/* $NetBSD: ti_edma.c,v 1.1.2.2 2019/11/27 13:46:44 martin Exp $ */
/*-
* Copyright (c) 2014 Jared D. McNeill <jmcneill@invisible.ca>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: ti_edma.c,v 1.1.2.2 2019/11/27 13:46:44 martin Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/conf.h>
#include <sys/intr.h>
#include <sys/mutex.h>
#include <sys/bus.h>
#include <sys/bitops.h>
#include <dev/fdt/fdtvar.h>
#include <arm/ti/ti_prcm.h>
#include <arm/ti/ti_edma.h>
#define NUM_DMA_CHANNELS 64
#define NUM_PARAM_SETS 256
#define MAX_PARAM_PER_CHANNEL 32
#ifdef EDMA_DEBUG
int edmadebug = 1;
#define DPRINTF(n,s) do { if ((n) <= edmadebug) device_printf s; } while (0)
#else
#define DPRINTF(n,s) do {} while (0)
#endif
struct edma_softc;
struct edma_channel {
struct edma_softc *ch_sc;
enum edma_type ch_type;
uint8_t ch_index;
void (*ch_callback)(void *);
void *ch_callbackarg;
unsigned int ch_nparams;
};
struct edma_softc {
device_t sc_dev;
bus_space_tag_t sc_iot;
bus_space_handle_t sc_ioh;
kmutex_t sc_lock;
struct edma_channel sc_dma[NUM_DMA_CHANNELS];
void *sc_ih;
uint32_t sc_dmamask[NUM_DMA_CHANNELS / 32];
uint32_t sc_parammask[NUM_PARAM_SETS / 32];
};
static int edma_match(device_t, cfdata_t, void *);
static void edma_attach(device_t, device_t, void *);
static void edma_init(struct edma_softc *);
static int edma_intr(void *);
static void edma_write_param(struct edma_softc *,
unsigned int, const struct edma_param *);
static bool edma_bit_isset(uint32_t *, unsigned int);
static void edma_bit_set(uint32_t *, unsigned int);
static void edma_bit_clr(uint32_t *, unsigned int);
CFATTACH_DECL_NEW(ti_edma, sizeof(struct edma_softc),
edma_match, edma_attach, NULL, NULL);
#define EDMA_READ(sc, reg) \
bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, (reg))
#define EDMA_WRITE(sc, reg, val) \
bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, (reg), (val))
static const char * compatible[] = {
"ti,edma3-tpcc",
NULL
};
static int
edma_match(device_t parent, cfdata_t match, void *aux)
{
struct fdt_attach_args * const faa = aux;
return of_match_compatible(faa->faa_phandle, compatible);
}
static void
edma_attach(device_t parent, device_t self, void *aux)
{
struct edma_softc *sc = device_private(self);
struct fdt_attach_args * const faa = aux;
const int phandle = faa->faa_phandle;
char intrstr[128];
bus_addr_t addr;
bus_size_t size;
int idx;
if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0) {
aprint_error(": couldn't get registers\n");
return;
}
if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
aprint_error(": failed to decode interrupt\n");
return;
}
sc->sc_dev = self;
sc->sc_iot = faa->faa_bst;
mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_VM);
if (bus_space_map(sc->sc_iot, addr, size, 0, &sc->sc_ioh) != 0) {
aprint_error(": couldn't map registers\n");
return;
}
aprint_naive("\n");
aprint_normal(": EDMA Channel Controller\n");
for (idx = 0; idx < NUM_DMA_CHANNELS; idx++) {
struct edma_channel *ch = &sc->sc_dma[idx];
ch->ch_sc = sc;
ch->ch_type = EDMA_TYPE_DMA;
ch->ch_index = idx;
ch->ch_callback = NULL;
ch->ch_callbackarg = NULL;
