/* $NetBSD: catrigl.c,v 1.2 2017/05/07 21:59:06 christos Exp $ */
/*-
* Copyright (c) 2012 Stephen Montgomery-Smith <stephen@FreeBSD.ORG>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* The algorithm is very close to that in "Implementing the complex arcsine
* and arccosine functions using exception handling" by T. E. Hull, Thomas F.
* Fairgrieve, and Ping Tak Peter Tang, published in ACM Transactions on
* Mathematical Software, Volume 23 Issue 3, 1997, Pages 299-335,
* http://dl.acm.org/citation.cfm?id=275324.
*
* The code for catrig.c contains complete comments.
*/
#include <sys/cdefs.h>
__RCSID("$NetBSD: catrigl.c,v 1.2 2017/05/07 21:59:06 christos Exp $");
#include "namespace.h"
#ifdef __weak_alias
__weak_alias(casinl, _casinl)
#endif
#ifdef __weak_alias
__weak_alias(catanl, _catanl)
#endif
#include <sys/param.h>
#include <complex.h>
#include <float.h>
#include <math.h>
#ifdef notyet // missing log1pl __HAVE_LONG_DOUBLE
#include "math_private.h"
#undef isinf
#define isinf(x) (fabsl(x) == INFINITY)
#undef isnan
#define isnan(x) ((x) != (x))
#define raise_inexact() do { volatile float junk __unused = /*LINTED*/1 + tiny; } while(/*CONSTCOND*/0)
#undef signbit
#define signbit(x) (__builtin_signbitl(x))
#if __HAVE_LONG_DOUBLE + 0 == 128
// Ok
#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
// XXX: Byte order
#define EXT_EXPBITS 15
struct ieee_ext {
uint64_t ext_frac;
uint16_t ext_exp:EXT_EXPBITS;
uint16_t ext_sign:1;
uint16_t ext_pad;
};
#define extu_exp extu_ext.ext_exp
#define extu_sign extu_ext.ext_sign
#define extu_frac extu_ext.ext_frac
union ieee_ext_u {
long double extu_ld;
struct ieee_ext extu_ext;
};
#else
#error "unsupported long double format"
#endif
#define GET_LDBL_EXPSIGN(r, s) \
do { \
union ieee_ext_u u; \
u.extu_ld = s; \
r = u.extu_sign; \
r >>= EXT_EXPBITS - 1; \
} while (/*CONSTCOND*/0)
#define SET_LDBL_EXPSIGN(s, r) \
do { \
union ieee_ext_u u; \
u.extu_ld = s; \
u.extu_exp &= __BITS(0, EXT_EXPBITS - 1); \
u.extu_exp |= (r) << (EXT_EXPBITS - 1); \
s = u.extu_ld; \
} while (/*CONSTCOND*/0)
static const long double
A_crossover = 10,
B_crossover = 0.6417,
FOUR_SQRT_MIN = 0x1p-8189L,
QUARTER_SQRT_MAX = 0x1p8189L,
RECIP_EPSILON = 1/LDBL_EPSILON,
SQRT_MIN = 0x1p-8191L;
static const long double
m_e = 2.71828182845904523536028747135266250e0L, /* 0x15bf0a8b1457695355fb8ac404e7a.0p-111 */
m_ln2 = 6.93147180559945309417232121458176568e-1L, /* 0x162e42fefa39ef35793c7673007e6.0p-113 */
pio2_hi = 1.5707963267948966192313216916397514L, /* pi/2 */
SQRT_3_EPSILON = 2.40370335797945490975336727199878124e-17L, /* 0x1bb67ae8584caa73b25742d7078b8.0p-168 */
SQRT_6_EPSILON = 3.39934988877629587239082586223300391e-17L; /* 0x13988e1409212e7d0321914321a55.0p-167 */
static const volatile double
pio2_lo = 6.1232339957367659e-17; /* 0x11a62633145c07.0p-106 */
static const volatile float
tiny = 0x1p-100;
static long double complex clog_for_large_values(long double complex z);
inline static long double
f(long double a, long double b, long double hypot_a_b)
{
if (b < 0)
return ((hypot_a_b - b) / 2);
if (b == 0)
return (a / 2);
return (a * a / (hypot_a_b + b) / 2);
}
inline static void
