/* $NetBSD: aed.c,v 1.30 2017/10/25 08:12:37 maya Exp $ */
/*
* Copyright (C) 1994 Bradley A. Grantham
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: aed.c,v 1.30 2017/10/25 08:12:37 maya Exp $");
#include <sys/param.h>
#include <sys/device.h>
#include <sys/fcntl.h>
#include <sys/poll.h>
#include <sys/select.h>
#include <sys/proc.h>
#include <sys/signalvar.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <machine/autoconf.h>
#include <machine/cpu.h>
#include <machine/keyboard.h>
#include <macppc/dev/adbvar.h>
#include <macppc/dev/aedvar.h>
#include <macppc/dev/akbdvar.h>
#define spladb splhigh
/*
* Function declarations.
*/
static int aedmatch(device_t, cfdata_t, void *);
static void aedattach(device_t, device_t, void *);
static void aed_emulate_mouse(adb_event_t *event);
static void aed_kbdrpt(void *kstate);
static void aed_dokeyupdown(adb_event_t *event);
static void aed_handoff(adb_event_t *event);
static void aed_enqevent(adb_event_t *event);
/*
* Global variables.
*/
extern int adb_polling; /* Are we polling? (Debugger mode) */
/*
* Local variables.
*/
static struct aed_softc *aed_sc = NULL;
static int aed_options = 0; /* | AED_MSEMUL; */
/* Driver definition */
CFATTACH_DECL_NEW(aed, sizeof(struct aed_softc),
aedmatch, aedattach, NULL, NULL);
extern struct cfdriver aed_cd;
dev_type_open(aedopen);
dev_type_close(aedclose);
dev_type_read(aedread);
dev_type_ioctl(aedioctl);
dev_type_poll(aedpoll);
dev_type_kqfilter(aedkqfilter);
const struct cdevsw aed_cdevsw = {
.d_open = aedopen,
.d_close = aedclose,
.d_read = aedread,
.d_write = nullwrite,
.d_ioctl = aedioctl,
.d_stop = nostop,
.d_tty = notty,
.d_poll = aedpoll,
.d_mmap = nommap,
.d_kqfilter = aedkqfilter,
.d_discard = nodiscard,
.d_flag = 0
};
static int
aedmatch(device_t parent, cfdata_t cf, void *aux)
{
struct adb_attach_args *aa_args = (struct adb_attach_args *)aux;
static int aed_matched = 0;
/* Allow only one instance. */
if ((aa_args->origaddr == 0) && (!aed_matched)) {
aed_matched = 1;
return (1);
} else
return (0);
}
static void
aedattach(device_t parent, device_t self, void *aux)
{
struct adb_attach_args *aa_args = (struct adb_attach_args *)aux;
struct aed_softc *sc = device_private(self);
callout_init(&sc->sc_repeat_ch, 0);
selinit(&sc->sc_selinfo);
sc->origaddr = aa_args->origaddr;
sc->adbaddr = aa_args->adbaddr;
sc->handler_id = aa_args->handler_id;
sc->sc_evq_tail = 0;
sc->sc_evq_len = 0;
sc->sc_rptdelay = 20;
sc->sc_rptinterval = 6;
sc->sc_repeating = -1; /* not repeating */
/* Pull in the options flags. */
sc->sc_options = (device_cfdata(self)->cf_flags | aed_options);
sc->sc_ioproc = NULL;
sc->sc_buttons = 0;
sc->sc_open = 0;
aed_sc = sc;
printf("ADB Event device\n");
return;
}
/*
* Given a keyboard ADB event, record the keycode and call the key
* repeat handler, optionally passing the event through the mouse
* button emulation handler first. Pass mouse events directly to
* the handoff function.
*/
void
aed_input(adb_event_t *event)
{
adb_event_t new_event = *event;
switch (event->def_addr) {
case ADBADDR_KBD:
if (aed_sc->sc_options & AED_MSEMUL)
aed_emulate_mouse(&new_event);
else
aed_dokeyupdown(&new_event);
break;
case ADBADDR_MS:
new_event.u.m.buttons |= aed_sc->sc_buttons;
aed_handoff(&new_event);
break;
default: /* God only knows. */
#ifdef DIAGNOSTIC
panic("aed: received event from unsupported device!");
#endif
break;
}
}
/*
* Handles mouse button emulation via the keyboard. If the emulation
* modifier key is down, left and right arrows will generate 2nd and
* 3rd mouse button events while the 1, 2, and 3 keys will generate
* the corresponding mouse button event.
