) - ay * ay) / 2;

	return (CMPLX(copysign(rx, x), copysign(ry, y)));
}

/*
 * catan(z) = reverse(catanh(reverse(z)))
 * where reverse(x + I*y) = y + I*x = I*conj(z).
 */
double complex
catan(double complex z)
{
	double complex w = catanh(CMPLX(cimag(z), creal(z)));

	return (CMPLX(cimag(w), creal(w)));
}