/* $NetBSD: sun6i_dma.c,v 1.9 2019/03/06 19:16:53 jakllsch Exp $ */
/*-
* Copyright (c) 2014-2017 Jared McNeill <jmcneill@invisible.ca>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "opt_ddb.h"
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: sun6i_dma.c,v 1.9 2019/03/06 19:16:53 jakllsch Exp $");
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/device.h>
#include <sys/intr.h>
#include <sys/systm.h>
#include <sys/mutex.h>
#include <sys/bitops.h>
#include <sys/kmem.h>
#include <dev/fdt/fdtvar.h>
#define DMA_IRQ_EN_REG0_REG 0x0000
#define DMA_IRQ_EN_REG1_REG 0x0004
#define DMA_IRQ_EN_REG0_QUEUE_IRQ_EN(n) __BIT(n * 4 + 2)
#define DMA_IRQ_EN_REG0_PKG_IRQ_EN(n) __BIT(n * 4 + 1)
#define DMA_IRQ_EN_REG0_HLAF_IRQ_EN(n) __BIT(n * 4 + 0)
#define DMA_IRQ_EN_REG1_QUEUE_IRQ_EN(n) __BIT((n - 8) * 4 + 2)
#define DMA_IRQ_EN_REG1_PKG_IRQ_EN(n) __BIT((n - 8) * 4 + 1)
#define DMA_IRQ_EN_REG1_HLAF_IRQ_EN(n) __BIT((n - 8) * 4 + 0)
#define DMA_IRQ_PEND_REG0_REG 0x0010
#define DMA_IRQ_PEND_REG1_REG 0x0014
#define DMA_IRQ_QUEUE_MASK 0x4444444444444444ULL
#define DMA_IRQ_PKG_MASK 0x2222222222222222ULL
#define DMA_IRQ_HF_MASK 0x1111111111111111ULL
#define DMA_STA_REG 0x0030
#define DMA_EN_REG(n) (0x0100 + (n) * 0x40 + 0x00)
#define DMA_EN_EN __BIT(0)
#define DMA_PAU_REG(n) (0x0100 + (n) * 0x40 + 0x04)
#define DMA_PAU_PAUSE __BIT(0)
#define DMA_START_ADDR_REG(n) (0x0100 + (n) * 0x40 + 0x08)
#define DMA_CFG_REG(n) (0x0100 + (n) * 0x40 + 0x0C)
#define DMA_CFG_DEST_DATA_WIDTH __BITS(26,25)
#define DMA_CFG_DATA_WIDTH(n) ((n) >> 4)
#define DMA_CFG_BST_LEN(n) ((n) == 1 ? 0 : (((n) >> 3) + 1))
#define DMA_CFG_DEST_ADDR_MODE __BITS(22,21)
#define DMA_CFG_ADDR_MODE_LINEAR 0
#define DMA_CFG_ADDR_MODE_IO 1
#define DMA_CFG_DEST_DRQ_TYPE __BITS(20,16)
#define DMA_CFG_DRQ_TYPE_SDRAM 1
#define DMA_CFG_SRC_DATA_WIDTH __BITS(10,9)
#define DMA_CFG_SRC_ADDR_MODE __BITS(6,5)
#define DMA_CFG_SRC_DRQ_TYPE __BITS(4,0)
#define DMA_CUR_SRC_REG(n) (0x0100 + (n) * 0x40 + 0x10)
#define DMA_CUR_DEST_REG(n) (0x0100 + (n) * 0x40 + 0x14)
#define DMA_BCNT_LEFT_REG(n) (0x0100 + (n) * 0x40 + 0x18)
#define DMA_PARA_REG(n) (0x0100 + (n) * 0x40 + 0x1C)
#define DMA_PARA_DATA_BLK_SIZE __BITS(15,8)
#define DMA_PARA_WAIT_CYC __BITS(7,0)
#define DMA_MODE_REG(n) (0x0100 + (n) * 0x40 + 0x28)
#define MODE_WAIT 0b0
#define MODE_HANDSHAKE 0b1
#define DMA_MODE_DST(m) __SHIFTIN((m), __BIT(3))
#define DMA_MODE_SRC(m) __SHIFTIN((m), __BIT(2))
#define DMA_FDESC_ADDR_REG(n) (0x0100 + (n) * 0x40 + 0x2C)
#define DMA_PKG_NUM_REG(n) (0x0100 + (n) * 0x40 + 0x30)
struct sun6idma_desc {
uint32_t dma_config;
