Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
/*	$NetBSD: g42xxeb_machdep.c,v 1.35 2019/07/16 14:41:45 skrll Exp $ */

/*
 * Copyright (c) 2002, 2003, 2004, 2005  Genetec Corporation.  
 * All rights reserved.
 *
 * Written by Hiroyuki Bessho for Genetec Corporation.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. The name of Genetec Corporation may not be used to endorse or 
 *    promote products derived from this software without specific prior
 *    written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL GENETEC CORPORATION
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 * Machine dependent functions for kernel setup for Genetec G4250EBX 
 * evaluation board.
 * 
 * Based on iq80310_machhdep.c
 */
/*
 * Copyright (c) 2001 Wasabi Systems, Inc.
 * All rights reserved.
 *
 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *	This product includes software developed for the NetBSD Project by
 *	Wasabi Systems, Inc.
 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
 *    or promote products derived from this software without specific prior
 *    written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

/*
 * Copyright (c) 1997,1998 Mark Brinicombe.
 * Copyright (c) 1997,1998 Causality Limited.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *	This product includes software developed by Mark Brinicombe
 *	for the NetBSD Project.
 * 4. The name of the company nor the name of the author may be used to
 *    endorse or promote products derived from this software without specific
 *    prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * Machine dependent functions for kernel setup for Intel IQ80310 evaluation
 * boards using RedBoot firmware.
 */

#include "opt_arm_debug.h"
#include "opt_console.h"
#include "opt_ddb.h"
#include "opt_kgdb.h"
#include "opt_pmap_debug.h"
#include "opt_md.h"
#include "opt_com.h"
#include "lcd.h"

#include <sys/param.h>
#include <sys/device.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/exec.h>
#include <sys/proc.h>
#include <sys/msgbuf.h>
#include <sys/reboot.h>
#include <sys/termios.h>
#include <sys/ksyms.h>
#include <sys/bus.h>
#include <sys/cpu.h>

#include <uvm/uvm_extern.h>

#include <sys/conf.h>
#include <dev/cons.h>
#include <dev/md.h>

#include <machine/db_machdep.h>
#include <ddb/db_sym.h>
#include <ddb/db_extern.h>
#ifdef KGDB
#include <sys/kgdb.h>
#endif

#include <machine/bootconfig.h>
#include <arm/locore.h>
#include <arm/undefined.h>

#include <arm/arm32/machdep.h>

#include <arm/xscale/pxa2x0reg.h>
#include <arm/xscale/pxa2x0var.h>
#include <arm/xscale/pxa2x0_gpio.h>
#include <evbarm/g42xxeb/g42xxeb_reg.h>
#include <evbarm/g42xxeb/g42xxeb_var.h>

/* Kernel text starts 2MB in from the bottom of the kernel address space. */
#define	KERNEL_TEXT_BASE	(KERNEL_BASE + 0x00200000)
#define	KERNEL_VM_BASE		(KERNEL_BASE + 0x01000000)

/*
 * The range 0xc1000000 - 0xccffffff is available for kernel VM space
 * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
 */
#define KERNEL_VM_SIZE		0x0C000000

BootConfig bootconfig;		/* Boot config storage */
char *boot_args = NULL;
char *boot_file = NULL;

vaddr_t physical_start;
vaddr_t physical_freestart;
vaddr_t physical_freeend;
vaddr_t physical_end;
u_int free_pages;

/*int debug_flags;*/
#ifndef PMAP_STATIC_L1S
int max_processes = 64;			/* Default number */
#endif	/* !PMAP_STATIC_L1S */

/* Physical and virtual addresses for some global pages */
pv_addr_t minidataclean;

paddr_t msgbufphys;