ch->ch_nparams = 0;
}
if (ti_prcm_enable_hwmod(phandle, 0) != 0) {
aprint_error_dev(self, "couldn't enable module\n");
return;
}
edma_init(sc);
sc->sc_ih = fdtbus_intr_establish_byname(phandle, "edma3_ccint",
IPL_VM, FDT_INTR_MPSAFE, edma_intr, sc);
if (sc->sc_ih == NULL) {
aprint_error_dev(self, "failed to establish interrupt\n");
return;
}
aprint_normal_dev(self, "interrupting on %s\n", intrstr);
}
/*
* Hardware initialization
*/
static void
edma_init(struct edma_softc *sc)
{
struct edma_param param;
uint32_t val;
int idx;
val = EDMA_READ(sc, EDMA_CCCFG_REG);
if (val & EDMA_CCCFG_CHMAP_EXIST) {
for (idx = 0; idx < NUM_DMA_CHANNELS; idx++) {
EDMA_WRITE(sc, EDMA_DCHMAP_REG(idx),
__SHIFTIN(0, EDMA_DCHMAP_PAENTRY));
}
}
memset(¶m, 0, sizeof(param));
param.ep_bcnt = 1;
for (idx = 0; idx < NUM_PARAM_SETS; idx++) {
edma_write_param(sc, idx, ¶m);
}
/* reserve PaRAM entry 0 for dummy slot */
edma_bit_set(sc->sc_parammask, 0);
for (idx = 1; idx <= 32; idx++) {
edma_bit_set(sc->sc_parammask, idx);
}
}
/*
* Write a PaRAM entry
*/
static void
edma_write_param(struct edma_softc *sc,
unsigned int idx, const struct edma_param *ep)
{
EDMA_WRITE(sc, EDMA_PARAM_OPT_REG(idx), ep->ep_opt);
EDMA_WRITE(sc, EDMA_PARAM_SRC_REG(idx), ep->ep_src);
EDMA_WRITE(sc, EDMA_PARAM_CNT_REG(idx),
__SHIFTIN(ep->ep_bcnt, EDMA_PARAM_CNT_BCNT) |
__SHIFTIN(ep->ep_acnt, EDMA_PARAM_CNT_ACNT));
EDMA_WRITE(sc, EDMA_PARAM_DST_REG(idx), ep->ep_dst);
EDMA_WRITE(sc, EDMA_PARAM_BIDX_REG(idx),
__SHIFTIN(ep->ep_dstbidx, EDMA_PARAM_BIDX_DSTBIDX) |
__SHIFTIN(ep->ep_srcbidx, EDMA_PARAM_BIDX_SRCBIDX));
EDMA_WRITE(sc, EDMA_PARAM_LNK_REG(idx),
__SHIFTIN(ep->ep_bcntrld, EDMA_PARAM_LNK_BCNTRLD) |
__SHIFTIN(ep->ep_link, EDMA_PARAM_LNK_LINK));
EDMA_WRITE(sc, EDMA_PARAM_CIDX_REG(idx),
__SHIFTIN(ep->ep_dstcidx, EDMA_PARAM_CIDX_DSTCIDX) |
__SHIFTIN(ep->ep_srccidx, EDMA_PARAM_CIDX_SRCCIDX));
EDMA_WRITE(sc, EDMA_PARAM_CCNT_REG(idx),
__SHIFTIN(ep->ep_ccnt, EDMA_PARAM_CCNT_CCNT));
}
static bool
edma_bit_isset(uint32_t *bits, unsigned int bit)
{
return !!(bits[bit >> 5] & (1 << (bit & 0x1f)));
}
static void
edma_bit_set(uint32_t *bits, unsigned int bit)
{
bits[bit >> 5] |= (1 << (bit & 0x1f));
}
static void
edma_bit_clr(uint32_t *bits, unsigned int bit)
{
bits[bit >> 5] &= ~(1 << (bit & 0x1f));
}
static int
edma_intr(void *priv)
{
struct edma_softc *sc = priv;
uint64_t ipr, ier;
int bit, idx;
ipr = EDMA_READ(sc, EDMA_IPR_REG);
ipr |= (uint64_t)EDMA_READ(sc, EDMA_IPRH_REG) << 32;
if (ipr == 0)
return 0;
ier = EDMA_READ(sc, EDMA_IER_REG);
ier |= (uint64_t)EDMA_READ(sc, EDMA_IERH_REG) << 32;
DPRINTF(2, (sc->sc_dev, "ipr = 0x%016llx ier 0x%016llx\n", ipr, ier));
EDMA_WRITE(sc, EDMA_ICR_REG, ipr & 0xffffffff);
EDMA_WRITE(sc, EDMA_ICRH_REG, ipr >> 32);
while ((bit = ffs64(ipr)) != 0) {
idx = bit - 1;
ipr &= ~__BIT(idx);
if (!(ier & __BIT(idx)))
continue;
if (!edma_bit_isset(sc->sc_dmamask, idx))
continue;
sc->sc_dma[idx].ch_callback(sc->sc_dma[idx].ch_callbackarg);
}
EDMA_WRITE(sc, EDMA_IEVAL_REG, EDMA_IEVAL_EVAL);
return 1;
}
/*
* Allocate a DMA channel. Currently only DMA types are supported, not QDMA.
* Returns NULL on failure.