uint32_t dma_srcaddr;
uint32_t dma_dstaddr;
uint32_t dma_bcnt;
uint32_t dma_para;
uint32_t dma_next;
#define DMA_NULL 0xfffff800
};
struct sun6idma_config {
u_int num_channels;
bool autogate;
uint8_t bursts;
uint8_t widths;
bus_size_t autogate_reg;
uint32_t autogate_mask;
uint32_t burst_mask;
};
#define IL2B(x) __BIT(ilog2(x))
#define IL2B_RANGE(x, y) __BITS(ilog2(x), ilog2(y))
#define WIDTHS_1_2_4 IL2B_RANGE(4, 1)
#define WIDTHS_1_2_4_8 IL2B_RANGE(8, 1)
#define BURSTS_1_8 (IL2B(8)|IL2B(1))
#define BURSTS_1_4_8_16 (IL2B(16)|IL2B(8)|IL2B(4)|IL2B(1))
static const struct sun6idma_config sun6i_a31_dma_config = {
.num_channels = 16,
.burst_mask = __BITS(8,7),
.bursts = BURSTS_1_8,
.widths = WIDTHS_1_2_4,
};
static const struct sun6idma_config sun8i_a83t_dma_config = {
.num_channels = 8,
.autogate = true,
.autogate_reg = 0x20,
.autogate_mask = 0x4,
.burst_mask = __BITS(8,7),
.bursts = BURSTS_1_8,
.widths = WIDTHS_1_2_4,
};
static const struct sun6idma_config sun8i_h3_dma_config = {
.num_channels = 12,
.autogate = true,
.autogate_reg = 0x28,
.autogate_mask = 0x4,
.burst_mask = __BITS(7,6),
.bursts = BURSTS_1_4_8_16,
.widths = WIDTHS_1_2_4_8,
};
static const struct sun6idma_config sun50i_a64_dma_config = {
.num_channels = 8,
.autogate = true,
.autogate_reg = 0x28,
.autogate_mask = 0x4,
.burst_mask = __BITS(7,6),
.bursts = BURSTS_1_4_8_16,
.widths = WIDTHS_1_2_4_8,
};
static const struct of_compat_data compat_data[] = {
{ "allwinner,sun6i-a31-dma", (uintptr_t)&sun6i_a31_dma_config },
{ "allwinner,sun8i-a83t-dma", (uintptr_t)&sun8i_a83t_dma_config },
{ "allwinner,sun8i-h3-dma", (uintptr_t)&sun8i_h3_dma_config },
{ "allwinner,sun50i-a64-dma", (uintptr_t)&sun50i_a64_dma_config },
{ NULL }
};
struct sun6idma_channel {
uint8_t ch_index;
void (*ch_callback)(void *);
void *ch_callbackarg;
u_int ch_portid;
void *ch_dmadesc;
};
struct sun6idma_softc {
device_t sc_dev;
bus_space_tag_t sc_bst;
bus_space_handle_t sc_bsh;
bus_dma_tag_t sc_dmat;
int sc_phandle;
void *sc_ih;
uint32_t sc_burst_mask;
kmutex_t sc_lock;
struct sun6idma_channel *sc_chan;
u_int sc_nchan;
u_int sc_ndesc_ch;
uint8_t sc_widths;
uint8_t sc_bursts;
bus_dma_segment_t sc_dmasegs[1];
bus_dmamap_t sc_dmamap;
void *sc_dmadescs;
};
#define DMA_READ(sc, reg) \
bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
#define DMA_WRITE(sc, reg, val) \
bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
#define DESC_NUM ((MAXPHYS / MIN_PAGE_SIZE + 1) + 1)
#define DESC_LEN(n) \
(sizeof(struct sun6idma_desc) * (n))
#define DESC_OFFS(ch, n) \
((ch) * roundup2(DESC_LEN(DESC_NUM), COHERENCY_UNIT) + DESC_LEN(n))
