/* $NetBSD: mesongx_mmc.c,v 1.5 2019/04/21 13:08:48 jmcneill Exp $ */
/*-
* Copyright (c) 2019 Jared McNeill <jmcneill@invisible.ca>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: mesongx_mmc.c,v 1.5 2019/04/21 13:08:48 jmcneill Exp $");
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/device.h>
#include <sys/intr.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/bitops.h>
#include <sys/gpio.h>
#include <dev/sdmmc/sdmmcvar.h>
#include <dev/sdmmc/sdmmcchip.h>
#include <dev/sdmmc/sdmmc_ioreg.h>
#include <dev/fdt/fdtvar.h>
#define SD_EMMC_CLOCK 0x00
#define CLOCK_CFG_IRQ_SDIO_SLEEP __BIT(25)
#define CLOCK_CFG_ALWAYS_ON __BIT(24)
#define CLOCK_CFG_RX_DELAY __BITS(23,20)
#define CLOCK_CFG_TX_DELAY __BITS(19,16)
#define CLOCK_CFG_SRAM_PD __BITS(15,14)
#define CLOCK_CFG_RX_PHASE __BITS(13,12)
#define CLOCK_CFG_TX_PHASE __BITS(11,10)
#define CLOCK_CFG_CO_PHASE __BITS(9,8)
#define CLOCK_CFG_SRC __BITS(7,6)
#define CLOCK_CFG_DIV __BITS(5,0)
#define SD_EMMC_DELAY 0x04
#define SD_EMMC_ADJUST 0x08
#define ADJUST_ADJ_DELAY __BITS(21,16)
#define ADJUST_CALI_RISE __BIT(14)
#define ADJUST_ADJ_ENABLE __BIT(13)
#define ADJUST_CALI_ENABLE __BIT(12)
#define ADJUST_CALI_SEL __BITS(11,8)
#define SD_EMMC_CALOUT 0x10
#define CALOUT_CALI_SETUP __BITS(15,8)
#define CALOUT_CALI_VLD __BIT(7)
#define CALOUT_CALI_IDX __BITS(5,0)
#define SD_EMMC_START 0x40
#define START_DESC_ADDR __BITS(31,2)
#define START_DESC_BUSY __BIT(1)
#define START_DESC_INT __BIT(0)
#define SD_EMMC_CFG 0x44
#define CFG_IP_TXD_ADJ __BITS(31,28)
#define CFG_ERR_ABORT __BIT(27)
#define CFG_IRQ_DS __BIT(26)
#define CFG_TXD_RETRY __BIT(25)
#define CFG_TXD_ADD_ERR __BIT(24)
#define CFG_AUTO_CLK __BIT(23)
#define CFG_STOP_CLK __BIT(22)
#define CFG_CMD_LOW __BIT(21)
#define CFG_CHK_DS __BIT(20)
#define CFG_IGNORE_OWNER __BIT(19)
#define CFG_SDCLK_ALWAYS_ON __BIT(18)
#define CFG_BLK_GAP_IP __BIT(17)
#define CFG_OUT_FALL __BIT(16)
#define CFG_RC_CC __BITS(15,12)
#define CFG_RESP_TIMEOUT __BIT(11,8)
#define CFG_BL_LEN __BITS(7,4)
#define CFG_DC_UGT __BIT(3)
#define CFG_DDR __BIT(2)
#define CFG_BUS_WIDTH __BITS(1,0)
#define CFG_BUS_WIDTH_1 0
#define CFG_BUS_WIDTH_4 1
#define CFG_BUS_WIDTH_8 2
#define SD_EMMC_STATUS 0x48
#define STATUS_CORE_BUSY __BIT(31)
#define STATUS_DESC_BUSY __BIT(30)
#define STATUS_BUS_FSM __BIT(29,26)
#define STATUS_DS __BIT(25)
#define STATUS_CMD_I __BIT(24)
#define STATUS_DAT_I __BITS(23,16)
#define STATUS_IRQ_SDIO __BIT(15)
#define STATUS_RESP_STATUS __BIT(14)
#define STATUS_END_OF_CHAIN __BIT(13)
#define STATUS_DESC_TIMEOUT __BIT(12)
#define STATUS_RESP_TIMEOUT __BIT(11)
#define STATUS_RESP_ERR __BIT(10)
#define STATUS_DESC_ERR __BIT(9)
#define STATUS_TXD_ERR __BIT(8)
#define STATUS_RXD_ERR __BITS(7,0)
#define STATUS_TIMEOUT (STATUS_DESC_TIMEOUT | STATUS_RESP_TIMEOUT)
#define STATUS_ERROR (STATUS_RESP_ERR | STATUS_DESC_ERR | STATUS_RXD_ERR | STATUS_TXD_ERR)
#define SD_EMMC_IRQ_EN 0x4c
#define IRQ_EN_CFG_SECURE __BIT(16)
#define IRQ_EN_IRQ_SDIO __BIT(15)
#define IRQ_EN_RESP_STATUS __BIT(14)
#define IRQ_EN_END_OF_CHAIN __BIT(13)
#define IRQ_EN_DESC_TIMEOUT __BIT(12)
#define IRQ_EN_RESP_TIMEOUT __BIT(11)
#define IRQ_EN_RESP_ERR __BIT(10)
#define IRQ_EN_DESC_ERR __BIT(9)
#define IRQ_EN_TXD_ERR __BIT(8)
#define IRQ_EN_RXD_ERR __BITS(7,0)