#ifdef PMAP_DEBUG
extern int pmap_debug_level;
#endif

#define KERNEL_PT_SYS		0	/* Page table for mapping proc0 zero page */
#define KERNEL_PT_KERNEL	1	/* Page table for mapping kernel */
#define	KERNEL_PT_KERNEL_NUM	4
#define KERNEL_PT_VMDATA	(KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM)
				        /* Page tables for mapping kernel VM */
#define	KERNEL_PT_VMDATA_NUM	4	/* start with 16MB of KVM */
#define NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)

pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];

/* Prototypes */

#if 0
void	process_kernel_args(char *);
#endif

void	consinit(void);
void	kgdb_port_init(void);
void	change_clock(uint32_t v);

bs_protos(bs_notimpl);

#include "com.h"
#if NCOM > 0
#include <dev/ic/comreg.h>
#include <dev/ic/comvar.h>
#endif

#ifndef CONSPEED
#define CONSPEED B115200	/* What RedBoot uses */
#endif
#ifndef CONMODE
#define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
#endif

int comcnspeed = CONSPEED;
int comcnmode = CONMODE;

static struct pxa2x0_gpioconf boarddep_gpioconf[] = {
	{ 44, GPIO_ALT_FN_1_IN },	/* BTCST */
	{ 45, GPIO_ALT_FN_2_OUT },	/* BTRST */

	{ -1 }
};
static struct pxa2x0_gpioconf *g42xxeb_gpioconf[] = {
	pxa25x_com_btuart_gpioconf,
	pxa25x_com_ffuart_gpioconf,
#if 0
	pxa25x_com_stuart_gpioconf,
	pxa25x_pxaacu_gpioconf,
#endif
	boarddep_gpioconf,
	NULL
};

/*
 * void cpu_reboot(int howto, char *bootstr)
 *
 * Reboots the system
 *
 * Deal with any syncing, unmounting, dumping and shutdown hooks,
 * then reset the CPU.
 */
void
cpu_reboot(int howto, char *bootstr)
{
#ifdef DIAGNOSTIC
	/* info */
	printf("boot: howto=%08x curproc=%p\n", howto, curproc);
#endif

	/*
	 * If we are still cold then hit the air brakes
	 * and crash to earth fast
	 */
	if (cold) {
		doshutdownhooks();
		pmf_system_shutdown(boothowto);
		printf("The operating system has halted.\n");
		printf("Please press any key to reboot.\n\n");
		cngetc();
		printf("rebooting...\n");
		cpu_reset();
		/*NOTREACHED*/
	}

	/* Disable console buffering */
/*	cnpollc(1);*/

	/*
	 * If RB_NOSYNC was not specified sync the discs.
	 * Note: Unless cold is set to 1 here, syslogd will die during the
	 * unmount.  It looks like syslogd is getting woken up only to find
	 * that it cannot page part of the binary in as the filesystem has
	 * been unmounted.
	 */
	if (!(howto & RB_NOSYNC))
		bootsync();

	/* Say NO to interrupts */
	splhigh();

	/* Do a dump if requested. */
	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
		dumpsys();
	
	/* Run any shutdown hooks */
	doshutdownhooks();

	pmf_system_shutdown(boothowto);

	/* Make sure IRQ's are disabled */
	IRQdisable;

	if (howto & RB_HALT) {
		printf("The operating system has halted.\n");
		printf("Please press any key to reboot.\n\n");
		cngetc();
	}

	printf("rebooting...\n");
	cpu_reset();
	/*NOTREACHED*/
}

static inline
pd_entry_t *
read_ttb(void)
{
  long ttb;

  __asm volatile("mrc	p15, 0, %0, c2, c0, 0" : "=r" (ttb));


  return (pd_entry_t *)(ttb & ~((1<<14)-1));
}

/*
 * Static device mappings. These peripheral registers are mapped at
 * fixed virtual addresses very early in initarm() so that we can use
 * them while booting the kernel, and stay at the same address
 * throughout whole kernel's life time.
 *
 * We use this table twice; once with bootstrap page table, and once
 * with kernel's page table which we build up in initarm().
 *
 * Since we map these registers into the bootstrap page table using
 * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
 * registers segment-aligned and segment-rounded in order to avoid
 * using the 2nd page tables.
 */