#define DESC_ADDR(sc, chp, n) \
((sc)->sc_dmamap->dm_segs[0].ds_addr + DESC_OFFS((chp)->ch_index, (n)))
static void *
sun6idma_acquire(device_t dev, const void *data, size_t len,
void (*cb)(void *), void *cbarg)
{
struct sun6idma_softc *sc = device_private(dev);
struct sun6idma_channel *ch = NULL;
uint32_t irqen;
uint8_t index;
if (len != 4)
return NULL;
const u_int portid = be32dec(data);
if (portid > __SHIFTOUT_MASK(DMA_CFG_SRC_DRQ_TYPE))
return NULL;
mutex_enter(&sc->sc_lock);
for (index = 0; index < sc->sc_nchan; index++) {
if (sc->sc_chan[index].ch_callback == NULL) {
ch = &sc->sc_chan[index];
ch->ch_callback = cb;
ch->ch_callbackarg = cbarg;
ch->ch_portid = portid;
irqen = DMA_READ(sc, index < 8 ?
DMA_IRQ_EN_REG0_REG :
DMA_IRQ_EN_REG1_REG);
irqen |= (index < 8 ?
DMA_IRQ_EN_REG0_PKG_IRQ_EN(index) :
DMA_IRQ_EN_REG1_PKG_IRQ_EN(index));
DMA_WRITE(sc, index < 8 ?
DMA_IRQ_EN_REG0_REG :
DMA_IRQ_EN_REG1_REG, irqen);
break;
}
}
mutex_exit(&sc->sc_lock);
return ch;
}
static void
sun6idma_release(device_t dev, void *priv)
{
struct sun6idma_softc *sc = device_private(dev);
struct sun6idma_channel *ch = priv;
uint32_t irqen;
uint8_t index = ch->ch_index;
mutex_enter(&sc->sc_lock);
irqen = DMA_READ(sc, index < 8 ?
DMA_IRQ_EN_REG0_REG :
DMA_IRQ_EN_REG1_REG);
irqen &= ~(index < 8 ?
DMA_IRQ_EN_REG0_PKG_IRQ_EN(index) :
DMA_IRQ_EN_REG1_PKG_IRQ_EN(index));
DMA_WRITE(sc, index < 8 ?
DMA_IRQ_EN_REG0_REG :
DMA_IRQ_EN_REG1_REG, irqen);
ch->ch_callback = NULL;
ch->ch_callbackarg = NULL;
mutex_exit(&sc->sc_lock);
}
static int
sun6idma_transfer(device_t dev, void *priv, struct fdtbus_dma_req *req)
{
struct sun6idma_softc *sc = device_private(dev);
struct sun6idma_channel *ch = priv;
struct sun6idma_desc *desc = ch->ch_dmadesc;
uint32_t src, dst, len, cfg, mem_cfg, dev_cfg;
uint32_t mem_width, dev_width, mem_burst, dev_burst;
if (req->dreq_nsegs > sc->sc_ndesc_ch)
return EINVAL;
if ((sc->sc_widths &
IL2B(req->dreq_mem_opt.opt_bus_width/NBBY)) == 0)
return EINVAL;
if ((sc->sc_widths &
IL2B(req->dreq_dev_opt.opt_bus_width/NBBY)) == 0)
return EINVAL;
if ((sc->sc_bursts &
IL2B(req->dreq_mem_opt.opt_burst_len)) == 0)
return EINVAL;
if ((sc->sc_bursts &
IL2B(req->dreq_dev_opt.opt_burst_len)) == 0)
return EINVAL;
mem_width = DMA_CFG_DATA_WIDTH(req->dreq_mem_opt.opt_bus_width);
dev_width = DMA_CFG_DATA_WIDTH(req->dreq_dev_opt.opt_bus_width);
mem_burst = DMA_CFG_BST_LEN(req->dreq_mem_opt.opt_burst_len);
dev_burst = DMA_CFG_BST_LEN(req->dreq_dev_opt.opt_burst_len);
mem_cfg = __SHIFTIN(mem_width, DMA_CFG_SRC_DATA_WIDTH) |
