/* $NetBSD: if_bnx.c,v 1.87 2019/07/26 05:53:30 msaitoh Exp $ */
/* $OpenBSD: if_bnx.c,v 1.101 2013/03/28 17:21:44 brad Exp $ */
/*-
* Copyright (c) 2006-2010 Broadcom Corporation
* David Christensen <davidch@broadcom.com>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Broadcom Corporation nor the name of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written consent.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
#if 0
__FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
#endif
__KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.87 2019/07/26 05:53:30 msaitoh Exp $");
/*
* The following controllers are supported by this driver:
* BCM5706C A2, A3
* BCM5706S A2, A3
* BCM5708C B1, B2
* BCM5708S B1, B2
* BCM5709C A1, C0
* BCM5709S A1, C0
* BCM5716 C0
*
* The following controllers are not supported by this driver:
* BCM5706C A0, A1
* BCM5706S A0, A1
* BCM5708C A0, B0
* BCM5708S A0, B0
* BCM5709C A0 B0, B1, B2 (pre-production)
* BCM5709S A0, B0, B1, B2 (pre-production)
*/
#include <sys/callout.h>
#include <sys/mutex.h>
#include <dev/pci/if_bnxreg.h>
#include <dev/pci/if_bnxvar.h>
#include <dev/microcode/bnx/bnxfw.h>
/****************************************************************************/
/* BNX Driver Version */
/****************************************************************************/
#define BNX_DRIVER_VERSION "v0.9.6"
/****************************************************************************/
/* BNX Debug Options */
/****************************************************************************/
#ifdef BNX_DEBUG
uint32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
/* 0 = Never */
/* 1 = 1 in 2,147,483,648 */
/* 256 = 1 in 8,388,608 */
/* 2048 = 1 in 1,048,576 */
/* 65536 = 1 in 32,768 */
/* 1048576 = 1 in 2,048 */
/* 268435456 = 1 in 8 */
/* 536870912 = 1 in 4 */
/* 1073741824 = 1 in 2 */
/* Controls how often the l2_fhdr frame error check will fail. */
int bnx_debug_l2fhdr_status_check = 0;
/* Controls how often the unexpected attention check will fail. */
int bnx_debug_unexpected_attention = 0;
/* Controls how often to simulate an mbuf allocation failure. */
int bnx_debug_mbuf_allocation_failure = 0;
/* Controls how often to simulate a DMA mapping failure. */
int bnx_debug_dma_map_addr_failure = 0;
/* Controls how often to simulate a bootcode failure. */
int bnx_debug_bootcode_running_failure = 0;
#endif
/****************************************************************************/
/* PCI Device ID Table */
/* */
/* Used by bnx_probe() to identify the devices supported by this driver. */
/****************************************************************************/
static const struct bnx_product {
pci_vendor_id_t bp_vendor;
pci_product_id_t bp_product;
pci_vendor_id_t bp_subvendor;
pci_product_id_t bp_subproduct;
const char *bp_name;
} bnx_devices[] = {
#ifdef PCI_SUBPRODUCT_HP_NC370T
{
PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
"HP NC370T Multifunction Gigabit Server Adapter"
},
#endif
#ifdef PCI_SUBPRODUCT_HP_NC370i
{
PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
"HP NC370i Multifunction Gigabit Server Adapter"
},
#endif
{
PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
0, 0,
"Broadcom NetXtreme II BCM5706 1000Base-T"
},
#ifdef PCI_SUBPRODUCT_HP_NC370F
{
PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
"HP NC370F Multifunction Gigabit Server Adapter"
},
#endif
{
PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
0, 0,
"Broadcom NetXtreme II BCM5706 1000Base-SX"
},
{
PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
0, 0,
"Broadcom NetXtreme II BCM5708 1000Base-T"
},
{
PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
0, 0,
"Broadcom NetXtreme II BCM5708 1000Base-SX"
},
{
PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
0, 0,
"Broadcom NetXtreme II BCM5709 1000Base-T"
},
{
PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
0, 0,
"Broadcom NetXtreme II BCM5709 1000Base-SX"
},
{
PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
0, 0,
"Broadcom NetXtreme II BCM5716 1000Base-T"
},
{
PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
0, 0,
"Broadcom NetXtreme II BCM5716 1000Base-SX"
},
};
/****************************************************************************/
/* Supported Flash NVRAM device data. */
/****************************************************************************/
static struct flash_spec flash_table[] =
{
#define BUFFERED_FLAGS (BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
#define NONBUFFERED_FLAGS (BNX_NV_WREN)
/* Slow EEPROM */
{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
"EEPROM - slow"},
/* Expansion entry 0001 */
{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
"Entry 0001"},
/* Saifun SA25F010 (non-buffered flash) */
/* strap, cfg1, & write1 need updates */
{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
"Non-buffered flash (128kB)"},
/* Saifun SA25F020 (non-buffered flash) */
/* strap, cfg1, & write1 need updates */
{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
"Non-buffered flash (256kB)"},
/* Expansion entry 0100 */
{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
"Entry 0100"},
/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
"Entry 0101: ST M45PE10 (128kB non-bufferred)"},
/* Entry 0110: ST M45PE20 (non-buffered flash)*/
{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
"Entry 0110: ST M45PE20 (256kB non-bufferred)"},
/* Saifun SA25F005 (non-buffered flash) */
/* strap, cfg1, & write1 need updates */
{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
"Non-buffered flash (64kB)"},
/* Fast EEPROM */
{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
"EEPROM - fast"},
/* Expansion entry 1001 */
{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
"Entry 1001"},
/* Expansion entry 1010 */
{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
"Entry 1010"},
/* ATMEL AT45DB011B (buffered flash) */
{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
"Buffered flash (128kB)"},
/* Expansion entry 1100 */
{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
"Entry 1100"},
/* Expansion entry 1101 */
{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
"Entry 1101"},
/* Ateml Expansion entry 1110 */
{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
"Entry 1110 (Atmel)"},
/* ATMEL AT45DB021B (buffered flash) */
{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
"Buffered flash (256kB)"},
};
/*
* The BCM5709 controllers transparently handle the
* differences between Atmel 264 byte pages and all
* flash devices which use 256 byte pages, so no
* logical-to-physical mapping is required in the
* driver.
*/
static struct flash_spec flash_5709 = {
.flags = BNX_NV_BUFFERED,
.page_bits = BCM5709_FLASH_PAGE_BITS,
.page_size = BCM5709_FLASH_PAGE_SIZE,
.addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
.total_size = BUFFERED_FLASH_TOTAL_SIZE * 2,
.name = "5709 buffered flash (256kB)",
};
/****************************************************************************/
/* OpenBSD device entry points. */
/****************************************************************************/
static int bnx_probe(device_t, cfdata_t, void *);
void bnx_attach(device_t, device_t, void *);
int bnx_detach(device_t, int);
/****************************************************************************/
/* BNX Debug Data Structure Dump Routines */
/****************************************************************************/
#ifdef BNX_DEBUG
void bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
void bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
void bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
void bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
void bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
void bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
void bnx_dump_tx_chain(struct bnx_softc *, int, int);
void bnx_dump_rx_chain(struct bnx_softc *, int, int);
void bnx_dump_status_block(struct bnx_softc *);
void bnx_dump_stats_block(struct bnx_softc *);
void bnx_dump_driver_state(struct bnx_softc *);
void bnx_dump_hw_state(struct bnx_softc *);
void bnx_breakpoint(struct bnx_softc *);
#endif
/****************************************************************************/
/* BNX Register/Memory Access Routines */
/****************************************************************************/
uint32_t bnx_reg_rd_ind(struct bnx_softc *, uint32_t);
void bnx_reg_wr_ind(struct bnx_softc *, uint32_t, uint32_t);
void bnx_ctx_wr(struct bnx_softc *, uint32_t, uint32_t, uint32_t);
int bnx_miibus_read_reg(device_t, int, int, uint16_t *);
int bnx_miibus_write_reg(device_t, int, int, uint16_t);
void bnx_miibus_statchg(struct ifnet *);
/****************************************************************************/
/* BNX NVRAM Access Routines */
/****************************************************************************/
int bnx_acquire_nvram_lock(struct bnx_softc *);
int bnx_release_nvram_lock(struct bnx_softc *);
void bnx_enable_nvram_access(struct bnx_softc *);
void bnx_disable_nvram_access(struct bnx_softc *);
int bnx_nvram_read_dword(struct bnx_softc *, uint32_t, uint8_t *,
uint32_t);
int bnx_init_nvram(struct bnx_softc *);
int bnx_nvram_read(struct bnx_softc *, uint32_t, uint8_t *, int);
int bnx_nvram_test(struct bnx_softc *);
#ifdef BNX_NVRAM_WRITE_SUPPORT
int bnx_enable_nvram_write(struct bnx_softc *);
void bnx_disable_nvram_write(struct bnx_softc *);
int bnx_nvram_erase_page(struct bnx_softc *, uint32_t);
int bnx_nvram_write_dword(struct bnx_softc *, uint32_t, uint8_t *,
uint32_t);
int bnx_nvram_write(struct bnx_softc *, uint32_t, uint8_t *, int);
#endif
/****************************************************************************/
/* */
/****************************************************************************/
void bnx_get_media(struct bnx_softc *);
void bnx_init_media(struct bnx_softc *);
int bnx_dma_alloc(struct bnx_softc *);
void bnx_dma_free(struct bnx_softc *);
void bnx_release_resources(struct bnx_softc *);
/****************************************************************************/
/* BNX Firmware Synchronization and Load */
/****************************************************************************/
int bnx_fw_sync(struct bnx_softc *, uint32_t);
void bnx_load_rv2p_fw(struct bnx_softc *, uint32_t *, uint32_t, uint32_t);
void bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
struct fw_info *);
void bnx_init_cpus(struct bnx_softc *);
static void bnx_print_adapter_info(struct bnx_softc *);
static void bnx_probe_pci_caps(struct bnx_softc *);
void bnx_stop(struct ifnet *, int);
int bnx_reset(struct bnx_softc *, uint32_t);
int bnx_chipinit(struct bnx_softc *);
int bnx_blockinit(struct bnx_softc *);
static int bnx_add_buf(struct bnx_softc *, struct mbuf *, uint16_t *,
uint16_t *, uint32_t *);
int bnx_get_buf(struct bnx_softc *, uint16_t *, uint16_t *, uint32_t *);
int bnx_init_tx_chain(struct bnx_softc *);
void bnx_init_tx_context(struct bnx_softc *);
int bnx_init_rx_chain(struct bnx_softc *);
void bnx_init_rx_context(struct bnx_softc *);
void bnx_free_rx_chain(struct bnx_softc *);