*/
struct edma_channel *
edma_channel_alloc(enum edma_type type, unsigned int drq,
void (*cb)(void *), void *cbarg)
{
struct edma_softc *sc;
device_t dev;
struct edma_channel *ch = NULL;
KASSERT(drq < __arraycount(sc->sc_dma));
KASSERT(type == EDMA_TYPE_DMA); /* QDMA not implemented */
KASSERT(cb != NULL);
KASSERT(cbarg != NULL);
dev = device_find_by_driver_unit("tiedma", 0);
if (dev == NULL)
return NULL;
sc = device_private(dev);
mutex_enter(&sc->sc_lock);
if (!edma_bit_isset(sc->sc_dmamask, drq)) {
ch = &sc->sc_dma[drq];
KASSERT(ch->ch_callback == NULL);
KASSERT(ch->ch_index == drq);
ch->ch_callback = cb;
ch->ch_callbackarg = cbarg;
edma_bit_set(sc->sc_dmamask, drq);
}
if (ch == NULL)
goto done;
EDMA_WRITE(sc, EDMA_DRAE_REG(0), sc->sc_dmamask[0]);
EDMA_WRITE(sc, EDMA_DRAEH_REG(0), sc->sc_dmamask[1]);
if (ch->ch_index < 32) {
EDMA_WRITE(sc, EDMA_ICR_REG, __BIT(ch->ch_index));
EDMA_WRITE(sc, EDMA_IESR_REG, __BIT(ch->ch_index));
} else {
EDMA_WRITE(sc, EDMA_ICRH_REG, __BIT(ch->ch_index - 32));
EDMA_WRITE(sc, EDMA_IESRH_REG, __BIT(ch->ch_index - 32));
}
done:
mutex_exit(&sc->sc_lock);
return ch;
}
/*
* Free a DMA channel allocated with edma_channel_alloc
*/
void
edma_channel_free(struct edma_channel *ch)
{
struct edma_softc *sc = ch->ch_sc;
KASSERT(ch->ch_nparams == 0);
mutex_enter(&sc->sc_lock);
if (ch->ch_index < 32) {
EDMA_WRITE(sc, EDMA_IECR_REG, __BIT(ch->ch_index));
} else {
EDMA_WRITE(sc, EDMA_IECRH_REG, __BIT(ch->ch_index - 32));
}
ch->ch_callback = NULL;
ch->ch_callbackarg = NULL;
edma_bit_clr(sc->sc_dmamask, ch->ch_index);
mutex_exit(&sc->sc_lock);
}
/*
* Allocate a PaRAM entry. The driver artifically restricts the number
* of PaRAM entries available for each channel to MAX_PARAM_PER_CHANNEL.
* If the number of entries for the channel has been exceeded, or there
* are no entries available, 0xffff is returned.
*/
uint16_t
edma_param_alloc(struct edma_channel *ch)
{
struct edma_softc *sc = ch->ch_sc;
uint16_t param_entry = 0xffff;
int idx;
if (ch->ch_nparams == MAX_PARAM_PER_CHANNEL)
return param_entry;
mutex_enter(&sc->sc_lock);
for (idx = 0; idx < NUM_PARAM_SETS; idx++) {
if (!edma_bit_isset(sc->sc_parammask, idx)) {
param_entry = idx;
edma_bit_set(sc->sc_parammask, idx);
ch->ch_nparams++;
break;
}
}
mutex_exit(&sc->sc_lock);
return param_entry;
}
/*
* Free a PaRAM entry allocated with edma_param_alloc
*/
void
edma_param_free(struct edma_channel *ch, uint16_t param_entry)
{
struct edma_softc *sc = ch->ch_sc;
KASSERT(param_entry < NUM_PARAM_SETS);
KASSERT(ch->ch_nparams > 0);
KASSERT(edma_bit_isset(sc->sc_parammask, param_entry));
mutex_enter(&sc->sc_lock);
edma_bit_clr(sc->sc_parammask, param_entry);
ch->ch_nparams--;
mutex_exit(&sc->sc_lock);
}
/*
* Update a PaRAM entry register set with caller-provided values
*/
void
edma_set_param(struct edma_channel *ch, uint16_t param_entry,
struct edma_param *ep)
{
struct edma_softc *sc = ch->ch_sc;
KASSERT(param_entry < NUM_PARAM_SETS);
KASSERT(ch->ch_nparams > 0);
KASSERT(edma_bit_isset(sc->sc_parammask, param_entry));
DPRINTF(1, (sc->sc_dev, "write param entry ch# %d pe %d: 0x%08x -> 0x%08x (%u, %u, %u)\n", ch->ch_index, param_entry, ep->ep_src, ep->ep_dst, ep->ep_acnt, ep->ep_bcnt, ep->ep_ccnt));
edma_write_param(sc, param_entry, ep);
}
/*
* Enable a DMA channel: Point channel to the PaRam entry,
* clear error if any, and only set the Event Enable bit.