__SHIFTIN(mem_burst, sc->sc_burst_mask) |
__SHIFTIN(DMA_CFG_ADDR_MODE_LINEAR, DMA_CFG_SRC_ADDR_MODE) |
__SHIFTIN(DMA_CFG_DRQ_TYPE_SDRAM, DMA_CFG_SRC_DRQ_TYPE);
dev_cfg = __SHIFTIN(dev_width, DMA_CFG_SRC_DATA_WIDTH) |
__SHIFTIN(dev_burst, sc->sc_burst_mask) |
__SHIFTIN(DMA_CFG_ADDR_MODE_IO, DMA_CFG_SRC_ADDR_MODE) |
__SHIFTIN(ch->ch_portid, DMA_CFG_SRC_DRQ_TYPE);
for (size_t j = 0; j < req->dreq_nsegs; j++) {
if (req->dreq_dir == FDT_DMA_READ) {
src = req->dreq_dev_phys;
dst = req->dreq_segs[j].ds_addr;
cfg = mem_cfg << 16 | dev_cfg;
} else {
src = req->dreq_segs[j].ds_addr;
dst = req->dreq_dev_phys;
cfg = dev_cfg << 16 | mem_cfg;
}
len = req->dreq_segs[j].ds_len;
desc[j].dma_config = htole32(cfg);
desc[j].dma_srcaddr = htole32(src);
desc[j].dma_dstaddr = htole32(dst);
desc[j].dma_bcnt = htole32(len);
desc[j].dma_para = htole32(0);
if (j < req->dreq_nsegs - 1)
desc[j].dma_next = htole32(DESC_ADDR(sc, ch, j + 1));
else
desc[j].dma_next = htole32(DMA_NULL);
}
#if notyet && maybenever
DMA_WRITE(sc, DMA_MODE_REG(ch->ch_index),
DMA_MODE_DST(MODE_HANDSHAKE)|DMA_MODE_SRC(MODE_HANDSHAKE));
#endif
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap, DESC_OFFS(ch->ch_index, 0),
DESC_LEN(req->dreq_nsegs), BUS_DMASYNC_PREWRITE);
DMA_WRITE(sc, DMA_START_ADDR_REG(ch->ch_index),
DESC_ADDR(sc, ch, 0));
DMA_WRITE(sc, DMA_EN_REG(ch->ch_index), DMA_EN_EN);
if ((DMA_READ(sc, DMA_EN_REG(ch->ch_index)) & DMA_EN_EN) == 0) {
aprint_error_dev(sc->sc_dev,
"DMA Channel %u failed to start\n", ch->ch_index);
return EIO;
}
return 0;
}
static void
sun6idma_halt(device_t dev, void *priv)
{
struct sun6idma_softc *sc = device_private(dev);
struct sun6idma_channel *ch = priv;
DMA_WRITE(sc, DMA_EN_REG(ch->ch_index), 0);
}
static const struct fdtbus_dma_controller_func sun6idma_funcs = {
.acquire = sun6idma_acquire,
.release = sun6idma_release,
.transfer = sun6idma_transfer,
.halt = sun6idma_halt
};
static int
sun6idma_intr(void *priv)
{
struct sun6idma_softc *sc = priv;
uint32_t pend0, pend1, bit;
uint64_t pend, mask;
uint8_t index;
pend0 = DMA_READ(sc, DMA_IRQ_PEND_REG0_REG);
pend1 = DMA_READ(sc, DMA_IRQ_PEND_REG1_REG);
if (!pend0 && !pend1)
return 0;
DMA_WRITE(sc, DMA_IRQ_PEND_REG0_REG, pend0);
DMA_WRITE(sc, DMA_IRQ_PEND_REG1_REG, pend1);
pend = pend0 | ((uint64_t)pend1 << 32);
while ((bit = ffs64(pend & DMA_IRQ_PKG_MASK)) != 0) {
mask = __BIT(bit - 1);
pend &= ~mask;
index = (bit - 1) / 4;
if (sc->sc_chan[index].ch_callback == NULL)
continue;
sc->sc_chan[index].ch_callback(
sc->sc_chan[index].ch_callbackarg);
}
return 1;
}
static int
sun6idma_match(device_t parent, cfdata_t cf, void *aux)
{
struct fdt_attach_args * const faa = aux;