#define	_A(a)	((a) & ~L1_S_OFFSET)
#define	_S(s)	(((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1))

static const struct pmap_devmap g42xxeb_devmap[] = {
    {
	    G42XXEB_PLDREG_VBASE,
	    _A(G42XXEB_PLDREG_BASE),
	    _S(G42XXEB_PLDREG_SIZE),
	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
    },
    {
	    G42XXEB_GPIO_VBASE,
	    _A(PXA2X0_GPIO_BASE),
	    _S(PXA250_GPIO_SIZE),
	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
    },
    {
	    G42XXEB_CLKMAN_VBASE,
	    _A(PXA2X0_CLKMAN_BASE),
	    _S(PXA2X0_CLKMAN_SIZE),
	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
    },
    {
	    G42XXEB_INTCTL_VBASE,
	    _A(PXA2X0_INTCTL_BASE),
	    _S(PXA2X0_INTCTL_SIZE),
	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
    },
    {
	    G42XXEB_FFUART_VBASE,
	    _A(PXA2X0_FFUART_BASE),
	    _S(4 * COM_NPORTS),
	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
    },
    {
	    G42XXEB_BTUART_VBASE,
	    _A(PXA2X0_BTUART_BASE),
	    _S(4 * COM_NPORTS),
	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
    },
    {0, 0, 0, 0,}
};

#undef	_A
#undef	_S


/*
 * vaddr_t initarm(...)
 *
 * Initial entry point on startup. This gets called before main() is
 * entered.
 * It should be responsible for setting up everything that must be
 * in place when main is called.
 * This includes
 *   Taking a copy of the boot configuration structure.
 *   Initialising the physical console so characters can be printed.
 *   Setting up page tables for the kernel
 *   Relocating the kernel to the bottom of physical memory
 */
vaddr_t
initarm(void *arg)
{
	extern vaddr_t xscale_cache_clean_addr;
	int loop;
	int loop1;
	u_int l1pagetable;
	paddr_t memstart;
	psize_t memsize;
	int led_data = 1;
#ifdef DIAGNOSTIC
	extern vsize_t xscale_minidata_clean_size; /* used in KASSERT */
#endif

#define LEDSTEP_P() ioreg8_write(G42XXEB_PLDREG_BASE+G42XXEB_LED, led_data++)
#define LEDSTEP() pldreg8_write(G42XXEB_LED, led_data++);

	/* use physical address until pagetable is set */
	LEDSTEP_P();

	/* map some peripheral registers at static I/O area */
	pmap_devmap_bootstrap((vaddr_t)read_ttb(), g42xxeb_devmap);

	LEDSTEP_P();

	/* start 32.768 kHz OSC */
	ioreg_write(G42XXEB_CLKMAN_VBASE + 0x08, 2);
	/* Get ready for splfoo() */
	pxa2x0_intr_bootstrap(G42XXEB_INTCTL_VBASE);

	LEDSTEP();

	/*
	 * Heads up ... Setup the CPU / MMU / TLB functions
	 */
	if (set_cpufuncs())
		panic("cpu not recognized!");

	LEDSTEP();