do_hard_work(long double x, long double y, long double *rx, int *B_is_usable, long double *B, long double *sqrt_A2my2, long double *new_y)
{
long double R, S, A;
long double Am1, Amy;
R = hypotl(x, y+1);
S = hypotl(x, y-1);
A = (R + S) / 2;
if (A < 1)
A = 1;
if (A < A_crossover) {
if (y == 1 && x < LDBL_EPSILON*LDBL_EPSILON/128) {
*rx = sqrtl(x);
} else if (x >= LDBL_EPSILON * fabsl(y-1)) {
Am1 = f(x, 1+y, R) + f(x, 1-y, S);
*rx = log1pl(Am1 + sqrtl(Am1*(A+1)));
} else if (y < 1) {
*rx = x/sqrtl((1-y)*(1+y));
} else {
*rx = log1pl((y-1) + sqrtl((y-1)*(y+1)));
}
} else
*rx = logl(A + sqrtl(A*A-1));
*new_y = y;
if (y < FOUR_SQRT_MIN) {
*B_is_usable = 0;
*sqrt_A2my2 = A * (2 / LDBL_EPSILON);
*new_y= y * (2 / LDBL_EPSILON);
return;
}
*B = y/A;
*B_is_usable = 1;
if (*B > B_crossover) {
*B_is_usable = 0;
if (y == 1 && x < LDBL_EPSILON/128) {
*sqrt_A2my2 = sqrtl(x)*sqrtl((A+y)/2);
} else if (x >= LDBL_EPSILON * fabsl(y-1)) {
Amy = f(x, y+1, R) + f(x, y-1, S);
*sqrt_A2my2 = sqrtl(Amy*(A+y));
} else if (y > 1) {
*sqrt_A2my2 = x * (4/LDBL_EPSILON/LDBL_EPSILON) * y /
sqrtl((y+1)*(y-1));
*new_y = y * (4/LDBL_EPSILON/LDBL_EPSILON);
} else {
*sqrt_A2my2 = sqrtl((1-y)*(1+y));
}
}
}
long double complex
casinhl(long double complex z)
{
long double x, y, ax, ay, rx, ry, B, sqrt_A2my2, new_y;
int B_is_usable;
long double complex w;
x = creall(z);
y = cimagl(z);
ax = fabsl(x);
ay = fabsl(y);
if (isnan(x) || isnan(y)) {
if (isinf(x))
return (CMPLXL(x, y+y));
if (isinf(y))
return (CMPLXL(y, x+x));
if (y == 0) return (CMPLXL(x+x, y));
return (CMPLXL(x+0.0L+(y+0), x+0.0L+(y+0)));
}
if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) {
if (signbit(x) == 0)
w = clog_for_large_values(z) + m_ln2;
else
w = clog_for_large_values(-z) + m_ln2;
return (CMPLXL(copysignl(creall(w), x), copysignl(cimagl(w), y)));
}
if (x == 0 && y == 0)
return (z);
raise_inexact();
if (ax < SQRT_6_EPSILON/4 && ay < SQRT_6_EPSILON/4)
return (z);
do_hard_work(ax, ay, &rx, &B_is_usable, &B, &sqrt_A2my2, &new_y);
if (B_is_usable)
ry = asinl(B);
else
ry = atan2l(new_y, sqrt_A2my2);
return (CMPLXL(copysignl(rx, x), copysignl(ry, y)));
}
long double complex
casinl(long double complex z)
{
long double complex w = casinhl(CMPLXL(cimagl(z), creall(z)));
return (CMPLXL(cimagl(w), creall(w)));
}
long double complex
cacosl(long double complex z)
{
long double x, y, ax, ay, rx, ry, B, sqrt_A2mx2, new_x;
int sx, sy;
int B_is_usable;
long double complex w;
x = creall(z);
y = cimagl(z);
sx = signbit(x);
sy = signbit(y);
ax = fabsl(x);
ay = fabsl(y);
if (isnan(x) || isnan(y)) {
if (isinf(x))
return (CMPLXL(y+y, -INFINITY));
if (isinf(y))
return (CMPLXL(x+x, -y));
if (x == 0) return (CMPLXL(pio2_hi + pio2_lo, y+y));
return (CMPLXL(x+0.0L+(y+0), x+0.0L+(y+0)));
}
if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) {
w = clog_for_large_values(z);
rx = fabsl(cimagl(w));
ry = creall(w) + m_ln2;
if (sy == 0)
ry = -ry;
return (CMPLXL(rx, ry));
}
if (x == 1 && y == 0)
return (CMPLXL(0, -y));
raise_inexact();
if (ax < SQRT_6_EPSILON/4 && ay < SQRT_6_EPSILON/4)
return (CMPLXL(pio2_hi - (x - pio2_lo), -y));
do_hard_work(ay, ax, &ry, &B_is_usable, &B, &sqrt_A2mx2, &new_x);