void bnx_free_tx_chain(struct bnx_softc *);
int bnx_tx_encap(struct bnx_softc *, struct mbuf *);
void bnx_start(struct ifnet *);
int bnx_ioctl(struct ifnet *, u_long, void *);
void bnx_watchdog(struct ifnet *);
int bnx_ifmedia_upd(struct ifnet *);
void bnx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
int bnx_init(struct ifnet *);
static void bnx_mgmt_init(struct bnx_softc *);
void bnx_init_context(struct bnx_softc *);
void bnx_get_mac_addr(struct bnx_softc *);
void bnx_set_mac_addr(struct bnx_softc *);
void bnx_phy_intr(struct bnx_softc *);
void bnx_rx_intr(struct bnx_softc *);
void bnx_tx_intr(struct bnx_softc *);
void bnx_disable_intr(struct bnx_softc *);
void bnx_enable_intr(struct bnx_softc *);
int bnx_intr(void *);
void bnx_iff(struct bnx_softc *);
void bnx_stats_update(struct bnx_softc *);
void bnx_tick(void *);
struct pool *bnx_tx_pool = NULL;
void bnx_alloc_pkts(struct work *, void *);
/****************************************************************************/
/* OpenBSD device dispatch table. */
/****************************************************************************/
CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
/****************************************************************************/
/* Device probe function. */
/* */
/* Compares the device to the driver's list of supported devices and */
/* reports back to the OS whether this is the right driver for the device. */
/* */
/* Returns: */
/* BUS_PROBE_DEFAULT on success, positive value on failure. */
/****************************************************************************/
static const struct bnx_product *
bnx_lookup(const struct pci_attach_args *pa)
{
int i;
pcireg_t subid;
for (i = 0; i < __arraycount(bnx_devices); i++) {
if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
continue;
if (!bnx_devices[i].bp_subvendor)
return &bnx_devices[i];
subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
return &bnx_devices[i];
}
return NULL;
}
static int
bnx_probe(device_t parent, cfdata_t match, void *aux)
{
struct pci_attach_args *pa = (struct pci_attach_args *)aux;
if (bnx_lookup(pa) != NULL)
return 1;
return 0;
}
/****************************************************************************/
/* PCI Capabilities Probe Function. */
/* */
/* Walks the PCI capabiites list for the device to find what features are */
/* supported. */
/* */
/* Returns: */
/* None. */
/****************************************************************************/
static void
bnx_print_adapter_info(struct bnx_softc *sc)
{
device_t dev = sc->bnx_dev;
int i = 0;
aprint_normal_dev(dev, "ASIC BCM%x %c%d %s(0x%08x)\n",
BNXNUM(sc), 'A' + BNXREV(sc), BNXMETAL(sc),
(BNX_CHIP_BOND_ID(sc) == BNX_CHIP_BOND_ID_SERDES_BIT)
? "Serdes " : "", sc->bnx_chipid);
/* Bus info. */
if (sc->bnx_flags & BNX_PCIE_FLAG) {
aprint_normal_dev(dev, "PCIe x%d ", sc->link_width);
switch (sc->link_speed) {
case 1: aprint_normal("2.5GT/s\n"); break;
case 2: aprint_normal("5GT/s\n"); break;
default: aprint_normal("Unknown link speed\n");
}
} else {
aprint_normal_dev(dev, "PCI%s %dbit %dMHz\n",
((sc->bnx_flags & BNX_PCIX_FLAG) ? "-X" : ""),
(sc->bnx_flags & BNX_PCI_32BIT_FLAG) ? 32 : 64,
sc->bus_speed_mhz);
}
/* Firmware version and device features. */
aprint_normal_dev(dev, "B/C (%s); Bufs (RX:%d;TX:%d); Flags (",
sc->bnx_bc_ver, RX_PAGES, TX_PAGES);
if (sc->bnx_phy_flags & BNX_PHY_2_5G_CAPABLE_FLAG) {
if (i > 0) aprint_normal("|");
aprint_normal("2.5G"); i++;
}
if (sc->bnx_flags & BNX_MFW_ENABLE_FLAG) {
if (i > 0) aprint_normal("|");
aprint_normal("MFW); MFW (%s)\n", sc->bnx_mfw_ver);
} else {
aprint_normal(")\n");
}
aprint_normal_dev(dev, "Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
sc->bnx_rx_quick_cons_trip_int,
sc->bnx_rx_quick_cons_trip,
sc->bnx_rx_ticks_int,
sc->bnx_rx_ticks,
sc->bnx_tx_quick_cons_trip_int,
sc->bnx_tx_quick_cons_trip,
sc->bnx_tx_ticks_int,
sc->bnx_tx_ticks);
}
/****************************************************************************/
/* PCI Capabilities Probe Function. */
/* */
/* Walks the PCI capabiites list for the device to find what features are */
/* supported. */
/* */
/* Returns: */
/* None. */
/****************************************************************************/
static void
bnx_probe_pci_caps(struct bnx_softc *sc)
{
struct pci_attach_args *pa = &(sc->bnx_pa);
pcireg_t reg;
/* Check if PCI-X capability is enabled. */
if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX, ®,
NULL) != 0) {
sc->bnx_cap_flags |= BNX_PCIX_CAPABLE_FLAG;
}
/* Check if PCIe capability is enabled. */
if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS, ®,
NULL) != 0) {
pcireg_t link_status = pci_conf_read(pa->pa_pc, pa->pa_tag,
reg + PCIE_LCSR);
DBPRINT(sc, BNX_INFO_LOAD, "PCIe link_status = "
"0x%08X\n", link_status);
sc->link_speed = (link_status & PCIE_LCSR_LINKSPEED) >> 16;
sc->link_width = (link_status & PCIE_LCSR_NLW) >> 20;
sc->bnx_cap_flags |= BNX_PCIE_CAPABLE_FLAG;
sc->bnx_flags |= BNX_PCIE_FLAG;
}
/* Check if MSI capability is enabled. */
if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSI, ®,
NULL) != 0)
sc->bnx_cap_flags |= BNX_MSI_CAPABLE_FLAG;
/* Check if MSI-X capability is enabled. */
if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, ®,
NULL) != 0)
sc->bnx_cap_flags |= BNX_MSIX_CAPABLE_FLAG;
}
/****************************************************************************/
/* Device attach function. */
/* */
/* Allocates device resources, performs secondary chip identification, */
/* resets and initializes the hardware, and initializes driver instance */
/* variables. */
/* */
/* Returns: */
/* 0 on success, positive value on failure. */
/****************************************************************************/
void
bnx_attach(device_t parent, device_t self, void *aux)
{
const struct bnx_product *bp;
struct bnx_softc *sc = device_private(self);
prop_dictionary_t dict;
struct pci_attach_args *pa = aux;
pci_chipset_tag_t pc = pa->pa_pc;
pci_intr_handle_t ih;
const char *intrstr = NULL;
uint32_t command;
struct ifnet *ifp;
struct mii_data * const mii = &sc->bnx_mii;
uint32_t val;
int mii_flags = MIIF_FORCEANEG;
pcireg_t memtype;
char intrbuf[PCI_INTRSTR_LEN];
int i, j;
if (bnx_tx_pool == NULL) {
bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_NOWAIT);
if (bnx_tx_pool != NULL) {
pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
0, 0, 0, "bnxpkts", NULL, IPL_NET);
} else {
aprint_error(": can't alloc bnx_tx_pool\n");
return;
}
}
bp = bnx_lookup(pa);
if (bp == NULL)
panic("unknown device");
sc->bnx_dev = self;
aprint_naive("\n");
aprint_normal(": %s\n", bp->bp_name);
sc->bnx_pa = *pa;
/*
* Map control/status registers.
*/
command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
if (!(command & PCI_COMMAND_MEM_ENABLE)) {
aprint_error_dev(sc->bnx_dev,
"failed to enable memory mapping!\n");
return;
}
memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
&sc->bnx_bhandle, NULL, &sc->bnx_size)) {
aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
return;
}
if (pci_intr_map(pa, &ih)) {
aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
goto bnx_attach_fail;
}
intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
/*
* Configure byte swap and enable indirect register access.
* Rely on CPU to do target byte swapping on big endian systems.
* Access to registers outside of PCI configurtion space are not
* valid until this is done.
*/
pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
/* Save ASIC revsion info. */
sc->bnx_chipid = REG_RD(sc, BNX_MISC_ID);
/*
* Find the base address for shared memory access.
* Newer versions of bootcode use a signature and offset
* while older versions use a fixed address.
*/
val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
(sc->bnx_pa.pa_function << 2));
else
sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
/* Set initial device and PHY flags */
sc->bnx_flags = 0;
sc->bnx_phy_flags = 0;
/* Fetch the bootcode revision. */
val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_BC_REV);
for (i = 0, j = 0; i < 3; i++) {
uint8_t num;
int k, skip0;
num = (uint8_t)(val >> (24 - (i * 8)));
for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
if (num >= k || !skip0 || k == 1) {
sc->bnx_bc_ver[j++] = (num / k) + '0';
skip0 = 0;
}
}
if (i != 2)
sc->bnx_bc_ver[j++] = '.';
}
/* Check if any management firmware is enabled. */
val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
if (val & BNX_PORT_FEATURE_ASF_ENABLED) {
DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
/* Allow time for firmware to enter the running state. */
for (i = 0; i < 30; i++) {
val = REG_RD_IND(sc, sc->bnx_shmem_base +
BNX_BC_STATE_CONDITION);
if (val & BNX_CONDITION_MFW_RUN_MASK)
break;
DELAY(10000);
}
/* Check if management firmware is running. */
val = REG_RD_IND(sc, sc->bnx_shmem_base +
BNX_BC_STATE_CONDITION);
val &= BNX_CONDITION_MFW_RUN_MASK;
if ((val != BNX_CONDITION_MFW_RUN_UNKNOWN) &&
(val != BNX_CONDITION_MFW_RUN_NONE)) {
uint32_t addr = REG_RD_IND(sc, sc->bnx_shmem_base +
BNX_MFW_VER_PTR);
/* Read the management firmware version string. */
for (j = 0; j < 3; j++) {
val = bnx_reg_rd_ind(sc, addr + j * 4);
val = bswap32(val);
memcpy(&sc->bnx_mfw_ver[i], &val, 4);
i += 4;
}
} else {
/* May cause firmware synchronization timeouts. */
BNX_PRINTF(sc, "%s(%d): Management firmware enabled "
"but not running!\n", __FILE__, __LINE__);
strcpy(sc->bnx_mfw_ver, "NOT RUNNING!");
/* ToDo: Any action the driver should take? */
}
}
bnx_probe_pci_caps(sc);
/* Get PCI bus information (speed and type). */
val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
uint32_t clkreg;
sc->bnx_flags |= BNX_PCIX_FLAG;
clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
switch (clkreg) {
case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
sc->bus_speed_mhz = 133;
break;
case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
sc->bus_speed_mhz = 100;
break;
case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
sc->bus_speed_mhz = 66;
break;
case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
sc->bus_speed_mhz = 50;
break;
case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
sc->bus_speed_mhz = 33;
break;
}
} else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
sc->bus_speed_mhz = 66;
else
sc->bus_speed_mhz = 33;
if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
/* Reset the controller. */
if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
goto bnx_attach_fail;
/* Initialize the controller. */
if (bnx_chipinit(sc)) {
aprint_error_dev(sc->bnx_dev,
"Controller initialization failed!\n");
goto bnx_attach_fail;
}
/* Perform NVRAM test. */
if (bnx_nvram_test(sc)) {
aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
goto bnx_attach_fail;
}
/* Fetch the permanent Ethernet MAC address. */
bnx_get_mac_addr(sc);
aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
ether_sprintf(sc->eaddr));
/*
* Trip points control how many BDs
* should be ready before generating an
* interrupt while ticks control how long
* a BD can sit in the chain before
* generating an interrupt. Set the default
* values for the RX and TX rings.