	/*
	 * Okay, RedBoot has provided us with the following memory map:
	 *
	 * Physical Address Range     Description 
	 * -----------------------    ---------------------------------- 
	 * 0x00000000 - 0x01ffffff    flash Memory   (32MB)
	 * 0x04000000 - 0x05ffffff    Application flash Memory  (32MB)
	 * 0x08000000 - 0x080000ff    I/O baseboard registers
	 * 0x0c000000 - 0x0c0fffff    Ethernet Controller
	 * 0x14000000 - 0x17ffffff    Expansion Card (64MB)
	 * 0x40000000 - 0x480fffff    Processor Registers
	 * 0xa0000000 - 0xa3ffffff    SDRAM Bank 0 (64MB)
	 *
	 *
	 * Virtual Address Range    X C B  Description 
	 * -----------------------  - - -  ---------------------------------- 
	 * 0x00000000 - 0x00003fff  N Y Y  SDRAM 
	 * 0x00004000 - 0x01ffffff  N Y N  ROM
	 * 0x08000000 - 0x080fffff  N N N  I/O baseboard registers
	 * 0x0a000000 - 0x0a0fffff  N N N  SRAM
	 * 0x40000000 - 0x480fffff  N N N  Processor Registers
	 * 0xa0000000 - 0xa000ffff  N Y N  RedBoot SDRAM 
	 * 0xa0017000 - 0xa3ffffff  Y Y Y  SDRAM
	 * 0xc0000000 - 0xcfffffff  Y Y Y  Cache Flush Region 
	 * (done by this routine)
	 * 0xfd000000 - 0xfd0000ff  N N N  I/O baseboard registers
	 * 0xfd100000 - 0xfd3fffff  N N N  Processor Registers.
	 * 0xfd400000 - 0xfd4fffff  N N N  FF-UART
	 * 0xfd500000 - 0xfd5fffff  N N N  BT-UART
	 *
	 * RedBoot's first level page table is at 0xa0004000.  There
	 * are also 2 second-level tables at 0xa0008000 and
	 * 0xa0008400.  We will continue to use them until we switch to
	 * our pagetable by cpu_setttb().
	 */

	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);

	LEDSTEP();

	/* setup GPIO for BTUART, in case bootloader doesn't take care of it */
	pxa2x0_gpio_bootstrap(G42XXEB_GPIO_VBASE);
	pxa2x0_gpio_config(g42xxeb_gpioconf);

	LEDSTEP();

	consinit();
#ifdef KGDB
	LEDSTEP();
	kgdb_port_init();
#endif

	LEDSTEP();

	/* Talk to the user */
	printf("\nNetBSD/evbarm (g42xxeb) booting ...\n");

#if 0
	/*
	 * Examine the boot args string for options we need to know about
	 * now.
	 */
	process_kernel_args((char *)nwbootinfo.bt_args);
#endif

	memstart = 0xa0000000;
	memsize = 0x04000000;		/* 64MB */

	printf("initarm: Configuring system ...\n");

	/* Fake bootconfig structure for the benefit of pmap.c */
	/* XXX must make the memory description h/w independent */
	bootconfig.dramblocks = 1;
	bootconfig.dram[0].address = memstart;
	bootconfig.dram[0].pages = memsize / PAGE_SIZE;

	/*
	 * Set up the variables that define the availablilty of
	 * physical memory.  For now, we're going to set
	 * physical_freestart to 0xa0200000 (where the kernel
	 * was loaded), and allocate the memory we need downwards.
	 * If we get too close to the L1 table that we set up, we
	 * will panic.  We will update physical_freestart and
	 * physical_freeend later to reflect what pmap_bootstrap()
	 * wants to see.
	 *
	 * XXX pmap_bootstrap() needs an enema.
	 */
	physical_start = bootconfig.dram[0].address;
	physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);

	physical_freestart = 0xa0009000UL;
	physical_freeend = 0xa0200000UL;

	physmem = (physical_end - physical_start) / PAGE_SIZE;

#ifdef VERBOSE_INIT_ARM
	/* Tell the user about the memory */
	printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
	    physical_start, physical_end - 1);
#endif