if (B_is_usable) {
if (sx==0)
rx = acosl(B);
else
rx = acosl(-B);
} else {
if (sx==0)
rx = atan2l(sqrt_A2mx2, new_x);
else
rx = atan2l(sqrt_A2mx2, -new_x);
}
if (sy==0)
ry = -ry;
return (CMPLXL(rx, ry));
}
long double complex
cacoshl(long double complex z)
{
long double complex w;
long double rx, ry;
w = cacosl(z);
rx = creall(w);
ry = cimagl(w);
if (isnan(rx) && isnan(ry))
return (CMPLXL(ry, rx));
if (isnan(rx))
return (CMPLXL(fabsl(ry), rx));
if (isnan(ry))
return (CMPLXL(ry, ry));
return (CMPLXL(fabsl(ry), copysignl(rx, cimagl(z))));
}
static long double complex
clog_for_large_values(long double complex z)
{
long double x, y;
long double ax, ay, t;
x = creall(z);
y = cimagl(z);
ax = fabsl(x);
ay = fabsl(y);
if (ax < ay) {
t = ax;
ax = ay;
ay = t;
}
if (ax > LDBL_MAX / 2)
return (CMPLXL(logl(hypotl(x / m_e, y / m_e)) + 1, atan2l(y, x)));
if (ax > QUARTER_SQRT_MAX || ay < SQRT_MIN)
return (CMPLXL(logl(hypotl(x, y)), atan2l(y, x)));
return (CMPLXL(logl(ax*ax + ay*ay) / 2, atan2l(y, x)));
}
inline static long double
sum_squares(long double x, long double y)
{
if (y < SQRT_MIN)
return (x*x);
return (x*x + y*y);
}
inline static long double
real_part_reciprocal(long double x, long double y)
{
long double scale;
uint16_t hx, hy;
int16_t ix, iy;
GET_LDBL_EXPSIGN(hx, x);
ix = hx & 0x7fff;
GET_LDBL_EXPSIGN(hy, y);
iy = hy & 0x7fff;
#define BIAS (LDBL_MAX_EXP - 1)
#define CUTOFF (LDBL_MANT_DIG / 2 + 1)
if (ix - iy >= CUTOFF || isinf(x))
return (1/x);
if (iy - ix >= CUTOFF)
return (x/y/y);
if (ix <= BIAS + LDBL_MAX_EXP / 2 - CUTOFF)
return (x/(x*x + y*y));
scale = 1;
SET_LDBL_EXPSIGN(scale, 0x7fff - ix);
x *= scale;
y *= scale;
return (x/(x*x + y*y) * scale);
}
long double complex
catanhl(long double complex z)
{
long double x, y, ax, ay, rx, ry;
x = creall(z);
y = cimagl(z);
ax = fabsl(x);
ay = fabsl(y);
if (y == 0 && ax <= 1)
return (CMPLXL(atanhl(x), y)); /* XXX need atanhl() */
if (x == 0)
return (CMPLXL(x, atanl(y)));
if (isnan(x) || isnan(y)) {
if (isinf(x))
return (CMPLXL(copysignl(0, x), y+y));
if (isinf(y))
return (CMPLXL(copysignl(0, x), copysignl(pio2_hi + pio2_lo, y)));
return (CMPLXL(x+0.0L+(y+0), x+0.0L+(y+0)));
}
if (ax > RECIP_EPSILON || ay > RECIP_EPSILON)
return (CMPLXL(real_part_reciprocal(x, y), copysignl(pio2_hi + pio2_lo, y)));
if (ax < SQRT_3_EPSILON/2 && ay < SQRT_3_EPSILON/2) {
raise_inexact();
return (z);
}
if (ax == 1 && ay < LDBL_EPSILON) {
#if 0
if (ay > 2*LDBL_MIN)
rx = - logl(ay/2) / 2;
else
#endif
rx = - (logl(ay) - m_ln2) / 2;
} else
rx = log1pl(4*ax / sum_squares(ax-1, ay)) / 4;
if (ax == 1)
ry = atan2l(2, -ay) / 2;
else if (ay < LDBL_EPSILON)
ry = atan2l(2*ay, (1-ax)*(1+ax)) / 2;
else
ry = atan2l(2*ay, (1-ax)*(1+ax) - ay*ay) / 2;
return (CMPLXL(copysignl(rx, x), copysignl(ry, y)));
}
long double complex
catanl(long double complex z)
{
long double complex w = catanhl(CMPLXL(cimagl(z), creall(z)));
return (CMPLXL(cimagl(w), creall(w)));
}
#else
__strong_alias(_casinl, casin)
__strong_alias(_catanl, catan)
__strong_alias(cacoshl, cacosh)
__strong_alias(cacosl, cacos)
__strong_alias(casinhl, casinh)
__strong_alias(catanhl, catanh)
#endif