*/
#ifdef BNX_DEBUG
/* Force more frequent interrupts. */
sc->bnx_tx_quick_cons_trip_int = 1;
sc->bnx_tx_quick_cons_trip = 1;
sc->bnx_tx_ticks_int = 0;
sc->bnx_tx_ticks = 0;
sc->bnx_rx_quick_cons_trip_int = 1;
sc->bnx_rx_quick_cons_trip = 1;
sc->bnx_rx_ticks_int = 0;
sc->bnx_rx_ticks = 0;
#else
sc->bnx_tx_quick_cons_trip_int = 20;
sc->bnx_tx_quick_cons_trip = 20;
sc->bnx_tx_ticks_int = 80;
sc->bnx_tx_ticks = 80;
sc->bnx_rx_quick_cons_trip_int = 6;
sc->bnx_rx_quick_cons_trip = 6;
sc->bnx_rx_ticks_int = 18;
sc->bnx_rx_ticks = 18;
#endif
/* Update statistics once every second. */
sc->bnx_stats_ticks = 1000000 & 0xffff00;
/* Find the media type for the adapter. */
bnx_get_media(sc);
/*
* Store config data needed by the PHY driver for
* backplane applications
*/
sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
BNX_SHARED_HW_CFG_CONFIG);
sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
BNX_PORT_HW_CFG_CONFIG);
/* Allocate DMA memory resources. */
sc->bnx_dmatag = pa->pa_dmat;
if (bnx_dma_alloc(sc)) {
aprint_error_dev(sc->bnx_dev,
"DMA resource allocation failed!\n");
goto bnx_attach_fail;
}
/* Initialize the ifnet interface. */
ifp = &sc->bnx_ec.ec_if;
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = bnx_ioctl;
ifp->if_stop = bnx_stop;
ifp->if_start = bnx_start;
ifp->if_init = bnx_init;
ifp->if_watchdog = bnx_watchdog;
IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
IFQ_SET_READY(&ifp->if_snd);
memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
sc->bnx_ec.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
ifp->if_capabilities |=
IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
/* create workqueue to handle packet allocations */
if (workqueue_create(&sc->bnx_wq, device_xname(self),
bnx_alloc_pkts, sc, PRI_NONE, IPL_NET, 0) != 0) {
aprint_error_dev(self, "failed to create workqueue\n");
goto bnx_attach_fail;
}
mii->mii_ifp = ifp;
mii->mii_readreg = bnx_miibus_read_reg;
mii->mii_writereg = bnx_miibus_write_reg;
mii->mii_statchg = bnx_miibus_statchg;
/* Handle any special PHY initialization for SerDes PHYs. */
bnx_init_media(sc);
sc->bnx_ec.ec_mii = mii;
ifmedia_init(&mii->mii_media, 0, bnx_ifmedia_upd, bnx_ifmedia_sts);
/* set phyflags and chipid before mii_attach() */
dict = device_properties(self);
prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
prop_dictionary_set_uint32(dict, "chipid", sc->bnx_chipid);
prop_dictionary_set_uint32(dict, "shared_hwcfg",sc->bnx_shared_hw_cfg);
prop_dictionary_set_uint32(dict, "port_hwcfg", sc->bnx_port_hw_cfg);
/* Print some useful adapter info */
bnx_print_adapter_info(sc);
mii_flags |= MIIF_DOPAUSE;
if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
mii_flags |= MIIF_HAVEFIBER;
mii_attach(self, mii, 0xffffffff,
sc->bnx_phy_addr, MII_OFFSET_ANY, mii_flags);
if (LIST_EMPTY(&mii->mii_phys)) {
aprint_error_dev(self, "no PHY found!\n");
ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
} else
ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
/* Attach to the Ethernet interface list. */
if_attach(ifp);
if_deferred_start_init(ifp, NULL);
ether_ifattach(ifp, sc->eaddr);
callout_init(&sc->bnx_timeout, 0);
/* Hookup IRQ last. */
sc->bnx_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, bnx_intr,
sc, device_xname(self));
if (sc->bnx_intrhand == NULL) {
aprint_error_dev(self, "couldn't establish interrupt");
if (intrstr != NULL)
aprint_error(" at %s", intrstr);
aprint_error("\n");
goto bnx_attach_fail;
}
aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
if (pmf_device_register(self, NULL, NULL))
pmf_class_network_register(self, ifp);
else
aprint_error_dev(self, "couldn't establish power handler\n");
/* Print some important debugging info. */
DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
/* Get the firmware running so ASF still works. */
bnx_mgmt_init(sc);
goto bnx_attach_exit;
bnx_attach_fail:
bnx_release_resources(sc);
bnx_attach_exit:
DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
}
/****************************************************************************/
/* Device detach function. */
/* */
/* Stops the controller, resets the controller, and releases resources. */
/* */
/* Returns: */
/* 0 on success, positive value on failure. */
/****************************************************************************/
int
bnx_detach(device_t dev, int flags)
{
int s;
struct bnx_softc *sc;
struct ifnet *ifp;
sc = device_private(dev);
ifp = &sc->bnx_ec.ec_if;
DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
/* Stop and reset the controller. */
s = splnet();
bnx_stop(ifp, 1);
splx(s);
pmf_device_deregister(dev);
callout_destroy(&sc->bnx_timeout);
ether_ifdetach(ifp);
workqueue_destroy(sc->bnx_wq);
/* Delete all remaining media. */
ifmedia_delete_instance(&sc->bnx_mii.mii_media, IFM_INST_ANY);
if_detach(ifp);
mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
/* Release all remaining resources. */
bnx_release_resources(sc);
DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
return 0;
}
/****************************************************************************/
/* Indirect register read. */
/* */
/* Reads NetXtreme II registers using an index/data register pair in PCI */
/* configuration space. Using this mechanism avoids issues with posted */
/* reads but is much slower than memory-mapped I/O. */
/* */
/* Returns: */
/* The value of the register. */
/****************************************************************************/
uint32_t
bnx_reg_rd_ind(struct bnx_softc *sc, uint32_t offset)
{
struct pci_attach_args *pa = &(sc->bnx_pa);
pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
offset);
#ifdef BNX_DEBUG
{
uint32_t val;
val = pci_conf_read(pa->pa_pc, pa->pa_tag,
BNX_PCICFG_REG_WINDOW);
DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
"val = 0x%08X\n", __func__, offset, val);
return val;
}
#else
return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
#endif
}
/****************************************************************************/
/* Indirect register write. */
/* */
/* Writes NetXtreme II registers using an index/data register pair in PCI */
/* configuration space. Using this mechanism avoids issues with posted */
/* writes but is muchh slower than memory-mapped I/O. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
void
bnx_reg_wr_ind(struct bnx_softc *sc, uint32_t offset, uint32_t val)
{
struct pci_attach_args *pa = &(sc->bnx_pa);
DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
__func__, offset, val);
pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
offset);
pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
}
/****************************************************************************/
/* Context memory write. */
/* */
/* The NetXtreme II controller uses context memory to track connection */
/* information for L2 and higher network protocols. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
void
bnx_ctx_wr(struct bnx_softc *sc, uint32_t cid_addr, uint32_t ctx_offset,
uint32_t ctx_val)
{
uint32_t idx, offset = ctx_offset + cid_addr;
uint32_t val, retry_cnt = 5;
if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
REG_WR(sc, BNX_CTX_CTX_CTRL,
(offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
for (idx = 0; idx < retry_cnt; idx++) {
val = REG_RD(sc, BNX_CTX_CTX_CTRL);
if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
break;
DELAY(5);
}
#if 0
if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
BNX_PRINTF("%s(%d); Unable to write CTX memory: "
"cid_addr = 0x%08X, offset = 0x%08X!\n",
__FILE__, __LINE__, cid_addr, ctx_offset);
#endif
} else {
REG_WR(sc, BNX_CTX_DATA_ADR, offset);
REG_WR(sc, BNX_CTX_DATA, ctx_val);
}
}
/****************************************************************************/
/* PHY register read. */
/* */
/* Implements register reads on the MII bus. */
/* */
/* Returns: */
/* The value of the register. */
/****************************************************************************/
int
bnx_miibus_read_reg(device_t dev, int phy, int reg, uint16_t *val)
{
struct bnx_softc *sc = device_private(dev);
uint32_t data;
int i, rv = 0;
/*
* The BCM5709S PHY is an IEEE Clause 45 PHY
* with special mappings to work with IEEE
* Clause 22 register accesses.