*/
static void
aed_emulate_mouse(adb_event_t *event)
{
static int emulmodkey_down = 0;
adb_event_t new_event;
if (event->u.k.key == ADBK_KEYDOWN(ADBK_OPTION)) {
emulmodkey_down = 1;
} else if (event->u.k.key == ADBK_KEYUP(ADBK_OPTION)) {
/* key up */
emulmodkey_down = 0;
if (aed_sc->sc_buttons & 0xfe) {
aed_sc->sc_buttons &= 1;
new_event.def_addr = ADBADDR_MS;
new_event.u.m.buttons = aed_sc->sc_buttons;
new_event.u.m.dx = new_event.u.m.dy = 0;
microtime(&new_event.timestamp);
aed_handoff(&new_event);
}
} else if (emulmodkey_down) {
switch(event->u.k.key) {
#ifdef ALTXBUTTONS
case ADBK_KEYDOWN(ADBK_1):
aed_sc->sc_buttons |= 1; /* left down */
new_event.def_addr = ADBADDR_MS;
new_event.u.m.buttons = aed_sc->sc_buttons;
new_event.u.m.dx = new_event.u.m.dy = 0;
microtime(&new_event.timestamp);
aed_handoff(&new_event);
break;
case ADBK_KEYUP(ADBK_1):
aed_sc->sc_buttons &= ~1; /* left up */
new_event.def_addr = ADBADDR_MS;
new_event.u.m.buttons = aed_sc->sc_buttons;
new_event.u.m.dx = new_event.u.m.dy = 0;
microtime(&new_event.timestamp);
aed_handoff(&new_event);
break;
#endif
case ADBK_KEYDOWN(ADBK_LEFT):
#ifdef ALTXBUTTONS
case ADBK_KEYDOWN(ADBK_2):
#endif
aed_sc->sc_buttons |= 2; /* middle down */
new_event.def_addr = ADBADDR_MS;
new_event.u.m.buttons = aed_sc->sc_buttons;
new_event.u.m.dx = new_event.u.m.dy = 0;
microtime(&new_event.timestamp);
aed_handoff(&new_event);
break;
case ADBK_KEYUP(ADBK_LEFT):
#ifdef ALTXBUTTONS
case ADBK_KEYUP(ADBK_2):
#endif
aed_sc->sc_buttons &= ~2; /* middle up */
new_event.def_addr = ADBADDR_MS;
new_event.u.m.buttons = aed_sc->sc_buttons;
new_event.u.m.dx = new_event.u.m.dy = 0;
microtime(&new_event.timestamp);
aed_handoff(&new_event);
break;
case ADBK_KEYDOWN(ADBK_RIGHT):
#ifdef ALTXBUTTONS
case ADBK_KEYDOWN(ADBK_3):
#endif
aed_sc->sc_buttons |= 4; /* right down */
new_event.def_addr = ADBADDR_MS;
new_event.u.m.buttons = aed_sc->sc_buttons;
new_event.u.m.dx = new_event.u.m.dy = 0;
microtime(&new_event.timestamp);
aed_handoff(&new_event);
break;
case ADBK_KEYUP(ADBK_RIGHT):
#ifdef ALTXBUTTONS
case ADBK_KEYUP(ADBK_3):
#endif
aed_sc->sc_buttons &= ~4; /* right up */
new_event.def_addr = ADBADDR_MS;
new_event.u.m.buttons = aed_sc->sc_buttons;
new_event.u.m.dx = new_event.u.m.dy = 0;
microtime(&new_event.timestamp);
aed_handoff(&new_event);
break;
case ADBK_KEYUP(ADBK_SHIFT):
case ADBK_KEYDOWN(ADBK_SHIFT):
case ADBK_KEYUP(ADBK_CONTROL):
case ADBK_KEYDOWN(ADBK_CONTROL):
case ADBK_KEYUP(ADBK_FLOWER):
case ADBK_KEYDOWN(ADBK_FLOWER):
/* ctrl, shift, cmd */
aed_dokeyupdown(event);
break;
default:
if (event->u.k.key & 0x80)
/* ignore keyup */
break;
/* key down */
new_event = *event;
/* send option-down */
new_event.u.k.key = ADBK_KEYDOWN(ADBK_OPTION);
new_event.bytes[0] = new_event.u.k.key;
microtime(&new_event.timestamp);
aed_dokeyupdown(&new_event);
/* send key-down */
new_event.u.k.key = event->bytes[0];
new_event.bytes[0] = new_event.u.k.key;
microtime(&new_event.timestamp);
aed_dokeyupdown(&new_event);
/* send key-up */
new_event.u.k.key =
ADBK_KEYUP(ADBK_KEYVAL(event->bytes[0]));
microtime(&new_event.timestamp);
new_event.bytes[0] = new_event.u.k.key;
aed_dokeyupdown(&new_event);
/* send option-up */
new_event.u.k.key = ADBK_KEYUP(ADBK_OPTION);
new_event.bytes[0] = new_event.u.k.key;
microtime(&new_event.timestamp);
aed_dokeyupdown(&new_event);
break;
}
} else {
aed_dokeyupdown(event);
}
}
/*
* Keyboard autorepeat timeout function. Sends key up/down events
* for the repeating key and schedules the next call at sc_rptinterval
* ticks in the future.