#define SD_EMMC_CMD_CFG 0x50
#define SD_EMMC_CMD_ARG 0x54
#define SD_EMMC_CMD_DAT 0x58
#define SD_EMMC_CMD_RSP 0x5c
#define SD_EMMC_CMD_RSP1 0x60
#define SD_EMMC_CMD_RSP2 0x64
#define SD_EMMC_CMD_RSP3 0x68
struct mesongx_mmc_desc {
uint32_t flags;
#define MESONGX_MMC_FLAGS_OWNER __BIT(31)
#define MESONGX_MMC_FLAGS_ERROR __BIT(30)
#define MESONGX_MMC_FLAGS_CMD_INDEX __BITS(29,24)
#define MESONGX_MMC_FLAGS_DATA_NUM __BIT(23)
#define MESONGX_MMC_FLAGS_RESP_NUM __BIT(22)
#define MESONGX_MMC_FLAGS_RESP_128 __BIT(21)
#define MESONGX_MMC_FLAGS_RESP_NOCRC __BIT(20)
#define MESONGX_MMC_FLAGS_DATA_WR __BIT(19)
#define MESONGX_MMC_FLAGS_DATA_IO __BIT(18)
#define MESONGX_MMC_FLAGS_NO_CMD __BIT(17)
#define MESONGX_MMC_FLAGS_NO_RESP __BIT(16)
#define MESONGX_MMC_FLAGS_TIMEOUT __BITS(15,12)
#define MESONGX_MMC_FLAGS_END_OF_CHAIN __BIT(11)
#define MESONGX_MMC_FLAGS_R1B __BIT(10)
#define MESONGX_MMC_FLAGS_BLOCK_MODE __BIT(9)
#define MESONGX_MMC_FLAGS_LENGTH __BITS(8,0)
uint32_t arg;
uint32_t data;
#define MESONGX_MMC_DATA_BIG_ENDIAN __BIT(1)
#define MESONGX_MMC_DATA_SRAM __BIT(0)
uint32_t resp;
#define MESONGX_MMC_RESP_SRAM __BIT(0)
} __packed;
#define MESONGX_MMC_NDESC 256
struct mesongx_mmc_softc;
static int mesongx_mmc_match(device_t, cfdata_t, void *);
static void mesongx_mmc_attach(device_t, device_t, void *);
static void mesongx_mmc_attach_i(device_t);
static int mesongx_mmc_intr(void *);
static int mesongx_mmc_dma_setup(struct mesongx_mmc_softc *);
static int mesongx_mmc_dmabounce_setup(struct mesongx_mmc_softc *);
static int mesongx_mmc_host_reset(sdmmc_chipset_handle_t);
static uint32_t mesongx_mmc_host_ocr(sdmmc_chipset_handle_t);
static int mesongx_mmc_host_maxblklen(sdmmc_chipset_handle_t);
static int mesongx_mmc_card_detect(sdmmc_chipset_handle_t);
static int mesongx_mmc_write_protect(sdmmc_chipset_handle_t);
static int mesongx_mmc_bus_power(sdmmc_chipset_handle_t, uint32_t);
static int mesongx_mmc_bus_clock(sdmmc_chipset_handle_t, int, bool);
static int mesongx_mmc_bus_width(sdmmc_chipset_handle_t, int);
static int mesongx_mmc_bus_rod(sdmmc_chipset_handle_t, int);
static int mesongx_mmc_signal_voltage(sdmmc_chipset_handle_t, int);
static int mesongx_mmc_execute_tuning(sdmmc_chipset_handle_t, int);
static void mesongx_mmc_exec_command(sdmmc_chipset_handle_t,
struct sdmmc_command *);
static void mesongx_mmc_card_enable_intr(sdmmc_chipset_handle_t, int);
static void mesongx_mmc_card_intr_ack(sdmmc_chipset_handle_t);
static struct sdmmc_chip_functions mesongx_mmc_chip_functions = {
.host_reset = mesongx_mmc_host_reset,
.host_ocr = mesongx_mmc_host_ocr,
.host_maxblklen = mesongx_mmc_host_maxblklen,
.card_detect = mesongx_mmc_card_detect,
.write_protect = mesongx_mmc_write_protect,
.bus_power = mesongx_mmc_bus_power,
.bus_clock_ddr = mesongx_mmc_bus_clock,
.bus_width = mesongx_mmc_bus_width,
.bus_rod = mesongx_mmc_bus_rod,
.signal_voltage = mesongx_mmc_signal_voltage,
.execute_tuning = mesongx_mmc_execute_tuning,
.exec_command = mesongx_mmc_exec_command,
.card_enable_intr = mesongx_mmc_card_enable_intr,
.card_intr_ack = mesongx_mmc_card_intr_ack,
};
struct mesongx_mmc_softc {
device_t sc_dev;
bus_space_tag_t sc_bst;
bus_space_handle_t sc_bsh;
bus_dma_tag_t sc_dmat;
int sc_phandle;
void *sc_ih;