	/*
	 * Okay, the kernel starts 2MB in from the bottom of physical
	 * memory.  We are going to allocate our bootstrap pages downwards
	 * from there.
	 *
	 * We need to allocate some fixed page tables to get the kernel
	 * going.  We allocate one page directory and a number of page
	 * tables and store the physical addresses in the kernel_pt_table
	 * array.
	 *
	 * The kernel page directory must be on a 16K boundary.  The page
	 * tables must be on 4K bounaries.  What we do is allocate the
	 * page directory on the first 16K boundary that we encounter, and
	 * the page tables on 4K boundaries otherwise.  Since we allocate
	 * at least 3 L2 page tables, we are guaranteed to encounter at
	 * least one 16K aligned region.
	 */

#ifdef VERBOSE_INIT_ARM
	printf("Allocating page tables\n");
#endif

	free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;

#ifdef VERBOSE_INIT_ARM
	printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
	       physical_freestart, free_pages, free_pages);
#endif

	/* Define a macro to simplify memory allocation */
#define	valloc_pages(var, np)				\
	alloc_pages((var).pv_pa, (np));			\
	(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;

#define alloc_pages(var, np)				\
	physical_freeend -= ((np) * PAGE_SIZE);		\
	if (physical_freeend < physical_freestart)	\
		panic("initarm: out of memory");	\
	(var) = physical_freeend;			\
	free_pages -= (np);				\
	memset((char *)(var), 0, ((np) * PAGE_SIZE));

	loop1 = 0;
	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
		/* Are we 16KB aligned for an L1 ? */
		if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
		    && kernel_l1pt.pv_pa == 0) {
			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
		} else {
			valloc_pages(kernel_pt_table[loop1],
			    L2_TABLE_SIZE / PAGE_SIZE);
			++loop1;
		}
	}

	/* This should never be able to happen but better confirm that. */
	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
		panic("initarm: Failed to align the kernel page directory");

	LEDSTEP();

	/*
	 * Allocate a page for the system page mapped to V0x00000000
	 * This page will just contain the system vectors and can be
	 * shared by all processes.
	 */
	alloc_pages(systempage.pv_pa, 1);

	/* Allocate stacks for all modes */
	valloc_pages(irqstack, IRQ_STACK_SIZE);
	valloc_pages(abtstack, ABT_STACK_SIZE);
	valloc_pages(undstack, UND_STACK_SIZE);
	valloc_pages(kernelstack, UPAGES);

	/* Allocate enough pages for cleaning the Mini-Data cache. */
	KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
	valloc_pages(minidataclean, 1);

#ifdef VERBOSE_INIT_ARM
	printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
	    irqstack.pv_va); 
	printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
	    abtstack.pv_va); 
	printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
	    undstack.pv_va); 
	printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
	    kernelstack.pv_va); 
#endif

	/*
	 * XXX Defer this to later so that we can reclaim the memory
	 * XXX used by the RedBoot page tables.
	 */
	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);

	/*
	 * Ok we have allocated physical pages for the primary kernel
	 * page tables
	 */

#ifdef VERBOSE_INIT_ARM
	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
#endif

	/*
	 * Now we start construction of the L1 page table
	 * We start by mapping the L2 page tables into the L1.
	 * This means that we can replace L1 mappings later on if necessary
	 */
	l1pagetable = kernel_l1pt.pv_pa;

	/* Map the L2 pages tables in the L1 page table */
	pmap_link_l2pt(l1pagetable, 0x00000000,
	    &kernel_pt_table[KERNEL_PT_SYS]);
	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
		pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
		    &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
		pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
		    &kernel_pt_table[KERNEL_PT_VMDATA + loop]);

	/* update the top of the kernel VM */
	pmap_curmaxkvaddr =
	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);

#ifdef VERBOSE_INIT_ARM
	printf("Mapping kernel\n");
#endif

	/* Now we fill in the L2 pagetable for the kernel static code/data */
	{
		extern char etext[], _end[];
		size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
		size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
		u_int logical;

		textsize = (textsize + PGOFSET) & ~PGOFSET;
		totalsize = (totalsize + PGOFSET) & ~PGOFSET;
		
		logical = 0x00200000;	/* offset of kernel in RAM */

		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
		    physical_start + logical, textsize,
		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
		    physical_start + logical, totalsize - textsize,
		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	}