*/
static void
aed_kbdrpt(void *kstate)
{
struct aed_softc *sc = (struct aed_softc *)kstate;
sc->sc_rptevent.bytes[0] |= 0x80;
microtime(&sc->sc_rptevent.timestamp);
aed_handoff(&sc->sc_rptevent); /* do key up */
sc->sc_rptevent.bytes[0] &= 0x7f;
microtime(&sc->sc_rptevent.timestamp);
aed_handoff(&sc->sc_rptevent); /* do key down */
if (sc->sc_repeating == sc->sc_rptevent.u.k.key) {
callout_reset(&sc->sc_repeat_ch, sc->sc_rptinterval,
aed_kbdrpt, kstate);
}
}
/*
* Cancels the currently repeating key event if there is one, schedules
* a new repeating key event if needed, and hands the event off to the
* appropriate subsystem.
*/
static void
aed_dokeyupdown(adb_event_t *event)
{
int kbd_key;
kbd_key = ADBK_KEYVAL(event->u.k.key);
if (ADBK_PRESS(event->u.k.key) && keyboard[kbd_key][0] != 0) {
/* ignore shift & control */
if (aed_sc->sc_repeating != -1) {
callout_stop(&aed_sc->sc_repeat_ch);
}
aed_sc->sc_rptevent = *event;
aed_sc->sc_repeating = kbd_key;
callout_reset(&aed_sc->sc_repeat_ch, aed_sc->sc_rptdelay,
aed_kbdrpt, (void *)aed_sc);
} else {
if (aed_sc->sc_repeating != -1) {
aed_sc->sc_repeating = -1;
callout_stop(&aed_sc->sc_repeat_ch);
}
aed_sc->sc_rptevent = *event;
}
aed_handoff(event);
}
/*
* Place the event in the event queue if a requesting device is open
* and we are not polling.
*/
static void
aed_handoff(adb_event_t *event)
{
if (aed_sc->sc_open && !adb_polling)
aed_enqevent(event);
}
/*
* Place the event in the event queue and wakeup any waiting processes.
*/
static void
aed_enqevent(adb_event_t *event)
{
int s;
s = spladb();
#ifdef DIAGNOSTIC
if (aed_sc->sc_evq_tail < 0 || aed_sc->sc_evq_tail >= AED_MAX_EVENTS)
panic("adb: event queue tail is out of bounds");
if (aed_sc->sc_evq_len < 0 || aed_sc->sc_evq_len > AED_MAX_EVENTS)
panic("adb: event queue len is out of bounds");
#endif
if (aed_sc->sc_evq_len == AED_MAX_EVENTS) {
splx(s);
return; /* Oh, well... */
}
aed_sc->sc_evq[(aed_sc->sc_evq_len + aed_sc->sc_evq_tail) %
AED_MAX_EVENTS] = *event;
aed_sc->sc_evq_len++;
selnotify(&aed_sc->sc_selinfo, 0, 0);
if (aed_sc->sc_ioproc)
psignal(aed_sc->sc_ioproc, SIGIO);
splx(s);
}
int
aedopen(dev_t dev, int flag, int mode, struct lwp *l)
{
int unit;
int error = 0;
int s;
unit = minor(dev);
if (unit != 0)
return (ENXIO);
s = spladb();
if (aed_sc->sc_open) {
splx(s);
return (EBUSY);
}
aed_sc->sc_evq_tail = 0;
aed_sc->sc_evq_len = 0;
aed_sc->sc_open = 1;
aed_sc->sc_ioproc = l->l_proc;
splx(s);
return (error);
}
int
aedclose(dev_t dev, int flag, int mode, struct lwp *l)
{
int s = spladb();
aed_sc->sc_open = 0;
aed_sc->sc_ioproc = NULL;
splx(s);
return (0);
}
int
aedread(dev_t dev, struct uio *uio, int flag)
{
int s, error;
int willfit;
int total;
int firstmove;
int moremove;
if (uio->uio_resid < sizeof(adb_event_t))
return (EMSGSIZE); /* close enough. */
s = spladb();
if (aed_sc->sc_evq_len == 0) {
splx(s);
return (0);
}
willfit = howmany(uio->uio_resid, sizeof(adb_event_t));