kmutex_t sc_intr_lock;
kcondvar_t sc_intr_cv;
device_t sc_sdmmc_dev;
uint32_t sc_host_ocr;
struct sdmmc_command *sc_cmd;
bus_dma_segment_t sc_desc_segs[1];
int sc_desc_nsegs;
bus_size_t sc_desc_size;
bus_dmamap_t sc_desc_map;
int sc_desc_ndesc;
void *sc_desc_desc;
bus_dmamap_t sc_dmabounce_map;
void *sc_dmabounce_buf;
size_t sc_dmabounce_buflen;
struct clk *sc_clk_core;
struct clk *sc_clk_clkin[2];
struct fdtbus_reset *sc_rst;
struct fdtbus_gpio_pin *sc_gpio_cd;
int sc_gpio_cd_inverted;
struct fdtbus_gpio_pin *sc_gpio_wp;
int sc_gpio_wp_inverted;
struct fdtbus_regulator *sc_reg_vmmc;
struct fdtbus_regulator *sc_reg_vqmmc;
struct fdtbus_mmc_pwrseq *sc_pwrseq;
u_int sc_max_frequency;
bool sc_non_removable;
bool sc_broken_cd;
};
CFATTACH_DECL_NEW(mesongx_mmc, sizeof(struct mesongx_mmc_softc),
mesongx_mmc_match, mesongx_mmc_attach, NULL, NULL);
#define MMC_WRITE(sc, reg, val) \
bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
#define MMC_READ(sc, reg) \
bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
static const struct of_compat_data compat_data[] = {
{ "amlogic,meson-gx-mmc", 1 },
{ "amlogic,meson-gxbb-mmc", 1 },
{ NULL }
};
static int
mesongx_mmc_match(device_t parent, cfdata_t cf, void *aux)
{
struct fdt_attach_args * const faa = aux;
return of_match_compat_data(faa->faa_phandle, compat_data);
}
static void
mesongx_mmc_attach(device_t parent, device_t self, void *aux)
{
struct mesongx_mmc_softc * const sc = device_private(self);
struct fdt_attach_args * const faa = aux;
const int phandle = faa->faa_phandle;
char intrstr[128];
bus_addr_t addr;
bus_size_t size;
if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0) {
aprint_error(": couldn't get registers\n");
return;
}
sc->sc_clk_core = fdtbus_clock_get(phandle, "core");
sc->sc_clk_clkin[0] = fdtbus_clock_get(phandle, "clkin0");
sc->sc_clk_clkin[1] = fdtbus_clock_get(phandle, "clkin1");
if (sc->sc_clk_core == NULL || sc->sc_clk_clkin[0] == NULL ||
sc->sc_clk_clkin[1] == NULL) {
aprint_error(": couldn't get clocks\n");
return;
}
sc->sc_rst = fdtbus_reset_get_index(phandle, 0);
if (sc->sc_rst == NULL) {
aprint_error(": couldn't get reset\n");
return;
}
sc->sc_pwrseq = fdtbus_mmc_pwrseq_get(phandle);
if (clk_enable(sc->sc_clk_core) != 0) {
aprint_error(": couldn't enable core clock\n");
return;
}
if (clk_enable(sc->sc_clk_clkin[0]) != 0 ||
clk_enable(sc->sc_clk_clkin[1]) != 0) {
aprint_error(": couldn't enable clkin clocks\n");
return;
}
if (fdtbus_reset_deassert(sc->sc_rst) != 0) {
aprint_error(": couldn't de-assert reset\n");
return;
}
sc->sc_dev = self;
sc->sc_phandle = phandle;
sc->sc_bst = faa->faa_bst;
sc->sc_dmat = faa->faa_dmat;
mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_BIO);
cv_init(&sc->sc_intr_cv, "gxmmcirq");
if (bus_space_map(sc->sc_bst, addr, size, 0, &sc->sc_bsh) != 0) {
aprint_error(": couldn't map registers\n");
return;
}
aprint_naive("\n");
aprint_normal(": eMMC/SD/SDIO controller\n");
sc->sc_reg_vmmc = fdtbus_regulator_acquire(phandle, "vmmc-supply");
sc->sc_reg_vqmmc = fdtbus_regulator_acquire(phandle, "vqmmc-supply");
sc->sc_gpio_cd = fdtbus_gpio_acquire(phandle, "cd-gpios",
GPIO_PIN_INPUT);
sc->sc_gpio_wp = fdtbus_gpio_acquire(phandle, "wp-gpios",
GPIO_PIN_INPUT);
sc->sc_gpio_cd_inverted = of_hasprop(phandle, "cd-inverted") ? 1 : 0;