return of_match_compat_data(faa->faa_phandle, compat_data);
}
static void
sun6idma_attach(device_t parent, device_t self, void *aux)
{
struct sun6idma_softc * const sc = device_private(self);
struct fdt_attach_args * const faa = aux;
const int phandle = faa->faa_phandle;
size_t desclen;
const struct sun6idma_config *conf;
struct fdtbus_reset *rst;
struct clk *clk;
char intrstr[128];
bus_addr_t addr;
bus_size_t size;
int error, nsegs;
u_int index;
if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0) {
aprint_error(": couldn't get registers\n");
return;
}
if ((clk = fdtbus_clock_get_index(phandle, 0)) == NULL ||
clk_enable(clk) != 0) {
aprint_error(": couldn't enable clock\n");
return;
}
if ((rst = fdtbus_reset_get_index(phandle, 0)) == NULL ||
fdtbus_reset_deassert(rst) != 0) {
aprint_error(": couldn't de-assert reset\n");
return;
}
sc->sc_dev = self;
sc->sc_phandle = phandle;
sc->sc_dmat = faa->faa_dmat;
sc->sc_bst = faa->faa_bst;
if (bus_space_map(sc->sc_bst, addr, size, 0, &sc->sc_bsh) != 0) {
aprint_error(": couldn't map registers\n");
return;
}
mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SCHED);
if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
aprint_error(": failed to decode interrupt\n");
return;
}
conf = (void *)of_search_compatible(phandle, compat_data)->data;
sc->sc_burst_mask = conf->burst_mask;
sc->sc_nchan = conf->num_channels;
sc->sc_widths = conf->widths;
sc->sc_bursts = conf->bursts;
sc->sc_chan = kmem_alloc(sizeof(*sc->sc_chan) * sc->sc_nchan, KM_SLEEP);
desclen = DESC_OFFS(sc->sc_nchan, 0);
sc->sc_ndesc_ch = DESC_OFFS(1, 0) / sizeof(struct sun6idma_desc);
aprint_naive("\n");
aprint_normal(": DMA controller (%u channels)\n", sc->sc_nchan);
DMA_WRITE(sc, DMA_IRQ_EN_REG0_REG, 0);
DMA_WRITE(sc, DMA_IRQ_EN_REG1_REG, 0);
DMA_WRITE(sc, DMA_IRQ_PEND_REG0_REG, ~0);
DMA_WRITE(sc, DMA_IRQ_PEND_REG1_REG, ~0);
error = bus_dmamem_alloc(sc->sc_dmat, desclen, 0, 0,
sc->sc_dmasegs, 1, &nsegs, BUS_DMA_WAITOK);
if (error)
panic("bus_dmamem_alloc failed: %d", error);
error = bus_dmamem_map(sc->sc_dmat, sc->sc_dmasegs, nsegs,
desclen, (void **)&sc->sc_dmadescs, BUS_DMA_WAITOK);
if (error)
panic("bus_dmamem_map failed: %d", error);
error = bus_dmamap_create(sc->sc_dmat, desclen, 1, desclen, 0,
BUS_DMA_WAITOK, &sc->sc_dmamap);
if (error)
panic("bus_dmamap_create failed: %d", error);
error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
sc->sc_dmadescs, desclen, NULL, BUS_DMA_WAITOK);
if (error)
panic("bus_dmamap_load failed: %d", error);
for (index = 0; index < sc->sc_nchan; index++) {