total = (aed_sc->sc_evq_len < willfit) ? aed_sc->sc_evq_len : willfit;
firstmove = (aed_sc->sc_evq_tail + total > AED_MAX_EVENTS)
? (AED_MAX_EVENTS - aed_sc->sc_evq_tail) : total;
error = uiomove((void *) & aed_sc->sc_evq[aed_sc->sc_evq_tail],
firstmove * sizeof(adb_event_t), uio);
if (error) {
splx(s);
return (error);
}
moremove = total - firstmove;
if (moremove > 0) {
error = uiomove((void *) & aed_sc->sc_evq[0],
moremove * sizeof(adb_event_t), uio);
if (error) {
splx(s);
return (error);
}
}
aed_sc->sc_evq_tail = (aed_sc->sc_evq_tail + total) % AED_MAX_EVENTS;
aed_sc->sc_evq_len -= total;
splx(s);
return (0);
}
int
aedioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
{
switch (cmd) {
case ADBIOCDEVSINFO: {
adb_devinfo_t *di;
ADBDataBlock adbdata;
int totaldevs;
int adbaddr;
int i;
di = (void *)data;
/* Initialize to no devices */
for (i = 0; i < 16; i++)
di->dev[i].addr = -1;
totaldevs = CountADBs();
for (i = 1; i <= totaldevs; i++) {
adbaddr = GetIndADB(&adbdata, i);
di->dev[adbaddr].addr = adbaddr;
di->dev[adbaddr].default_addr = (int)(adbdata.origADBAddr);
di->dev[adbaddr].handler_id = (int)(adbdata.devType);
}
/* Must call ADB Manager to get devices now */
break;
}
case ADBIOCGETREPEAT:{
adb_rptinfo_t *ri;
ri = (void *)data;
ri->delay_ticks = aed_sc->sc_rptdelay;
ri->interval_ticks = aed_sc->sc_rptinterval;
break;
}
case ADBIOCSETREPEAT:{
adb_rptinfo_t *ri;
ri = (void *) data;
aed_sc->sc_rptdelay = ri->delay_ticks;
aed_sc->sc_rptinterval = ri->interval_ticks;
break;
}
case ADBIOCRESET:
/* Do nothing for now */
break;
case ADBIOCLISTENCMD:{
adb_listencmd_t *lc;
lc = (void *)data;
}
default:
return (EINVAL);
}
return (0);
}
int
aedpoll(dev_t dev, int events, struct lwp *l)
{
int s, revents;
revents = events & (POLLOUT | POLLWRNORM);
if ((events & (POLLIN | POLLRDNORM)) == 0)
return (revents);
s = spladb();
if (aed_sc->sc_evq_len > 0)
revents |= events & (POLLIN | POLLRDNORM);
else
selrecord(l, &aed_sc->sc_selinfo);
splx(s);
return (revents);
}
static void
filt_aedrdetach(struct knote *kn)
{
int s;
s = spladb();
SLIST_REMOVE(&aed_sc->sc_selinfo.sel_klist, kn, knote, kn_selnext);
splx(s);
}
static int
filt_aedread(struct knote *kn, long hint)
{
kn->kn_data = aed_sc->sc_evq_len * sizeof(adb_event_t);
return (kn->kn_data > 0);
}
static const struct filterops aedread_filtops = {
.f_isfd = 1,
.f_attach = NULL,
.f_detach = filt_aedrdetach,
.f_event = filt_aedread
};
static const struct filterops aed_seltrue_filtops = {
.f_isfd = 1,
.f_attach = NULL,
.f_detach = filt_aedrdetach,
.f_event = filt_seltrue
};
int
aedkqfilter(dev_t dev, struct knote *kn)
{
struct klist *klist;
int s;
switch (kn->kn_filter) {
case EVFILT_READ:
klist = &aed_sc->sc_selinfo.sel_klist;
kn->kn_fop = &aedread_filtops;
break;
case EVFILT_WRITE:
klist = &aed_sc->sc_selinfo.sel_klist;
kn->kn_fop = &aed_seltrue_filtops;
break;
default:
return (1);
}
kn->kn_hook = NULL;
s = spladb();
SLIST_INSERT_HEAD(klist, kn, kn_selnext);
splx(s);
return (0);
}