*/
if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
reg += 0x10;
}
if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
data = REG_RD(sc, BNX_EMAC_MDIO_MODE);
data &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
REG_WR(sc, BNX_EMAC_MDIO_MODE, data);
REG_RD(sc, BNX_EMAC_MDIO_MODE);
DELAY(40);
}
data = BNX_MIPHY(phy) | BNX_MIREG(reg) |
BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
BNX_EMAC_MDIO_COMM_START_BUSY;
REG_WR(sc, BNX_EMAC_MDIO_COMM, data);
for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
DELAY(10);
data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
if (!(data & BNX_EMAC_MDIO_COMM_START_BUSY)) {
DELAY(5);
data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
data &= BNX_EMAC_MDIO_COMM_DATA;
break;
}
}
if (data & BNX_EMAC_MDIO_COMM_START_BUSY) {
BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
"reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
rv = ETIMEDOUT;
} else {
data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
*val = data & 0xffff;
DBPRINT(sc, BNX_EXCESSIVE,
"%s(): phy = %d, reg = 0x%04X, val = 0x%04hX\n", __func__,
phy, (uint16_t) reg & 0xffff, *val);
}
if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
data = REG_RD(sc, BNX_EMAC_MDIO_MODE);
data |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
REG_WR(sc, BNX_EMAC_MDIO_MODE, data);
REG_RD(sc, BNX_EMAC_MDIO_MODE);
DELAY(40);
}
return rv;
}
/****************************************************************************/
/* PHY register write. */
/* */
/* Implements register writes on the MII bus. */
/* */
/* Returns: */
/* The value of the register. */
/****************************************************************************/
int
bnx_miibus_write_reg(device_t dev, int phy, int reg, uint16_t val)
{
struct bnx_softc *sc = device_private(dev);
uint32_t val1;
int i, rv = 0;
DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
"val = 0x%04hX\n", __func__,
phy, (uint16_t) reg & 0xffff, val);
/*
* The BCM5709S PHY is an IEEE Clause 45 PHY
* with special mappings to work with IEEE
* Clause 22 register accesses.
*/
if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
reg += 0x10;
}
if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
REG_RD(sc, BNX_EMAC_MDIO_MODE);
DELAY(40);
}
val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
DELAY(10);
val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
DELAY(5);
break;
}
}
if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
__LINE__);
rv = ETIMEDOUT;
}
if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
REG_RD(sc, BNX_EMAC_MDIO_MODE);
DELAY(40);
}
return rv;
}
/****************************************************************************/
/* MII bus status change. */
/* */
/* Called by the MII bus driver when the PHY establishes link to set the */
/* MAC interface registers. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
void
bnx_miibus_statchg(struct ifnet *ifp)
{
struct bnx_softc *sc = ifp->if_softc;
struct mii_data *mii = &sc->bnx_mii;
uint32_t rx_mode = sc->rx_mode;
int val;
val = REG_RD(sc, BNX_EMAC_MODE);
val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
BNX_EMAC_MODE_25G);
/*
* Get flow control negotiation result.
*/
if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
(mii->mii_media_active & IFM_ETH_FMASK) != sc->bnx_flowflags) {
sc->bnx_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
mii->mii_media_active &= ~IFM_ETH_FMASK;
}
/* Set MII or GMII interface based on the speed
* negotiated by the PHY.
*/
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
val |= BNX_EMAC_MODE_PORT_MII_10;
break;
}
/* FALLTHROUGH */
case IFM_100_TX:
DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
val |= BNX_EMAC_MODE_PORT_MII;
break;
case IFM_2500_SX:
DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
val |= BNX_EMAC_MODE_25G;
/* FALLTHROUGH */
case IFM_1000_T:
case IFM_1000_SX:
DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
val |= BNX_EMAC_MODE_PORT_GMII;
break;
default:
val |= BNX_EMAC_MODE_PORT_GMII;
break;
}
/* Set half or full duplex based on the duplicity
* negotiated by the PHY.
*/
if ((mii->mii_media_active & IFM_HDX) != 0) {
DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
val |= BNX_EMAC_MODE_HALF_DUPLEX;
} else
DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
REG_WR(sc, BNX_EMAC_MODE, val);
/*
* 802.3x flow control
*/
if (sc->bnx_flowflags & IFM_ETH_RXPAUSE) {
DBPRINT(sc, BNX_INFO, "Enabling RX mode flow control.\n");
rx_mode |= BNX_EMAC_RX_MODE_FLOW_EN;
} else {
DBPRINT(sc, BNX_INFO, "Disabling RX mode flow control.\n");
rx_mode &= ~BNX_EMAC_RX_MODE_FLOW_EN;
}
if (sc->bnx_flowflags & IFM_ETH_TXPAUSE) {
DBPRINT(sc, BNX_INFO, "Enabling TX mode flow control.\n");
BNX_SETBIT(sc, BNX_EMAC_TX_MODE, BNX_EMAC_TX_MODE_FLOW_EN);
} else {
DBPRINT(sc, BNX_INFO, "Disabling TX mode flow control.\n");
BNX_CLRBIT(sc, BNX_EMAC_TX_MODE, BNX_EMAC_TX_MODE_FLOW_EN);
}
/* Only make changes if the recive mode has actually changed. */
if (rx_mode != sc->rx_mode) {
DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
rx_mode);
sc->rx_mode = rx_mode;
REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
bnx_init_rx_context(sc);
}
}
/****************************************************************************/
/* Acquire NVRAM lock. */
/* */
/* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */
/* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
/* for use by the driver. */
/* */
/* Returns: */
/* 0 on success, positive value on failure. */
/****************************************************************************/
int
bnx_acquire_nvram_lock(struct bnx_softc *sc)
{
uint32_t val;
int j;
DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
/* Request access to the flash interface. */
REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
val = REG_RD(sc, BNX_NVM_SW_ARB);
if (val & BNX_NVM_SW_ARB_ARB_ARB2)
break;
DELAY(5);
}
if (j >= NVRAM_TIMEOUT_COUNT) {
DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
return EBUSY;
}
return 0;
}
/****************************************************************************/
/* Release NVRAM lock. */
/* */
/* When the caller is finished accessing NVRAM the lock must be released. */
/* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
/* for use by the driver. */
/* */
/* Returns: */
/* 0 on success, positive value on failure. */
/****************************************************************************/
int
bnx_release_nvram_lock(struct bnx_softc *sc)
{
int j;
uint32_t val;
DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
/* Relinquish nvram interface. */
REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
val = REG_RD(sc, BNX_NVM_SW_ARB);
if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
break;
DELAY(5);
}
if (j >= NVRAM_TIMEOUT_COUNT) {
DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
return EBUSY;
}
return 0;
}
#ifdef BNX_NVRAM_WRITE_SUPPORT
/****************************************************************************/
/* Enable NVRAM write access. */
/* */
/* Before writing to NVRAM the caller must enable NVRAM writes. */
/* */
/* Returns: */
/* 0 on success, positive value on failure. */
/****************************************************************************/
int
bnx_enable_nvram_write(struct bnx_softc *sc)
{
uint32_t val;
DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
val = REG_RD(sc, BNX_MISC_CFG);
REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
int j;
REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
REG_WR(sc, BNX_NVM_COMMAND,
BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
DELAY(5);
val = REG_RD(sc, BNX_NVM_COMMAND);
if (val & BNX_NVM_COMMAND_DONE)
break;
}
if (j >= NVRAM_TIMEOUT_COUNT) {
DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
return EBUSY;
}
}
return 0;
}
/****************************************************************************/
/* Disable NVRAM write access. */
/* */
/* When the caller is finished writing to NVRAM write access must be */
/* disabled. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
void
bnx_disable_nvram_write(struct bnx_softc *sc)
{
uint32_t val;
DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM write.\n");
val = REG_RD(sc, BNX_MISC_CFG);
REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
}
#endif
/****************************************************************************/
/* Enable NVRAM access. */
/* */
/* Before accessing NVRAM for read or write operations the caller must */
/* enabled NVRAM access. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
void
bnx_enable_nvram_access(struct bnx_softc *sc)
{
uint32_t val;
DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
/* Enable both bits, even on read. */
REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
}
/****************************************************************************/
/* Disable NVRAM access. */
/* */
/* When the caller is finished accessing NVRAM access must be disabled. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
void
bnx_disable_nvram_access(struct bnx_softc *sc)
{
uint32_t val;
DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
/* Disable both bits, even after read. */
REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
}
#ifdef BNX_NVRAM_WRITE_SUPPORT
/****************************************************************************/
/* Erase NVRAM page before writing. */
/* */
/* Non-buffered flash parts require that a page be erased before it is */
/* written. */
/* */
/* Returns: */
/* 0 on success, positive value on failure. */
/****************************************************************************/
int
bnx_nvram_erase_page(struct bnx_softc *sc, uint32_t offset)
{
uint32_t cmd;
int j;
/* Buffered flash doesn't require an erase. */
if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
return 0;
DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
/* Build an erase command. */
cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
BNX_NVM_COMMAND_DOIT;
/*
* Clear the DONE bit separately, set the NVRAM address to erase,
* and issue the erase command.
*/
REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
REG_WR(sc, BNX_NVM_COMMAND, cmd);
/* Wait for completion. */
for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
uint32_t val;
DELAY(5);
val = REG_RD(sc, BNX_NVM_COMMAND);
if (val & BNX_NVM_COMMAND_DONE)
break;
}
if (j >= NVRAM_TIMEOUT_COUNT) {
DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
return EBUSY;
}
return 0;
}
#endif /* BNX_NVRAM_WRITE_SUPPORT */
/****************************************************************************/
/* Read a dword (32 bits) from NVRAM. */
/* */
/* Read a 32 bit word from NVRAM. The caller is assumed to have already */
/* obtained the NVRAM lock and enabled the controller for NVRAM access. */
/* */
/* Returns: */
/* 0 on success and the 32 bit value read, positive value on failure. */
/****************************************************************************/
int
bnx_nvram_read_dword(struct bnx_softc *sc, uint32_t offset,
uint8_t *ret_val, uint32_t cmd_flags)
{
uint32_t cmd;
int i, rc = 0;
/* Build the command word. */
cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
/* Calculate the offset for buffered flash if translation is used. */
if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
offset = ((offset / sc->bnx_flash_info->page_size) <<
sc->bnx_flash_info->page_bits) +
(offset % sc->bnx_flash_info->page_size);
}
/*
* Clear the DONE bit separately, set the address to read,
* and issue the read.