sc->sc_gpio_wp_inverted = of_hasprop(phandle, "wp-inverted") ? 1 : 0;
sc->sc_non_removable = of_hasprop(phandle, "non-removable");
sc->sc_broken_cd = of_hasprop(phandle, "broken-cd");
if (of_getprop_uint32(phandle, "max-frequency", &sc->sc_max_frequency))
sc->sc_max_frequency = 52000000;
if (mesongx_mmc_dma_setup(sc) != 0 ||
mesongx_mmc_dmabounce_setup(sc) != 0) {
aprint_error_dev(self, "failed to setup DMA\n");
return;
}
if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
aprint_error_dev(self, "failed to decode interrupt\n");
return;
}
sc->sc_ih = fdtbus_intr_establish(phandle, 0, IPL_BIO, FDT_INTR_MPSAFE,
mesongx_mmc_intr, sc);
if (sc->sc_ih == NULL) {
aprint_error_dev(self, "failed to establish interrupt on %s\n",
intrstr);
return;
}
aprint_normal_dev(self, "interrupting on %s\n", intrstr);
if (sc->sc_pwrseq)
fdtbus_mmc_pwrseq_reset(sc->sc_pwrseq);
config_interrupts(self, mesongx_mmc_attach_i);
}
static int
mesongx_mmc_dma_setup(struct mesongx_mmc_softc *sc)
{
int error;
sc->sc_desc_ndesc = MESONGX_MMC_NDESC;
sc->sc_desc_size = sizeof(struct mesongx_mmc_desc) *
sc->sc_desc_ndesc;
error = bus_dmamem_alloc(sc->sc_dmat, sc->sc_desc_size,
sizeof(struct mesongx_mmc_desc),
sc->sc_desc_size, sc->sc_desc_segs, 1,
&sc->sc_desc_nsegs, BUS_DMA_WAITOK);
if (error)
return error;
error = bus_dmamem_map(sc->sc_dmat, sc->sc_desc_segs,
sc->sc_desc_nsegs, sc->sc_desc_size,
&sc->sc_desc_desc, BUS_DMA_WAITOK);
if (error)
goto free;
error = bus_dmamap_create(sc->sc_dmat, sc->sc_desc_size, 1,
sc->sc_desc_size, 0, BUS_DMA_WAITOK, &sc->sc_desc_map);
if (error)
goto unmap;
error = bus_dmamap_load(sc->sc_dmat, sc->sc_desc_map,
sc->sc_desc_desc, sc->sc_desc_size, NULL, BUS_DMA_WAITOK);
if (error)
goto destroy;
return 0;
destroy:
bus_dmamap_destroy(sc->sc_dmat, sc->sc_desc_map);
unmap:
bus_dmamem_unmap(sc->sc_dmat, sc->sc_desc_desc, sc->sc_desc_size);
free:
bus_dmamem_free(sc->sc_dmat, sc->sc_desc_segs, sc->sc_desc_nsegs);
return error;
}
static int
mesongx_mmc_dmabounce_setup(struct mesongx_mmc_softc *sc)
{
bus_dma_segment_t ds[1];
int error, rseg;
sc->sc_dmabounce_buflen = MAXPHYS;
error = bus_dmamem_alloc(sc->sc_dmat, sc->sc_dmabounce_buflen, 0,
sc->sc_dmabounce_buflen, ds, 1, &rseg, BUS_DMA_WAITOK);
if (error)
return error;
error = bus_dmamem_map(sc->sc_dmat, ds, 1, sc->sc_dmabounce_buflen,
&sc->sc_dmabounce_buf, BUS_DMA_WAITOK);
if (error)
goto free;
error = bus_dmamap_create(sc->sc_dmat, sc->sc_dmabounce_buflen, 1,
sc->sc_dmabounce_buflen, 0, BUS_DMA_WAITOK, &sc->sc_dmabounce_map);
if (error)
goto unmap;
error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmabounce_map,
sc->sc_dmabounce_buf, sc->sc_dmabounce_buflen, NULL,
BUS_DMA_WAITOK);
if (error)
goto destroy;
return 0;
destroy:
bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmabounce_map);
unmap:
bus_dmamem_unmap(sc->sc_dmat, sc->sc_dmabounce_buf,
sc->sc_dmabounce_buflen);
free:
bus_dmamem_free(sc->sc_dmat, ds, rseg);
return error;
}
static int
mesongx_mmc_set_clock(struct mesongx_mmc_softc *sc, u_int freq, bool ddr)
{
int best_diff, best_sel, best_div, sel, div;
uint32_t val;
if (freq == 0)
freq = SDMMC_SDCLK_400K;
best_diff = INT_MAX;
best_sel = 0;
best_div = 0;
const u_int target_rate = (freq * 1000) << ddr;
for (sel = 0; sel <= 1; sel++) {