#ifdef VERBOSE_INIT_ARM
	printf("Constructing L2 page tables\n");
#endif

	/* Map the stack pages */
	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
	    UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);

	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
	    L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);

	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
	}

	/* Map the Mini-Data cache clean area. */
	xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
	    minidataclean.pv_pa);

	/* Map the vector page. */
#if 1
	/* MULTI-ICE requires that page 0 is NC/NB so that it can download the
	 * cache-clean code there.  */
	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
#else
	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
#endif

	/*
	 * map integrated peripherals at same address in l1pagetable
	 * so that we can continue to use console.
	 */
	pmap_devmap_bootstrap(l1pagetable, g42xxeb_devmap);

	/*
	 * Give the XScale global cache clean code an appropriately
	 * sized chunk of unmapped VA space starting at 0xff000000
	 * (our device mappings end before this address).
	 */
	xscale_cache_clean_addr = 0xff000000U;

	/*
	 * Now we have the real page tables in place so we can switch to them.
	 * Once this is done we will be running with the REAL kernel page
	 * tables.
	 */

	/*
	 * Update the physical_freestart/physical_freeend/free_pages
	 * variables.
	 */
	{
		extern char _end[];

		physical_freestart = physical_start +
		    (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
		     KERNEL_BASE);
		physical_freeend = physical_end;
		free_pages =
		    (physical_freeend - physical_freestart) / PAGE_SIZE;
	}

	/* Switch tables */
#ifdef VERBOSE_INIT_ARM
	printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
	       physical_freestart, free_pages, free_pages);
	printf("switching to new L1 page table  @%#lx...", kernel_l1pt.pv_pa);
#endif
	LEDSTEP();

	cpu_setttb(kernel_l1pt.pv_pa, true);
	cpu_tlb_flushID();
	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
	LEDSTEP();

	/*
	 * Moved from cpu_startup() as data_abort_handler() references
	 * this during uvm init
	 */
	uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);

#ifdef VERBOSE_INIT_ARM
	printf("bootstrap done.\n");
#endif

	arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);

	/*
	 * Pages were allocated during the secondary bootstrap for the
	 * stacks for different CPU modes.
	 * We must now set the r13 registers in the different CPU modes to
	 * point to these stacks.
	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
	 * of the stack memory.
	 */
#ifdef	VERBOSE_INIT_ARM
	printf("init subsystems: stacks ");
#endif

	set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
	set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
	set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);

	/*
	 * Well we should set a data abort handler.
	 * Once things get going this will change as we will need a proper
	 * handler.
	 * Until then we will use a handler that just panics but tells us
	 * why.
	 * Initialisation of the vectors will just panic on a data abort.
	 * This just fills in a slighly better one.
	 */
#ifdef	VERBOSE_INIT_ARM
	printf("vectors ");
#endif
	data_abort_handler_address = (u_int)data_abort_handler;
	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
	undefined_handler_address = (u_int)undefinedinstruction_bounce;

	/* Initialise the undefined instruction handlers */
#ifdef	VERBOSE_INIT_ARM
	printf("undefined ");
#endif
	undefined_init();

	/* Load memory into UVM. */
#ifdef	VERBOSE_INIT_ARM
	printf("page ");
#endif
	uvm_md_init();
	uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
	    atop(physical_freestart), atop(physical_freeend),
	    VM_FREELIST_DEFAULT);

	/* Boot strap pmap telling it where managed kernel virtual memory is */
#ifdef	VERBOSE_INIT_ARM
	printf("pmap ");
#endif
	LEDSTEP();
	pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
	LEDSTEP();

#ifdef __HAVE_MEMORY_DISK__
	md_root_setconf(memory_disk, sizeof memory_disk);
#endif