* The Even will either be generated by hardware, or with
* edma_transfer_start()
*/
int
edma_transfer_enable(struct edma_channel *ch, uint16_t param_entry)
{
struct edma_softc *sc = ch->ch_sc;
bus_size_t off = (ch->ch_index < 32 ? 0 : 4);
uint32_t bit = __BIT(ch->ch_index < 32 ?
ch->ch_index : ch->ch_index - 32);
DPRINTF(1, (sc->sc_dev, "enable transfer ch# %d off %d bit %x pe %d\n", ch->ch_index, (int)off, bit, param_entry));
EDMA_WRITE(sc, EDMA_DCHMAP_REG(ch->ch_index),
__SHIFTIN(param_entry, EDMA_DCHMAP_PAENTRY));
uint32_t ccerr = EDMA_READ(sc, EDMA_CCERR_REG);
if (ccerr) {
device_printf(sc->sc_dev, " !!! CCER %08x\n", ccerr);
EDMA_WRITE(sc, EDMA_CCERRCLR_REG, ccerr);
}
EDMA_WRITE(sc, EDMA_EESR_REG + off, bit);
return 0;
}
/*
* Software-start a DMA channel: Set the Event bit.
*/
int
edma_transfer_start(struct edma_channel *ch)
{
struct edma_softc *sc = ch->ch_sc;
bus_size_t off = (ch->ch_index < 32 ? 0 : 4);
uint32_t bit = __BIT(ch->ch_index < 32 ?
ch->ch_index : ch->ch_index - 32);
DPRINTF(1, (sc->sc_dev, "start transfer ch# %d off %d bit %x pe %d\n", ch->ch_index, (int)off, bit));
EDMA_WRITE(sc, EDMA_ESR_REG + off, bit);
return 0;
}
/*
* Halt a DMA transfer. Called after successfull transfer, or to abort
* a transfer.
*/
void
edma_halt(struct edma_channel *ch)
{
struct edma_softc *sc = ch->ch_sc;
bus_size_t off = (ch->ch_index < 32 ? 0 : 4);
uint32_t bit = __BIT(ch->ch_index < 32 ?
ch->ch_index : ch->ch_index - 32);
EDMA_WRITE(sc, EDMA_EECR_REG + off, bit);
EDMA_WRITE(sc, EDMA_ECR_REG + off, bit);
EDMA_WRITE(sc, EDMA_SECR_REG + off, bit);
EDMA_WRITE(sc, EDMA_EMCR_REG + off, bit);
EDMA_WRITE(sc, EDMA_DCHMAP_REG(ch->ch_index),
__SHIFTIN(0, EDMA_DCHMAP_PAENTRY));
}
uint8_t
edma_channel_index(struct edma_channel *ch)
{
return ch->ch_index;
}
void
edma_dump(struct edma_channel *ch)
{
static const struct {
const char *name;
uint16_t off;
} regs[] = {
{ "ER", EDMA_ER_REG },
{ "ERH", EDMA_ERH_REG },
{ "EER", EDMA_EER_REG },
{ "EERH", EDMA_EERH_REG },
{ "SER", EDMA_SER_REG },
{ "SERH", EDMA_SERH_REG },
{ "IER", EDMA_IER_REG },
{ "IERH", EDMA_IERH_REG },
{ "IPR", EDMA_IPR_REG },
{ "IPRH", EDMA_IPRH_REG },
{ "CCERR", EDMA_CCERR_REG },
{ "CCSTAT", EDMA_CCSTAT_REG },
{ "DRAE0", EDMA_DRAE_REG(0) },
{ "DRAEH0", EDMA_DRAEH_REG(0) },
{ NULL, 0 }
};
struct edma_softc *sc = ch->ch_sc;
int i;
for (i = 0; regs[i].name; i++) {
device_printf(sc->sc_dev, "%s: %08x\n",
regs[i].name, EDMA_READ(sc, regs[i].off));
}
device_printf(sc->sc_dev, "DCHMAP%d: %08x\n", ch->ch_index,
EDMA_READ(sc, EDMA_DCHMAP_REG(ch->ch_index)));
}
void
edma_dump_param(struct edma_channel *ch, uint16_t param_entry)
{
struct {
const char *name;
uint16_t off;
} regs[] = {
{ "OPT", EDMA_PARAM_OPT_REG(param_entry) },
{ "CNT", EDMA_PARAM_CNT_REG(param_entry) },
{ "DST", EDMA_PARAM_DST_REG(param_entry) },
{ "BIDX", EDMA_PARAM_BIDX_REG(param_entry) },
{ "LNK", EDMA_PARAM_LNK_REG(param_entry) },
{ "CIDX", EDMA_PARAM_CIDX_REG(param_entry) },
{ "CCNT", EDMA_PARAM_CCNT_REG(param_entry) },
{ NULL, 0 }
};
struct edma_softc *sc = ch->ch_sc;
int i;
for (i = 0; regs[i].name; i++) {
device_printf(sc->sc_dev, "%s%d: %08x\n",
regs[i].name, param_entry, EDMA_READ(sc, regs[i].off));
}
}