*/
REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
REG_WR(sc, BNX_NVM_COMMAND, cmd);
/* Wait for completion. */
for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
uint32_t val;
DELAY(5);
val = REG_RD(sc, BNX_NVM_COMMAND);
if (val & BNX_NVM_COMMAND_DONE) {
val = REG_RD(sc, BNX_NVM_READ);
val = be32toh(val);
memcpy(ret_val, &val, 4);
break;
}
}
/* Check for errors. */
if (i >= NVRAM_TIMEOUT_COUNT) {
BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
"offset 0x%08X!\n", __FILE__, __LINE__, offset);
rc = EBUSY;
}
return rc;
}
#ifdef BNX_NVRAM_WRITE_SUPPORT
/****************************************************************************/
/* Write a dword (32 bits) to NVRAM. */
/* */
/* Write a 32 bit word to NVRAM. The caller is assumed to have already */
/* obtained the NVRAM lock, enabled the controller for NVRAM access, and */
/* enabled NVRAM write access. */
/* */
/* Returns: */
/* 0 on success, positive value on failure. */
/****************************************************************************/
int
bnx_nvram_write_dword(struct bnx_softc *sc, uint32_t offset, uint8_t *val,
uint32_t cmd_flags)
{
uint32_t cmd, val32;
int j;
/* Build the command word. */
cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
/* Calculate the offset for buffered flash if translation is used. */
if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
offset = ((offset / sc->bnx_flash_info->page_size) <<
sc->bnx_flash_info->page_bits) +
(offset % sc->bnx_flash_info->page_size);
}
/*
* Clear the DONE bit separately, convert NVRAM data to big-endian,
* set the NVRAM address to write, and issue the write command
*/
REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
memcpy(&val32, val, 4);
val32 = htobe32(val32);
REG_WR(sc, BNX_NVM_WRITE, val32);
REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
REG_WR(sc, BNX_NVM_COMMAND, cmd);
/* Wait for completion. */
for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
DELAY(5);
if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
break;
}
if (j >= NVRAM_TIMEOUT_COUNT) {
BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
"offset 0x%08X\n", __FILE__, __LINE__, offset);
return EBUSY;
}
return 0;
}
#endif /* BNX_NVRAM_WRITE_SUPPORT */
/****************************************************************************/
/* Initialize NVRAM access. */
/* */
/* Identify the NVRAM device in use and prepare the NVRAM interface to */
/* access that device. */
/* */
/* Returns: */
/* 0 on success, positive value on failure. */
/****************************************************************************/
int
bnx_init_nvram(struct bnx_softc *sc)
{
uint32_t val;
int j, entry_count, rc = 0;
struct flash_spec *flash;
DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
sc->bnx_flash_info = &flash_5709;
goto bnx_init_nvram_get_flash_size;
}
/* Determine the selected interface. */
val = REG_RD(sc, BNX_NVM_CFG1);
entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
/*
* Flash reconfiguration is required to support additional
* NVRAM devices not directly supported in hardware.
* Check if the flash interface was reconfigured
* by the bootcode.
*/
if (val & 0x40000000) {
/* Flash interface reconfigured by bootcode. */
DBPRINT(sc, BNX_INFO_LOAD,
"bnx_init_nvram(): Flash WAS reconfigured.\n");
for (j = 0, flash = &flash_table[0]; j < entry_count;
j++, flash++) {
if ((val & FLASH_BACKUP_STRAP_MASK) ==
(flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
sc->bnx_flash_info = flash;
break;
}
}
} else {
/* Flash interface not yet reconfigured. */
uint32_t mask;
DBPRINT(sc, BNX_INFO_LOAD,
"bnx_init_nvram(): Flash was NOT reconfigured.\n");
if (val & (1 << 23))
mask = FLASH_BACKUP_STRAP_MASK;
else
mask = FLASH_STRAP_MASK;
/* Look for the matching NVRAM device configuration data. */
for (j = 0, flash = &flash_table[0]; j < entry_count;
j++, flash++) {
/* Check if the dev matches any of the known devices. */
if ((val & mask) == (flash->strapping & mask)) {
/* Found a device match. */
sc->bnx_flash_info = flash;
/* Request access to the flash interface. */
if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
return rc;
/* Reconfigure the flash interface. */
bnx_enable_nvram_access(sc);
REG_WR(sc, BNX_NVM_CFG1, flash->config1);
REG_WR(sc, BNX_NVM_CFG2, flash->config2);
REG_WR(sc, BNX_NVM_CFG3, flash->config3);
REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
bnx_disable_nvram_access(sc);
bnx_release_nvram_lock(sc);
break;
}
}
}
/* Check if a matching device was found. */
if (j == entry_count) {
sc->bnx_flash_info = NULL;
BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
__FILE__, __LINE__);
rc = ENODEV;
}
bnx_init_nvram_get_flash_size:
/* Write the flash config data to the shared memory interface. */
val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
if (val)
sc->bnx_flash_size = val;
else
sc->bnx_flash_size = sc->bnx_flash_info->total_size;
DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
"0x%08X\n", sc->bnx_flash_info->total_size);
DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
return rc;
}
/****************************************************************************/
/* Read an arbitrary range of data from NVRAM. */
/* */
/* Prepares the NVRAM interface for access and reads the requested data */
/* into the supplied buffer. */
/* */
/* Returns: */
/* 0 on success and the data read, positive value on failure. */
/****************************************************************************/
int
bnx_nvram_read(struct bnx_softc *sc, uint32_t offset, uint8_t *ret_buf,
int buf_size)
{
int rc = 0;
uint32_t cmd_flags, offset32, len32, extra;
if (buf_size == 0)
return 0;
/* Request access to the flash interface. */
if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
return rc;
/* Enable access to flash interface */
bnx_enable_nvram_access(sc);
len32 = buf_size;
offset32 = offset;
extra = 0;
cmd_flags = 0;
if (offset32 & 3) {
uint8_t buf[4];
uint32_t pre_len;
offset32 &= ~3;
pre_len = 4 - (offset & 3);
if (pre_len >= len32) {
pre_len = len32;
cmd_flags =
BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
} else
cmd_flags = BNX_NVM_COMMAND_FIRST;
rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
if (rc)
return rc;
memcpy(ret_buf, buf + (offset & 3), pre_len);
offset32 += 4;
ret_buf += pre_len;
len32 -= pre_len;
}
if (len32 & 3) {
extra = 4 - (len32 & 3);
len32 = (len32 + 4) & ~3;
}
if (len32 == 4) {
uint8_t buf[4];
if (cmd_flags)
cmd_flags = BNX_NVM_COMMAND_LAST;
else
cmd_flags =
BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
memcpy(ret_buf, buf, 4 - extra);
} else if (len32 > 0) {
uint8_t buf[4];
/* Read the first word. */
if (cmd_flags)
cmd_flags = 0;
else
cmd_flags = BNX_NVM_COMMAND_FIRST;
rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
/* Advance to the next dword. */
offset32 += 4;
ret_buf += 4;
len32 -= 4;
while (len32 > 4 && rc == 0) {
rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
/* Advance to the next dword. */
offset32 += 4;
ret_buf += 4;
len32 -= 4;
}
if (rc)
return rc;
cmd_flags = BNX_NVM_COMMAND_LAST;
rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
memcpy(ret_buf, buf, 4 - extra);
}
/* Disable access to flash interface and release the lock. */
bnx_disable_nvram_access(sc);
bnx_release_nvram_lock(sc);
return rc;
}
#ifdef BNX_NVRAM_WRITE_SUPPORT
/****************************************************************************/
/* Write an arbitrary range of data from NVRAM. */
/* */
/* Prepares the NVRAM interface for write access and writes the requested */
/* data from the supplied buffer. The caller is responsible for */
/* calculating any appropriate CRCs. */
/* */
/* Returns: */
/* 0 on success, positive value on failure. */
/****************************************************************************/
int
bnx_nvram_write(struct bnx_softc *sc, uint32_t offset, uint8_t *data_buf,
int buf_size)
{
uint32_t written, offset32, len32;
uint8_t *buf, start[4], end[4];
int rc = 0;
int align_start, align_end;
buf = data_buf;
offset32 = offset;
len32 = buf_size;
align_start = align_end = 0;
if ((align_start = (offset32 & 3))) {
offset32 &= ~3;
len32 += align_start;
if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
return rc;
}
if (len32 & 3) {
if ((len32 > 4) || !align_start) {
align_end = 4 - (len32 & 3);
len32 += align_end;
if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
end, 4)))
return rc;
}
}
if (align_start || align_end) {
buf = malloc(len32, M_DEVBUF, M_NOWAIT);
if (buf == NULL)
return ENOMEM;
if (align_start)
memcpy(buf, start, 4);
if (align_end)
memcpy(buf + len32 - 4, end, 4);
memcpy(buf + align_start, data_buf, buf_size);
}
written = 0;
while ((written < len32) && (rc == 0)) {
uint32_t page_start, page_end, data_start, data_end;
uint32_t addr, cmd_flags;
int i;
uint8_t flash_buffer[264];
/* Find the page_start addr */
page_start = offset32 + written;
page_start -= (page_start % sc->bnx_flash_info->page_size);
/* Find the page_end addr */
page_end = page_start + sc->bnx_flash_info->page_size;
/* Find the data_start addr */
data_start = (written == 0) ? offset32 : page_start;
/* Find the data_end addr */
data_end = (page_end > offset32 + len32) ?
(offset32 + len32) : page_end;
/* Request access to the flash interface. */
if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
goto nvram_write_end;
/* Enable access to flash interface */
bnx_enable_nvram_access(sc);
cmd_flags = BNX_NVM_COMMAND_FIRST;
if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
int j;
/* Read the whole page into the buffer
* (non-buffer flash only) */
for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
if (j == (sc->bnx_flash_info->page_size - 4))
cmd_flags |= BNX_NVM_COMMAND_LAST;
rc = bnx_nvram_read_dword(sc,
page_start + j,
&flash_buffer[j],
cmd_flags);
if (rc)
goto nvram_write_end;
cmd_flags = 0;
}
}
/* Enable writes to flash interface (unlock write-protect) */
if ((rc = bnx_enable_nvram_write(sc)) != 0)
goto nvram_write_end;
/* Erase the page */
if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
goto nvram_write_end;
/* Re-enable the write again for the actual write */
bnx_enable_nvram_write(sc);
/* Loop to write back the buffer data from page_start to
* data_start */
i = 0;
if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
for (addr = page_start; addr < data_start;
addr += 4, i += 4) {
rc = bnx_nvram_write_dword(sc, addr,
&flash_buffer[i], cmd_flags);
if (rc != 0)
goto nvram_write_end;
cmd_flags = 0;
}
}
/* Loop to write the new data from data_start to data_end */
for (addr = data_start; addr < data_end; addr += 4, i++) {
if ((addr == page_end - 4) ||
(ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
&& (addr == data_end - 4))) {
cmd_flags |= BNX_NVM_COMMAND_LAST;
}
rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
if (rc != 0)
goto nvram_write_end;
cmd_flags = 0;
buf += 4;
}
/* Loop to write back the buffer data from data_end
* to page_end */
if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
for (addr = data_end; addr < page_end;
addr += 4, i += 4) {
if (addr == page_end-4)
cmd_flags = BNX_NVM_COMMAND_LAST;
rc = bnx_nvram_write_dword(sc, addr,
&flash_buffer[i], cmd_flags);
if (rc != 0)
goto nvram_write_end;
cmd_flags = 0;
}
}
/* Disable writes to flash interface (lock write-protect) */
bnx_disable_nvram_write(sc);
/* Disable access to flash interface */
bnx_disable_nvram_access(sc);
bnx_release_nvram_lock(sc);
/* Increment written */
written += data_end - data_start;
}
nvram_write_end:
if (align_start || align_end)
free(buf, M_DEVBUF);
return rc;
}
#endif /* BNX_NVRAM_WRITE_SUPPORT */
/****************************************************************************/
/* Verifies that NVRAM is accessible and contains valid data. */
/* */
/* Reads the configuration data from NVRAM and verifies that the CRC is */
/* correct. */
/* */
/* Returns: */
/* 0 on success, positive value on failure. */
/****************************************************************************/
int
bnx_nvram_test(struct bnx_softc *sc)
{
uint32_t buf[BNX_NVRAM_SIZE / 4];
uint8_t *data = (uint8_t *) buf;
int rc = 0;
uint32_t magic, csum;
/*
* Check that the device NVRAM is valid by reading
* the magic value at offset 0.