#ifdef BOOTHOWTO
	boothowto |= BOOTHOWTO;
#endif

	{
		uint8_t sw = pldreg8_read(G42XXEB_DIPSW);

		if (0 == (sw & (1<<0)))
			boothowto ^= RB_KDB;
		if (0 == (sw & (1<<1)))
			boothowto ^= RB_SINGLE;
	}

	LEDSTEP();

#ifdef KGDB
	if (boothowto & RB_KDB) {
		kgdb_debug_init = 1;
		kgdb_connect(1);
	}
#endif

#ifdef DDB
	db_machine_init();

	/* Firmware doesn't load symbols. */
	ddb_init(0, NULL, NULL);

	if (boothowto & RB_KDB)
		Debugger();
#endif

	pldreg8_write(G42XXEB_LED, 0);

	/* We return the new stack pointer address */
	return kernelstack.pv_va + USPACE_SVC_STACK_TOP;
}

#if 0
void
process_kernel_args(char *args)
{

	boothowto = 0;

	/* Make a local copy of the bootargs */
	strncpy(bootargs, args, MAX_BOOT_STRING);

	args = bootargs;
	boot_file = bootargs;

	/* Skip the kernel image filename */
	while (*args != ' ' && *args != 0)
		++args;

	if (*args != 0)
		*args++ = 0;

	while (*args == ' ')
		++args;

	boot_args = args;

	printf("bootfile: %s\n", boot_file);
	printf("bootargs: %s\n", boot_args);

	parse_mi_bootargs(boot_args);
}
#endif

#ifdef KGDB
#ifndef KGDB_DEVNAME
#define KGDB_DEVNAME "ffuart"
#endif
const char kgdb_devname[] = KGDB_DEVNAME;

#if (NCOM > 0)
#ifndef KGDB_DEVMODE
#define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
#endif
int comkgdbmode = KGDB_DEVMODE;
#endif /* NCOM */

#endif /* KGDB */


void
consinit(void)
{
	static int consinit_called = 0;
	uint32_t ckenreg = ioreg_read(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN);
#if 0
	char *console = CONSDEVNAME;
#endif

	if (consinit_called != 0)
		return;

	consinit_called = 1;

#if NCOM > 0

#ifdef FFUARTCONSOLE
#ifdef KGDB
	if (0 == strcmp(kgdb_devname, "ffuart")){
		/* port is reserved for kgdb */
	} else 
#endif
	if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_FFUART_BASE, 
		comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
#if 0
		pxa2x0_clkman_config(CKEN_FFUART, 1);
#else
		ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN,
		    ckenreg|CKEN_FFUART);
#endif

		return;
	}
#endif /* FFUARTCONSOLE */

#ifdef BTUARTCONSOLE
#ifdef KGDB
	if (0 == strcmp(kgdb_devname, "btuart")) {
		/* port is reserved for kgdb */
	} else
#endif
	if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_BTUART_BASE,
		comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
		ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN,
		    ckenreg|CKEN_BTUART);
		return;
	}
#endif /* BTUARTCONSOLE */


#endif /* NCOM */

}

#ifdef KGDB
void
kgdb_port_init(void)
{
#if (NCOM > 0) && defined(COM_PXA2X0)
	paddr_t paddr = 0;
	uint32_t ckenreg = ioreg_read(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN);

	if (0 == strcmp(kgdb_devname, "ffuart")) {
		paddr = PXA2X0_FFUART_BASE;
		ckenreg |= CKEN_FFUART;
	}
	else if (0 == strcmp(kgdb_devname, "btuart")) {
		paddr = PXA2X0_BTUART_BASE;
		ckenreg |= CKEN_BTUART;
	}

	if (paddr &&
	    0 == com_kgdb_attach(&pxa2x0_a4x_bs_tag, paddr,
		kgdb_rate, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comkgdbmode)) {

		ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN, ckenreg);

	}

#endif
}
#endif