const u_int parent_rate = clk_get_rate(sc->sc_clk_clkin[sel]);
for (div = 1; div <= 63; div++) {
const u_int rate = parent_rate / div;
if (rate > target_rate)
continue;
const int diff = target_rate - rate;
if (diff < best_diff) {
best_diff = diff;
best_sel = sel;
best_div = div;
}
}
}
if (best_diff == INT_MAX)
return ERANGE;
val = MMC_READ(sc, SD_EMMC_CLOCK);
val |= CLOCK_CFG_ALWAYS_ON;
val &= ~CLOCK_CFG_RX_PHASE;
val |= __SHIFTIN(0, CLOCK_CFG_RX_PHASE);
val &= ~CLOCK_CFG_TX_PHASE;
val |= __SHIFTIN(2, CLOCK_CFG_TX_PHASE);
val &= ~CLOCK_CFG_CO_PHASE;
val |= __SHIFTIN(3, CLOCK_CFG_CO_PHASE);
val &= ~CLOCK_CFG_SRC;
val |= __SHIFTIN(best_sel, CLOCK_CFG_SRC);
val &= ~CLOCK_CFG_DIV;
val |= __SHIFTIN(best_div, CLOCK_CFG_DIV);
MMC_WRITE(sc, SD_EMMC_CLOCK, val);
return 0;
}
static void
mesongx_mmc_attach_i(device_t self)
{
struct mesongx_mmc_softc * const sc = device_private(self);
struct sdmmcbus_attach_args saa;
uint32_t width;
if (sc->sc_pwrseq)
fdtbus_mmc_pwrseq_pre_power_on(sc->sc_pwrseq);
mesongx_mmc_bus_clock(sc, SDMMC_SDCLK_400K, false);
mesongx_mmc_host_reset(sc);
mesongx_mmc_bus_width(sc, 1);
if (sc->sc_pwrseq)
fdtbus_mmc_pwrseq_post_power_on(sc->sc_pwrseq);
if (of_getprop_uint32(sc->sc_phandle, "bus-width", &width) != 0)
width = 4;
memset(&saa, 0, sizeof(saa));
saa.saa_busname = "sdmmc";
saa.saa_sct = &mesongx_mmc_chip_functions;
saa.saa_sch = sc;
saa.saa_dmat = sc->sc_dmat;
saa.saa_clkmin = SDMMC_SDCLK_400K;
saa.saa_clkmax = sc->sc_max_frequency / 1000;
saa.saa_caps = SMC_CAPS_DMA;
#if notyet
/* XXX causes init to die when using root on eMMC with ODROID-C2 */
saa.saa_caps |= SMC_CAPS_MULTI_SEG_DMA;
#endif
sc->sc_host_ocr = MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V;
if (of_getprop_bool(sc->sc_phandle, "cap-sd-highspeed")) {
saa.saa_caps |= SMC_CAPS_SD_HIGHSPEED;
sc->sc_host_ocr |= MMC_OCR_HCS;
}
if (of_getprop_bool(sc->sc_phandle, "cap-mmc-highspeed"))
saa.saa_caps |= SMC_CAPS_MMC_HIGHSPEED;
if (of_getprop_bool(sc->sc_phandle, "mmc-ddr-3_3v")) {
saa.saa_caps |= SMC_CAPS_MMC_DDR52;
}
if (of_getprop_bool(sc->sc_phandle, "mmc-ddr-1_8v")) {
saa.saa_caps |= SMC_CAPS_MMC_DDR52;
sc->sc_host_ocr |= MMC_OCR_1_65V_1_95V;
}
if (of_getprop_bool(sc->sc_phandle, "mmc-hs200-1_8v")) {
saa.saa_caps |= SMC_CAPS_MMC_HS200;
sc->sc_host_ocr |= MMC_OCR_1_65V_1_95V;
}
if (width == 4)
saa.saa_caps |= SMC_CAPS_4BIT_MODE;
if (width == 8)
saa.saa_caps |= SMC_CAPS_8BIT_MODE;
if (sc->sc_gpio_cd)
saa.saa_caps |= SMC_CAPS_POLL_CARD_DET;
sc->sc_sdmmc_dev = config_found(self, &saa, NULL);
}
static int
mesongx_mmc_intr(void *priv)
{
struct mesongx_mmc_softc * const sc = priv;
struct sdmmc_command *cmd;
int rv = 0;
mutex_enter(&sc->sc_intr_lock);
const uint32_t irq_en = MMC_READ(sc, SD_EMMC_IRQ_EN);
const uint32_t status = MMC_READ(sc, SD_EMMC_STATUS) & irq_en;
if ((status & STATUS_IRQ_SDIO) != 0) {
rv = 1;
sdmmc_card_intr(sc->sc_sdmmc_dev);
}
cmd = sc->sc_cmd;
if (cmd == NULL) {
device_printf(sc->sc_dev, "WARNING: IRQ with no active command, status %#x\n", status);
goto done;
}
if ((status & STATUS_TIMEOUT) != 0) {
rv = 1;
cmd->c_error = ETIMEDOUT;
goto done;
}
if ((status & STATUS_ERROR) != 0) {
rv = 1;
cmd->c_error = EIO;
goto done;
}
if ((status & STATUS_END_OF_CHAIN) != 0 && (cmd->c_flags & SCF_ITSDONE) == 0) {