*/
if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
goto bnx_nvram_test_done;
magic = be32toh(buf[0]);
if (magic != BNX_NVRAM_MAGIC) {
rc = ENODEV;
BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
"Expected: 0x%08X, Found: 0x%08X\n",
__FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
goto bnx_nvram_test_done;
}
/*
* Verify that the device NVRAM includes valid
* configuration data.
*/
if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
goto bnx_nvram_test_done;
csum = ether_crc32_le(data, 0x100);
if (csum != BNX_CRC32_RESIDUAL) {
rc = ENODEV;
BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
"NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
__FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
goto bnx_nvram_test_done;
}
csum = ether_crc32_le(data + 0x100, 0x100);
if (csum != BNX_CRC32_RESIDUAL) {
BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
"Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
__FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
rc = ENODEV;
}
bnx_nvram_test_done:
return rc;
}
/****************************************************************************/
/* Identifies the current media type of the controller and sets the PHY */
/* address. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
void
bnx_get_media(struct bnx_softc *sc)
{
sc->bnx_phy_addr = 1;
if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
uint32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
uint32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
uint32_t strap;
/*
* The BCM5709S is software configurable
* for Copper or SerDes operation.
*/
if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
DBPRINT(sc, BNX_INFO_LOAD,
"5709 bonded for copper.\n");
goto bnx_get_media_exit;
} else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
DBPRINT(sc, BNX_INFO_LOAD,
"5709 bonded for dual media.\n");
sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
goto bnx_get_media_exit;
}
if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
else {
strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
>> 8;
}
if (sc->bnx_pa.pa_function == 0) {
switch (strap) {
case 0x4:
case 0x5:
case 0x6:
DBPRINT(sc, BNX_INFO_LOAD,
"BCM5709 s/w configured for SerDes.\n");
sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
break;
default:
DBPRINT(sc, BNX_INFO_LOAD,
"BCM5709 s/w configured for Copper.\n");
}
} else {
switch (strap) {
case 0x1:
case 0x2:
case 0x4:
DBPRINT(sc, BNX_INFO_LOAD,
"BCM5709 s/w configured for SerDes.\n");
sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
break;
default:
DBPRINT(sc, BNX_INFO_LOAD,
"BCM5709 s/w configured for Copper.\n");
}
}
} else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
uint32_t val;
sc->bnx_flags |= BNX_NO_WOL_FLAG;
if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
/*
* The BCM5708S, BCM5709S, and BCM5716S controllers use a
* separate PHY for SerDes.
*/
if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
sc->bnx_phy_addr = 2;
val = REG_RD_IND(sc, sc->bnx_shmem_base +
BNX_SHARED_HW_CFG_CONFIG);
if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
DBPRINT(sc, BNX_INFO_LOAD,
"Found 2.5Gb capable adapter\n");
}
}
} else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
bnx_get_media_exit:
DBPRINT(sc, (BNX_INFO_LOAD | BNX_INFO_PHY),
"Using PHY address %d.\n", sc->bnx_phy_addr);
}
/****************************************************************************/
/* Performs PHY initialization required before MII drivers access the */
/* device. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
void
bnx_init_media(struct bnx_softc *sc)
{
if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
/*
* Configure the BCM5709S / BCM5716S PHYs to use traditional
* IEEE Clause 22 method. Otherwise we have no way to attach
* the PHY to the mii(4) layer. PHY specific configuration
* is done by the mii(4) layer.
*/
/* Select auto-negotiation MMD of the PHY. */
bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
}
}
/****************************************************************************/
/* Free any DMA memory owned by the driver. */
/* */
/* Scans through each data structre that requires DMA memory and frees */
/* the memory if allocated. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
void
bnx_dma_free(struct bnx_softc *sc)
{
int i;
DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
/* Destroy the status block. */
if (sc->status_block != NULL && sc->status_map != NULL) {
bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
sc->status_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
BNX_STATUS_BLK_SZ);
bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
sc->status_rseg);
bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
sc->status_block = NULL;
sc->status_map = NULL;
}
/* Destroy the statistics block. */
if (sc->stats_block != NULL && sc->stats_map != NULL) {
bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
BNX_STATS_BLK_SZ);
bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
sc->stats_rseg);
bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
sc->stats_block = NULL;
sc->stats_map = NULL;
}
/* Free, unmap and destroy all context memory pages. */
if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
for (i = 0; i < sc->ctx_pages; i++) {
if (sc->ctx_block[i] != NULL) {
bus_dmamap_unload(sc->bnx_dmatag,
sc->ctx_map[i]);
bus_dmamem_unmap(sc->bnx_dmatag,
(void *)sc->ctx_block[i],
BCM_PAGE_SIZE);
bus_dmamem_free(sc->bnx_dmatag,
&sc->ctx_segs[i], sc->ctx_rsegs[i]);
bus_dmamap_destroy(sc->bnx_dmatag,
sc->ctx_map[i]);
sc->ctx_block[i] = NULL;
}
}
}
/* Free, unmap and destroy all TX buffer descriptor chain pages. */
for (i = 0; i < TX_PAGES; i++ ) {
if (sc->tx_bd_chain[i] != NULL &&
sc->tx_bd_chain_map[i] != NULL) {
bus_dmamap_unload(sc->bnx_dmatag,
sc->tx_bd_chain_map[i]);
bus_dmamem_unmap(sc->bnx_dmatag,
(void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
sc->tx_bd_chain_rseg[i]);
bus_dmamap_destroy(sc->bnx_dmatag,
sc->tx_bd_chain_map[i]);
sc->tx_bd_chain[i] = NULL;
sc->tx_bd_chain_map[i] = NULL;
}
}
/* Destroy the TX dmamaps. */
/* This isn't necessary since we dont allocate them up front */
/* Free, unmap and destroy all RX buffer descriptor chain pages. */
for (i = 0; i < RX_PAGES; i++ ) {
if (sc->rx_bd_chain[i] != NULL &&
sc->rx_bd_chain_map[i] != NULL) {
bus_dmamap_unload(sc->bnx_dmatag,
sc->rx_bd_chain_map[i]);
bus_dmamem_unmap(sc->bnx_dmatag,
(void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
sc->rx_bd_chain_rseg[i]);
bus_dmamap_destroy(sc->bnx_dmatag,
sc->rx_bd_chain_map[i]);
sc->rx_bd_chain[i] = NULL;
sc->rx_bd_chain_map[i] = NULL;
}
}
/* Unload and destroy the RX mbuf maps. */
for (i = 0; i < TOTAL_RX_BD; i++) {
if (sc->rx_mbuf_map[i] != NULL) {
bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
}
}
DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
}
/****************************************************************************/
/* Allocate any DMA memory needed by the driver. */
/* */
/* Allocates DMA memory needed for the various global structures needed by */
/* hardware. */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/****************************************************************************/
int
bnx_dma_alloc(struct bnx_softc *sc)
{
int i, rc = 0;
DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
/*
* Allocate DMA memory for the status block, map the memory into DMA
* space, and fetch the physical address of the block.
*/
if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
aprint_error_dev(sc->bnx_dev,
"Could not create status block DMA map!\n");
rc = ENOMEM;
goto bnx_dma_alloc_exit;
}
if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
&sc->status_rseg, BUS_DMA_NOWAIT)) {
aprint_error_dev(sc->bnx_dev,
"Could not allocate status block DMA memory!\n");
rc = ENOMEM;
goto bnx_dma_alloc_exit;
}
if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
aprint_error_dev(sc->bnx_dev,
"Could not map status block DMA memory!\n");
rc = ENOMEM;
goto bnx_dma_alloc_exit;
}
if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
aprint_error_dev(sc->bnx_dev,
"Could not load status block DMA memory!\n");
rc = ENOMEM;
goto bnx_dma_alloc_exit;
}
bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
sc->status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
/* DRC - Fix for 64 bit addresses. */
DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
(uint32_t) sc->status_block_paddr);
/* BCM5709 uses host memory as cache for context memory. */
if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
if (sc->ctx_pages == 0)
sc->ctx_pages = 1;
if (sc->ctx_pages > 4) /* XXX */
sc->ctx_pages = 4;
DBRUNIF((sc->ctx_pages > 512),
BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
__FILE__, __LINE__, sc->ctx_pages));
for (i = 0; i < sc->ctx_pages; i++) {
if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
&sc->ctx_map[i]) != 0) {
rc = ENOMEM;
goto bnx_dma_alloc_exit;
}
if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
rc = ENOMEM;
goto bnx_dma_alloc_exit;
}
if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
sc->ctx_rsegs[i], BCM_PAGE_SIZE,
&sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
rc = ENOMEM;
goto bnx_dma_alloc_exit;
}
if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
BUS_DMA_NOWAIT) != 0) {
rc = ENOMEM;
goto bnx_dma_alloc_exit;
}
bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
}
}
/*
* Allocate DMA memory for the statistics block, map the memory into
* DMA space, and fetch the physical address of the block.