struct sun6idma_channel *ch = &sc->sc_chan[index];
ch->ch_index = index;
ch->ch_dmadesc = (void *)((uintptr_t)sc->sc_dmadescs + DESC_OFFS(index, 0));
ch->ch_callback = NULL;
ch->ch_callbackarg = NULL;
DMA_WRITE(sc, DMA_EN_REG(index), 0);
}
if (conf->autogate)
DMA_WRITE(sc, conf->autogate_reg, conf->autogate_mask);
sc->sc_ih = fdtbus_intr_establish(phandle, 0, IPL_SCHED, FDT_INTR_MPSAFE,
sun6idma_intr, sc);
if (sc->sc_ih == NULL) {
aprint_error_dev(sc->sc_dev,
"couldn't establish interrupt on %s\n", intrstr);
return;
}
aprint_normal_dev(sc->sc_dev, "interrupting on %s\n", intrstr);
fdtbus_register_dma_controller(self, phandle, &sun6idma_funcs);
}
CFATTACH_DECL_NEW(sun6i_dma, sizeof(struct sun6idma_softc),
sun6idma_match, sun6idma_attach, NULL, NULL);
#ifdef DDB
void sun6idma_dump(void);
void
sun6idma_dump(void)
{
struct sun6idma_softc *sc;
device_t dev;
u_int index;
dev = device_find_by_driver_unit("sun6idma", 0);
if (dev == NULL)
return;
sc = device_private(dev);
device_printf(dev, "DMA_IRQ_EN_REG0_REG: %08x\n", DMA_READ(sc, DMA_IRQ_EN_REG0_REG));
device_printf(dev, "DMA_IRQ_EN_REG1_REG: %08x\n", DMA_READ(sc, DMA_IRQ_EN_REG1_REG));
device_printf(dev, "DMA_IRQ_PEND_REG0_REG: %08x\n", DMA_READ(sc, DMA_IRQ_PEND_REG0_REG));
device_printf(dev, "DMA_IRQ_PEND_REG1_REG: %08x\n", DMA_READ(sc, DMA_IRQ_PEND_REG1_REG));
device_printf(dev, "DMA_STA_REG: %08x\n", DMA_READ(sc, DMA_STA_REG));
for (index = 0; index < sc->sc_nchan; index++) {
struct sun6idma_channel *ch = &sc->sc_chan[index];
if (ch->ch_callback == NULL)
continue;
device_printf(dev, " %2d: DMA_EN_REG: %08x\n", index, DMA_READ(sc, DMA_EN_REG(index)));
device_printf(dev, " %2d: DMA_PAU_REG: %08x\n", index, DMA_READ(sc, DMA_PAU_REG(index)));
device_printf(dev, " %2d: DMA_START_ADDR_REG: %08x\n", index, DMA_READ(sc, DMA_START_ADDR_REG(index)));
device_printf(dev, " %2d: DMA_CFG_REG: %08x\n", index, DMA_READ(sc, DMA_CFG_REG(index)));
device_printf(dev, " %2d: DMA_CUR_SRC_REG: %08x\n", index, DMA_READ(sc, DMA_CUR_SRC_REG(index)));
device_printf(dev, " %2d: DMA_CUR_DEST_REG: %08x\n", index, DMA_READ(sc, DMA_CUR_DEST_REG(index)));
device_printf(dev, " %2d: DMA_BCNT_LEFT_REG: %08x\n", index, DMA_READ(sc, DMA_BCNT_LEFT_REG(index)));
device_printf(dev, " %2d: DMA_PARA_REG: %08x\n", index, DMA_READ(sc, DMA_PARA_REG(index)));
device_printf(dev, " %2d: DMA_MODE_REG: %08x\n", index, DMA_READ(sc, DMA_MODE_REG(index)));
device_printf(dev, " %2d: DMA_FDESC_ADDR_REG: %08x\n", index, DMA_READ(sc, DMA_FDESC_ADDR_REG(index)));
device_printf(dev, " %2d: DMA_PKG_NUM_REG: %08x\n", index, DMA_READ(sc, DMA_PKG_NUM_REG(index)));
}
}
#endif