rv = 1;
if ((cmd->c_flags & SCF_RSP_PRESENT) != 0) {
if (cmd->c_flags & SCF_RSP_136) {
cmd->c_resp[0] = MMC_READ(sc, SD_EMMC_CMD_RSP);
cmd->c_resp[1] = MMC_READ(sc, SD_EMMC_CMD_RSP1);
cmd->c_resp[2] = MMC_READ(sc, SD_EMMC_CMD_RSP2);
cmd->c_resp[3] = MMC_READ(sc, SD_EMMC_CMD_RSP3);
if (cmd->c_flags & SCF_RSP_CRC) {
cmd->c_resp[0] = (cmd->c_resp[0] >> 8) |
(cmd->c_resp[1] << 24);
cmd->c_resp[1] = (cmd->c_resp[1] >> 8) |
(cmd->c_resp[2] << 24);
cmd->c_resp[2] = (cmd->c_resp[2] >> 8) |
(cmd->c_resp[3] << 24);
cmd->c_resp[3] = (cmd->c_resp[3] >> 8);
}
} else {
cmd->c_resp[0] = MMC_READ(sc, SD_EMMC_CMD_RSP);
}
}
cmd->c_flags |= SCF_ITSDONE;
cmd->c_error = 0;
goto done;
}
done:
if (rv) {
cv_broadcast(&sc->sc_intr_cv);
MMC_WRITE(sc, SD_EMMC_STATUS, irq_en);
}
mutex_exit(&sc->sc_intr_lock);
return rv;
}
static int
mesongx_mmc_host_reset(sdmmc_chipset_handle_t sch)
{
struct mesongx_mmc_softc * const sc = sch;
uint32_t val;
MMC_WRITE(sc, SD_EMMC_START, 0);
val = MMC_READ(sc, SD_EMMC_CFG);
val &= ~CFG_RC_CC;
val |= __SHIFTIN(ilog2(16), CFG_RC_CC);
val |= CFG_SDCLK_ALWAYS_ON;
MMC_WRITE(sc, SD_EMMC_CFG, val);
return 0;
}
static uint32_t
mesongx_mmc_host_ocr(sdmmc_chipset_handle_t sch)
{
struct mesongx_mmc_softc * const sc = sch;
return sc->sc_host_ocr;
}
static int
mesongx_mmc_host_maxblklen(sdmmc_chipset_handle_t sch)
{
return 512;
}
static int
mesongx_mmc_card_detect(sdmmc_chipset_handle_t sch)
{
struct mesongx_mmc_softc * const sc = sch;
int val;
if (sc->sc_non_removable || sc->sc_broken_cd) {
/*
* Non-removable or broken card detect flag set in
* DT, assume always present
*/
return 1;
} else if (sc->sc_gpio_cd != NULL) {
val = fdtbus_gpio_read(sc->sc_gpio_cd);
if (sc->sc_gpio_cd_inverted)
val = !val;
return val;
} else {
return 1;
}
}
static int
mesongx_mmc_write_protect(sdmmc_chipset_handle_t sch)
{
struct mesongx_mmc_softc * const sc = sch;
int val;
if (sc->sc_gpio_wp != NULL) {
val = fdtbus_gpio_read(sc->sc_gpio_wp);
if (sc->sc_gpio_wp_inverted)
val = !val;
return val;
}
return 0;
}
static int
mesongx_mmc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
{
return 0;
}
static int
mesongx_mmc_bus_clock(sdmmc_chipset_handle_t sch, int freq, bool ddr)
{
struct mesongx_mmc_softc * const sc = sch;
uint32_t val;
int error;
error = mesongx_mmc_set_clock(sc, freq, ddr);
if (error != 0)
return error;
val = MMC_READ(sc, SD_EMMC_CFG);
if (ddr)
val |= CFG_DDR;
else
val &= ~CFG_DDR;
MMC_WRITE(sc, SD_EMMC_CFG, val);
return 0;
}
static int
mesongx_mmc_bus_width(sdmmc_chipset_handle_t sch, int width)
{
struct mesongx_mmc_softc *sc = sch;
uint32_t val;
val = MMC_READ(sc, SD_EMMC_CFG);
val &= ~CFG_BUS_WIDTH;
switch (width) {
case 1:
val |= __SHIFTIN(CFG_BUS_WIDTH_1, CFG_BUS_WIDTH);
break;
case 4:
val |= __SHIFTIN(CFG_BUS_WIDTH_4, CFG_BUS_WIDTH);
break;
case 8:
val |= __SHIFTIN(CFG_BUS_WIDTH_8, CFG_BUS_WIDTH);
break;
default:
return EINVAL;
}
MMC_WRITE(sc, SD_EMMC_CFG, val);
return 0;
}
static int
mesongx_mmc_bus_rod(sdmmc_chipset_handle_t sch, int on)
{
return -1;
}
static int
mesongx_mmc_signal_voltage(sdmmc_chipset_handle_t sch, int signal_voltage)
{
struct mesongx_mmc_softc *sc = sch;
u_int uvol;
int error;
if (sc->sc_reg_vqmmc == NULL)
return 0;
switch (signal_voltage) {
case SDMMC_SIGNAL_VOLTAGE_330:
uvol = 3300000;
break;
case SDMMC_SIGNAL_VOLTAGE_180:
uvol = 1800000;
break;
default:
return EINVAL;
}
error = fdtbus_regulator_supports_voltage(sc->sc_reg_vqmmc, uvol, uvol);
if (error != 0)
return 0;
error = fdtbus_regulator_set_voltage(sc->sc_reg_vqmmc, uvol, uvol);
if (error != 0)
return error;
return fdtbus_regulator_enable(sc->sc_reg_vqmmc);
}
static int
mesongx_mmc_execute_tuning(sdmmc_chipset_handle_t sch, int timing)
{
switch (timing) {
case SDMMC_TIMING_MMC_HS200:
break;
default:
return EINVAL;
}
return 0;
}
static int
mesongx_mmc_dma_prepare(struct mesongx_mmc_softc *sc, struct sdmmc_command *cmd, uint32_t cmdflags)
{
struct mesongx_mmc_desc *dma = sc->sc_desc_desc;
bus_dmamap_t map = cmd->c_dmamap;
u_int xferlen, blen, resid;
bus_size_t off;
uint32_t flags;
int desc, seg;
if (cmd->c_blklen > 512) {
device_printf(sc->sc_dev, "block length %d not supported\n", cmd->c_blklen);
return EINVAL;
}
for (seg = 0; seg < map->dm_nsegs; seg++) {
if (map->dm_segs[seg].ds_len % cmd->c_blklen != 0) {
/* Force DMA bounce for unaligned transfers */
map = NULL;
break;
}
}
if (map == NULL) {
map = sc->sc_dmabounce_map;
cmd->c_flags |= SCF_NEED_BOUNCE;
if ((cmd->c_flags & SCF_CMD_READ) != 0) {
memset(sc->sc_dmabounce_buf, 0, cmd->c_datalen);
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmabounce_map,
0, cmd->c_datalen, BUS_DMASYNC_PREREAD);
} else {
memcpy(sc->sc_dmabounce_buf, cmd->c_data, cmd->c_datalen);
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmabounce_map,
0, cmd->c_datalen, BUS_DMASYNC_PREWRITE);
}
}
desc = 0;
for (seg = 0; seg < map->dm_nsegs; seg++) {
bus_addr_t paddr = map->dm_segs[seg].ds_addr;
bus_size_t len = map->dm_segs[seg].ds_len;
resid = uimin(len, cmd->c_resid);
off = 0;
while (resid > 0) {
if (desc == sc->sc_desc_ndesc)
break;
flags = cmdflags;
if (resid >= cmd->c_blklen) {
xferlen = (resid / cmd->c_blklen) * cmd->c_blklen;
blen = xferlen / cmd->c_blklen;
flags |= MESONGX_MMC_FLAGS_BLOCK_MODE;
} else {
blen = xferlen = resid;
}
KASSERT(xferlen > 0);
KASSERT(blen <= 512);
flags |= __SHIFTIN(blen % 512, MESONGX_MMC_FLAGS_LENGTH);
if (desc > 0)
flags |= MESONGX_MMC_FLAGS_NO_CMD;
if (cmd->c_resid == xferlen)
flags |= MESONGX_MMC_FLAGS_END_OF_CHAIN;
dma[desc].flags = htole32(flags);
dma[desc].arg = htole32(cmd->c_arg);
dma[desc].data = htole32(paddr + off);
dma[desc].resp = 0;
cmd->c_resid -= xferlen;
resid -= xferlen;
off += xferlen;
if (cmd->c_resid == 0)
break;
++desc;
}
}
if (desc == sc->sc_desc_ndesc) {
device_printf(sc->sc_dev,
"not enough descriptors for %d byte transfer (%d segs)!\n",
cmd->c_datalen, map->dm_nsegs);
return EIO;
}
bus_dmamap_sync(sc->sc_dmat, sc->sc_desc_map, 0,
sc->sc_desc_size, BUS_DMASYNC_PREWRITE);
return 0;
}
static void
mesongx_mmc_dma_complete(struct mesongx_mmc_softc *sc, struct sdmmc_command *cmd)
{
bus_dmamap_sync(sc->sc_dmat, sc->sc_desc_map, 0,
sc->sc_desc_size, BUS_DMASYNC_POSTWRITE);
if ((cmd->c_flags & SCF_NEED_BOUNCE) != 0) {
if ((cmd->c_flags & SCF_CMD_READ) != 0) {
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmabounce_map,
0, cmd->c_datalen, BUS_DMASYNC_POSTREAD);
memcpy(cmd->c_data, sc->sc_dmabounce_buf, cmd->c_datalen);
} else {
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmabounce_map,
0, cmd->c_datalen, BUS_DMASYNC_POSTWRITE);