*/
if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
aprint_error_dev(sc->bnx_dev,
"Could not create stats block DMA map!\n");
rc = ENOMEM;
goto bnx_dma_alloc_exit;
}
if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
&sc->stats_rseg, BUS_DMA_NOWAIT)) {
aprint_error_dev(sc->bnx_dev,
"Could not allocate stats block DMA memory!\n");
rc = ENOMEM;
goto bnx_dma_alloc_exit;
}
if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
aprint_error_dev(sc->bnx_dev,
"Could not map stats block DMA memory!\n");
rc = ENOMEM;
goto bnx_dma_alloc_exit;
}
if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
aprint_error_dev(sc->bnx_dev,
"Could not load status block DMA memory!\n");
rc = ENOMEM;
goto bnx_dma_alloc_exit;
}
sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
/* DRC - Fix for 64 bit address. */
DBPRINT(sc, BNX_INFO, "stats_block_paddr = 0x%08X\n",
(uint32_t) sc->stats_block_paddr);
/*
* Allocate DMA memory for the TX buffer descriptor chain,
* and fetch the physical address of the block.
*/
for (i = 0; i < TX_PAGES; i++) {
if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
&sc->tx_bd_chain_map[i])) {
aprint_error_dev(sc->bnx_dev,
"Could not create Tx desc %d DMA map!\n", i);
rc = ENOMEM;
goto bnx_dma_alloc_exit;
}
if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
&sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
aprint_error_dev(sc->bnx_dev,
"Could not allocate TX desc %d DMA memory!\n",
i);
rc = ENOMEM;
goto bnx_dma_alloc_exit;
}
if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
(void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
aprint_error_dev(sc->bnx_dev,
"Could not map TX desc %d DMA memory!\n", i);
rc = ENOMEM;
goto bnx_dma_alloc_exit;
}
if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
(void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
BUS_DMA_NOWAIT)) {
aprint_error_dev(sc->bnx_dev,
"Could not load TX desc %d DMA memory!\n", i);
rc = ENOMEM;
goto bnx_dma_alloc_exit;
}
sc->tx_bd_chain_paddr[i] =
sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
/* DRC - Fix for 64 bit systems. */
DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
i, (uint32_t) sc->tx_bd_chain_paddr[i]);
}
/*
* Create lists to hold TX mbufs.
*/
TAILQ_INIT(&sc->tx_free_pkts);
TAILQ_INIT(&sc->tx_used_pkts);
sc->tx_pkt_count = 0;
mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
/*
* Allocate DMA memory for the Rx buffer descriptor chain,
* and fetch the physical address of the block.
*/
for (i = 0; i < RX_PAGES; i++) {
if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
&sc->rx_bd_chain_map[i])) {
aprint_error_dev(sc->bnx_dev,
"Could not create Rx desc %d DMA map!\n", i);
rc = ENOMEM;
goto bnx_dma_alloc_exit;
}
if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
&sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
aprint_error_dev(sc->bnx_dev,
"Could not allocate Rx desc %d DMA memory!\n", i);
rc = ENOMEM;
goto bnx_dma_alloc_exit;
}
if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
(void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
aprint_error_dev(sc->bnx_dev,
"Could not map Rx desc %d DMA memory!\n", i);
rc = ENOMEM;
goto bnx_dma_alloc_exit;
}
if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
(void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
BUS_DMA_NOWAIT)) {
aprint_error_dev(sc->bnx_dev,
"Could not load Rx desc %d DMA memory!\n", i);
rc = ENOMEM;
goto bnx_dma_alloc_exit;
}
memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
sc->rx_bd_chain_paddr[i] =
sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
/* DRC - Fix for 64 bit systems. */
DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
i, (uint32_t) sc->rx_bd_chain_paddr[i]);
bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
0, BNX_RX_CHAIN_PAGE_SZ,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
/*
* Create DMA maps for the Rx buffer mbufs.
*/
for (i = 0; i < TOTAL_RX_BD; i++) {
if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
&sc->rx_mbuf_map[i])) {
aprint_error_dev(sc->bnx_dev,
"Could not create Rx mbuf %d DMA map!\n", i);
rc = ENOMEM;
goto bnx_dma_alloc_exit;
}
}
bnx_dma_alloc_exit:
DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
return rc;
}
/****************************************************************************/
/* Release all resources used by the driver. */
/* */
/* Releases all resources acquired by the driver including interrupts, */
/* interrupt handler, interfaces, mutexes, and DMA memory. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
void
bnx_release_resources(struct bnx_softc *sc)
{
struct pci_attach_args *pa = &(sc->bnx_pa);
DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
bnx_dma_free(sc);
if (sc->bnx_intrhand != NULL)
pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
if (sc->bnx_size)
bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
}
/****************************************************************************/
/* Firmware synchronization. */
/* */
/* Before performing certain events such as a chip reset, synchronize with */
/* the firmware first. */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/****************************************************************************/
int
bnx_fw_sync(struct bnx_softc *sc, uint32_t msg_data)
{
int i, rc = 0;
uint32_t val;
/* Don't waste any time if we've timed out before. */
if (sc->bnx_fw_timed_out) {
rc = EBUSY;
goto bnx_fw_sync_exit;
}
/* Increment the message sequence number. */
sc->bnx_fw_wr_seq++;
msg_data |= sc->bnx_fw_wr_seq;
DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
msg_data);
/* Send the message to the bootcode driver mailbox. */
REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
/* Wait for the bootcode to acknowledge the message. */
for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
/* Check for a response in the bootcode firmware mailbox. */
val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
break;
DELAY(1000);
}
/* If we've timed out, tell the bootcode that we've stopped waiting. */
if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
"msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
msg_data &= ~BNX_DRV_MSG_CODE;
msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
sc->bnx_fw_timed_out = 1;
rc = EBUSY;
}
bnx_fw_sync_exit:
return rc;
}
/****************************************************************************/
/* Load Receive Virtual 2 Physical (RV2P) processor firmware. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
void
bnx_load_rv2p_fw(struct bnx_softc *sc, uint32_t *rv2p_code,
uint32_t rv2p_code_len, uint32_t rv2p_proc)
{
int i;
uint32_t val;
/* Set the page size used by RV2P. */
if (rv2p_proc == RV2P_PROC2) {
BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
USABLE_RX_BD_PER_PAGE);
}
for (i = 0; i < rv2p_code_len; i += 8) {
REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
rv2p_code++;
REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
rv2p_code++;
if (rv2p_proc == RV2P_PROC1) {
val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
} else {
val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
}
}
/* Reset the processor, un-stall is done later. */
if (rv2p_proc == RV2P_PROC1)
REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
else
REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
}
/****************************************************************************/
/* Load RISC processor firmware. */
/* */
/* Loads firmware from the file if_bnxfw.h into the scratchpad memory */
/* associated with a particular processor. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
void
bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
struct fw_info *fw)
{
uint32_t offset;
uint32_t val;
/* Halt the CPU. */
val = REG_RD_IND(sc, cpu_reg->mode);
val |= cpu_reg->mode_value_halt;
REG_WR_IND(sc, cpu_reg->mode, val);
REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
/* Load the Text area. */
offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
if (fw->text) {
int j;
for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
REG_WR_IND(sc, offset, fw->text[j]);
}
/* Load the Data area. */
offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
if (fw->data) {
int j;
for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
REG_WR_IND(sc, offset, fw->data[j]);
}
/* Load the SBSS area. */
offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
if (fw->sbss) {
int j;
for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
REG_WR_IND(sc, offset, fw->sbss[j]);
}
/* Load the BSS area. */
offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
if (fw->bss) {
int j;
for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
REG_WR_IND(sc, offset, fw->bss[j]);
}
/* Load the Read-Only area. */
offset = cpu_reg->spad_base +
(fw->rodata_addr - cpu_reg->mips_view_base);
if (fw->rodata) {
int j;
for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
REG_WR_IND(sc, offset, fw->rodata[j]);
}
/* Clear the pre-fetch instruction. */
REG_WR_IND(sc, cpu_reg->inst, 0);
REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
/* Start the CPU. */
val = REG_RD_IND(sc, cpu_reg->mode);
val &= ~cpu_reg->mode_value_halt;
REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
REG_WR_IND(sc, cpu_reg->mode, val);
}
/****************************************************************************/
/* Initialize the RV2P, RX, TX, TPAT, and COM CPUs. */
/* */
/* Loads the firmware for each CPU and starts the CPU. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
void
bnx_init_cpus(struct bnx_softc *sc)
{
struct cpu_reg cpu_reg;
struct fw_info fw;
switch (BNX_CHIP_NUM(sc)) {
case BNX_CHIP_NUM_5709:
/* Initialize the RV2P processor. */