}
}
}
static void
mesongx_mmc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
{
struct mesongx_mmc_softc *sc = sch;
uint32_t cmdflags, val;
int error;
const uint32_t irq_mask = IRQ_EN_RESP_STATUS |
IRQ_EN_END_OF_CHAIN |
IRQ_EN_DESC_TIMEOUT |
IRQ_EN_RESP_TIMEOUT |
IRQ_EN_RESP_ERR |
IRQ_EN_DESC_ERR |
IRQ_EN_TXD_ERR |
IRQ_EN_RXD_ERR;
mutex_enter(&sc->sc_intr_lock);
while (sc->sc_cmd != NULL)
cv_wait(&sc->sc_intr_cv, &sc->sc_intr_lock);
sc->sc_cmd = cmd;
MMC_WRITE(sc, SD_EMMC_START, 0);
MMC_WRITE(sc, SD_EMMC_STATUS, MMC_READ(sc, SD_EMMC_STATUS));
val = MMC_READ(sc, SD_EMMC_IRQ_EN);
MMC_WRITE(sc, SD_EMMC_IRQ_EN, val | irq_mask);
cmdflags = MESONGX_MMC_FLAGS_OWNER;
cmdflags |= __SHIFTIN(12, MESONGX_MMC_FLAGS_TIMEOUT); /* 2^12 = 4096 ms timeout */
cmdflags |= __SHIFTIN(cmd->c_opcode, MESONGX_MMC_FLAGS_CMD_INDEX);
if ((cmd->c_flags & SCF_RSP_PRESENT) == 0) {
cmdflags |= MESONGX_MMC_FLAGS_NO_RESP;
} else {
cmdflags |= MESONGX_MMC_FLAGS_RESP_NUM;
if ((cmd->c_flags & SCF_RSP_136) != 0)
cmdflags |= MESONGX_MMC_FLAGS_RESP_128;
if ((cmd->c_flags & SCF_RSP_CRC) == 0)
cmdflags |= MESONGX_MMC_FLAGS_RESP_NOCRC;
if ((cmd->c_flags & SCF_RSP_MASK) == SCF_RSP_R1B)
cmdflags |= MESONGX_MMC_FLAGS_R1B;
}
if (cmd->c_datalen > 0) {
cmdflags |= MESONGX_MMC_FLAGS_DATA_IO;
if ((cmd->c_flags & SCF_CMD_READ) == 0)
cmdflags |= MESONGX_MMC_FLAGS_DATA_WR;
val = MMC_READ(sc, SD_EMMC_CFG);
val &= ~CFG_BL_LEN;
val |= __SHIFTIN(ilog2(cmd->c_blklen), CFG_BL_LEN);
MMC_WRITE(sc, SD_EMMC_CFG, val);
cmd->c_resid = cmd->c_datalen;
cmd->c_error = mesongx_mmc_dma_prepare(sc, cmd, cmdflags);
if (cmd->c_error != 0)
goto done;
const bus_addr_t desc_paddr = sc->sc_desc_map->dm_segs[0].ds_addr;
MMC_WRITE(sc, SD_EMMC_START, desc_paddr | START_DESC_BUSY); /* starts transfer */
} else {
MMC_WRITE(sc, SD_EMMC_CMD_CFG, cmdflags | MESONGX_MMC_FLAGS_END_OF_CHAIN);
MMC_WRITE(sc, SD_EMMC_CMD_DAT, 0);
MMC_WRITE(sc, SD_EMMC_CMD_ARG, cmd->c_arg); /* starts transfer */
}
struct bintime timeout = { .sec = 5, .frac = 0 };
const struct bintime epsilon = { .sec = 1, .frac = 0 };
while ((cmd->c_flags & SCF_ITSDONE) == 0 && cmd->c_error == 0) {
error = cv_timedwaitbt(&sc->sc_intr_cv, &sc->sc_intr_lock, &timeout, &epsilon);
if (error != 0) {
cmd->c_error = error;
goto done;
}
}
if (cmd->c_error == 0 && cmd->c_datalen > 0)
mesongx_mmc_dma_complete(sc, cmd);
done:
MMC_WRITE(sc, SD_EMMC_START, 0);
val = MMC_READ(sc, SD_EMMC_IRQ_EN);
MMC_WRITE(sc, SD_EMMC_IRQ_EN, val & ~irq_mask);
sc->sc_cmd = NULL;
cv_broadcast(&sc->sc_intr_cv);
#ifdef MESONGX_MMC_DEBUG
if (cmd->c_error != 0) {
for (u_int reg = 0x00; reg < 0x100; reg += 0x10) {
device_printf(sc->sc_dev, " %02x: %08x %08x %08x %08x\n", reg,
MMC_READ(sc, reg + 0),
MMC_READ(sc, reg + 4),
MMC_READ(sc, reg + 8),
MMC_READ(sc, reg + 12));
}
}
#endif
mutex_exit(&sc->sc_intr_lock);
}
static void
mesongx_mmc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
{
struct mesongx_mmc_softc * const sc = sch;
uint32_t val;
mutex_enter(&sc->sc_intr_lock);
val = MMC_READ(sc, SD_EMMC_IRQ_EN);
MMC_WRITE(sc, SD_EMMC_IRQ_EN, val | IRQ_EN_IRQ_SDIO);
mutex_exit(&sc->sc_intr_lock);
}
static void
mesongx_mmc_card_intr_ack(sdmmc_chipset_handle_t sch)
{
struct mesongx_mmc_softc *sc = sch;
MMC_WRITE(sc, SD_EMMC_STATUS, STATUS_IRQ_SDIO);
}