if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
} else {
bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
}
/* Initialize the RX Processor. */
cpu_reg.mode = BNX_RXP_CPU_MODE;
cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
cpu_reg.state = BNX_RXP_CPU_STATE;
cpu_reg.state_value_clear = 0xffffff;
cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
cpu_reg.spad_base = BNX_RXP_SCRATCH;
cpu_reg.mips_view_base = 0x8000000;
fw.ver_major = bnx_RXP_b09FwReleaseMajor;
fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
fw.ver_fix = bnx_RXP_b09FwReleaseFix;
fw.start_addr = bnx_RXP_b09FwStartAddr;
fw.text_addr = bnx_RXP_b09FwTextAddr;
fw.text_len = bnx_RXP_b09FwTextLen;
fw.text_index = 0;
fw.text = bnx_RXP_b09FwText;
fw.data_addr = bnx_RXP_b09FwDataAddr;
fw.data_len = bnx_RXP_b09FwDataLen;
fw.data_index = 0;
fw.data = bnx_RXP_b09FwData;
fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
fw.sbss_len = bnx_RXP_b09FwSbssLen;
fw.sbss_index = 0;
fw.sbss = bnx_RXP_b09FwSbss;
fw.bss_addr = bnx_RXP_b09FwBssAddr;
fw.bss_len = bnx_RXP_b09FwBssLen;
fw.bss_index = 0;
fw.bss = bnx_RXP_b09FwBss;
fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
fw.rodata_len = bnx_RXP_b09FwRodataLen;
fw.rodata_index = 0;
fw.rodata = bnx_RXP_b09FwRodata;
DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
bnx_load_cpu_fw(sc, &cpu_reg, &fw);
/* Initialize the TX Processor. */
cpu_reg.mode = BNX_TXP_CPU_MODE;
cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
cpu_reg.state = BNX_TXP_CPU_STATE;
cpu_reg.state_value_clear = 0xffffff;
cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
cpu_reg.spad_base = BNX_TXP_SCRATCH;
cpu_reg.mips_view_base = 0x8000000;
fw.ver_major = bnx_TXP_b09FwReleaseMajor;
fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
fw.ver_fix = bnx_TXP_b09FwReleaseFix;
fw.start_addr = bnx_TXP_b09FwStartAddr;
fw.text_addr = bnx_TXP_b09FwTextAddr;
fw.text_len = bnx_TXP_b09FwTextLen;
fw.text_index = 0;
fw.text = bnx_TXP_b09FwText;
fw.data_addr = bnx_TXP_b09FwDataAddr;
fw.data_len = bnx_TXP_b09FwDataLen;
fw.data_index = 0;
fw.data = bnx_TXP_b09FwData;
fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
fw.sbss_len = bnx_TXP_b09FwSbssLen;
fw.sbss_index = 0;
fw.sbss = bnx_TXP_b09FwSbss;
fw.bss_addr = bnx_TXP_b09FwBssAddr;
fw.bss_len = bnx_TXP_b09FwBssLen;
fw.bss_index = 0;
fw.bss = bnx_TXP_b09FwBss;
fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
fw.rodata_len = bnx_TXP_b09FwRodataLen;
fw.rodata_index = 0;
fw.rodata = bnx_TXP_b09FwRodata;
DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
bnx_load_cpu_fw(sc, &cpu_reg, &fw);
/* Initialize the TX Patch-up Processor. */
cpu_reg.mode = BNX_TPAT_CPU_MODE;
cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
cpu_reg.state = BNX_TPAT_CPU_STATE;
cpu_reg.state_value_clear = 0xffffff;
cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
cpu_reg.spad_base = BNX_TPAT_SCRATCH;
cpu_reg.mips_view_base = 0x8000000;
fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
fw.start_addr = bnx_TPAT_b09FwStartAddr;
fw.text_addr = bnx_TPAT_b09FwTextAddr;
fw.text_len = bnx_TPAT_b09FwTextLen;
fw.text_index = 0;
fw.text = bnx_TPAT_b09FwText;
fw.data_addr = bnx_TPAT_b09FwDataAddr;
fw.data_len = bnx_TPAT_b09FwDataLen;
fw.data_index = 0;
fw.data = bnx_TPAT_b09FwData;
fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
fw.sbss_len = bnx_TPAT_b09FwSbssLen;
fw.sbss_index = 0;
fw.sbss = bnx_TPAT_b09FwSbss;
fw.bss_addr = bnx_TPAT_b09FwBssAddr;
fw.bss_len = bnx_TPAT_b09FwBssLen;
fw.bss_index = 0;
fw.bss = bnx_TPAT_b09FwBss;
fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
fw.rodata_len = bnx_TPAT_b09FwRodataLen;
fw.rodata_index = 0;
fw.rodata = bnx_TPAT_b09FwRodata;
DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
bnx_load_cpu_fw(sc, &cpu_reg, &fw);
/* Initialize the Completion Processor. */
cpu_reg.mode = BNX_COM_CPU_MODE;
cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
cpu_reg.state = BNX_COM_CPU_STATE;
cpu_reg.state_value_clear = 0xffffff;
cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
cpu_reg.spad_base = BNX_COM_SCRATCH;
cpu_reg.mips_view_base = 0x8000000;
fw.ver_major = bnx_COM_b09FwReleaseMajor;
fw.ver_minor = bnx_COM_b09FwReleaseMinor;
fw.ver_fix = bnx_COM_b09FwReleaseFix;
fw.start_addr = bnx_COM_b09FwStartAddr;
fw.text_addr = bnx_COM_b09FwTextAddr;
fw.text_len = bnx_COM_b09FwTextLen;
fw.text_index = 0;
fw.text = bnx_COM_b09FwText;
fw.data_addr = bnx_COM_b09FwDataAddr;
fw.data_len = bnx_COM_b09FwDataLen;
fw.data_index = 0;
fw.data = bnx_COM_b09FwData;
fw.sbss_addr = bnx_COM_b09FwSbssAddr;
fw.sbss_len = bnx_COM_b09FwSbssLen;
fw.sbss_index = 0;
fw.sbss = bnx_COM_b09FwSbss;
fw.bss_addr = bnx_COM_b09FwBssAddr;
fw.bss_len = bnx_COM_b09FwBssLen;
fw.bss_index = 0;
fw.bss = bnx_COM_b09FwBss;
fw.rodata_addr = bnx_COM_b09FwRodataAddr;
fw.rodata_len = bnx_COM_b09FwRodataLen;
fw.rodata_index = 0;
fw.rodata = bnx_COM_b09FwRodata;
DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
bnx_load_cpu_fw(sc, &cpu_reg, &fw);
break;
default:
/* Initialize the RV2P processor. */
bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
RV2P_PROC1);
bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
RV2P_PROC2);
/* Initialize the RX Processor. */
cpu_reg.mode = BNX_RXP_CPU_MODE;
cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
cpu_reg.state = BNX_RXP_CPU_STATE;
cpu_reg.state_value_clear = 0xffffff;
cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
cpu_reg.spad_base = BNX_RXP_SCRATCH;
cpu_reg.mips_view_base = 0x8000000;
fw.ver_major = bnx_RXP_b06FwReleaseMajor;
fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
fw.ver_fix = bnx_RXP_b06FwReleaseFix;
fw.start_addr = bnx_RXP_b06FwStartAddr;
fw.text_addr = bnx_RXP_b06FwTextAddr;
fw.text_len = bnx_RXP_b06FwTextLen;
fw.text_index = 0;
fw.text = bnx_RXP_b06FwText;
fw.data_addr = bnx_RXP_b06FwDataAddr;
fw.data_len = bnx_RXP_b06FwDataLen;
fw.data_index = 0;
fw.data = bnx_RXP_b06FwData;
fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
fw.sbss_len = bnx_RXP_b06FwSbssLen;
fw.sbss_index = 0;
fw.sbss = bnx_RXP_b06FwSbss;
fw.bss_addr = bnx_RXP_b06FwBssAddr;
fw.bss_len = bnx_RXP_b06FwBssLen;
fw.bss_index = 0;
fw.bss = bnx_RXP_b06FwBss;
fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
fw.rodata_len = bnx_RXP_b06FwRodataLen;
fw.rodata_index = 0;
fw.rodata = bnx_RXP_b06FwRodata;
DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
bnx_load_cpu_fw(sc, &cpu_reg, &fw);
/* Initialize the TX Processor. */
cpu_reg.mode = BNX_TXP_CPU_MODE;
cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
cpu_reg.state = BNX_TXP_CPU_STATE;
cpu_reg.state_value_clear = 0xffffff;
cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
cpu_reg.spad_base = BNX_TXP_SCRATCH;
cpu_reg.mips_view_base = 0x8000000;
fw.ver_major = bnx_TXP_b06FwReleaseMajor;
fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
fw.ver_fix = bnx_TXP_b06FwReleaseFix;
fw.start_addr = bnx_TXP_b06FwStartAddr;
fw.text_addr = bnx_TXP_b06FwTextAddr;
fw.text_len = bnx_TXP_b06FwTextLen;
fw.text_index = 0;
fw.text = bnx_TXP_b06FwText;
fw.data_addr = bnx_TXP_b06FwDataAddr;
fw.data_len = bnx_TXP_b06FwDataLen;
fw.data_index = 0;
fw.data = bnx_TXP_b06FwData;
fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
fw.sbss_len = bnx_TXP_b06FwSbssLen;
fw.sbss_index = 0;
fw.sbss = bnx_TXP_b06FwSbss;
fw.bss_addr = bnx_TXP_b06FwBssAddr;
fw.bss_len = bnx_TXP_b06FwBssLen;
fw.bss_index = 0;
fw.bss = bnx_TXP_b06FwBss;
fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
fw.rodata_len = bnx_TXP_b06FwRodataLen;
fw.rodata_index = 0;
fw.rodata = bnx_TXP_b06FwRodata;
DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
bnx_load_cpu_fw(sc, &cpu_reg, &fw);
/* Initialize the TX Patch-up Processor. */
cpu_reg.mode = BNX_TPAT_CPU_MODE;
cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
cpu_reg.state = BNX_TPAT_CPU_STATE;
cpu_reg.state_value_clear = 0xffffff;
cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
cpu_reg.spad_base = BNX_TPAT_SCRATCH;
cpu_reg.mips_view_base = 0x8000000;
fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
fw.start_addr = bnx_TPAT_b06FwStartAddr;
fw.text_addr = bnx_TPAT_b06FwTextAddr;
fw.text_len = bnx_TPAT_b06FwTextLen;
fw.text_index = 0;
fw.text = bnx_TPAT_b06FwText;
fw.data_addr = bnx_TPAT_b06FwDataAddr;
fw.data_len = bnx_TPAT_b06FwDataLen;
fw.data_index = 0;
fw.data = bnx_TPAT_b06FwData;
fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
fw.sbss_len = bnx_TPAT_b06FwSbssLen;
fw.sbss_index = 0;
fw.sbss = bnx_TPAT_b06FwSbss;
fw.bss_addr = bnx_TPAT_b06FwBssAddr;
fw.bss_len = bnx_TPAT_b06FwBssLen;
fw.bss_index = 0;
fw.bss = bnx_TPAT_b06FwBss;
fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
fw.rodata_len = bnx_TPAT_b06FwRodataLen;
fw.rodata_index = 0;
fw.rodata = bnx_TPAT_b06FwRodata;
DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
bnx_load_cpu_fw(sc, &cpu_reg, &fw);
/* Initialize the Completion Processor. */
cpu_reg.mode = BNX_COM_CPU_MODE;
cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
cpu_reg.state = BNX_COM_CPU_STATE;
cpu_reg.state_value_clear = 0xffffff;
cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
cpu_reg.spad_base = BNX_COM_SCRATCH;
cpu_reg.mips_view_base = 0x8000000;
fw.ver_major = bnx_COM_b06FwReleaseMajor;
fw.ver_minor = bnx_COM_b06FwReleaseMinor;
fw.ver_fix = bnx_COM_b06FwReleaseFix;
fw.start_addr = bnx_COM_b06FwStartAddr;
fw.text_addr = bnx_COM_b06FwTextAddr;
fw.text_len = bnx_COM_b06FwTextLen;
fw.text_index = 0;
fw.text = bnx_COM_b06FwText;
fw.data_addr = bnx_COM_b06FwDataAddr;
fw.data_len = bnx_COM_b06FwDataLen;
fw.data_index = 0;
fw.data = bnx_COM_b06FwData;
fw.sbss_addr = bnx_COM_b06FwSbssAddr;
fw.sbss_len = bnx_COM_b06FwSbssLen;
fw.sbss_index = 0;
fw.sbss = bnx_COM_b06FwSbss;
fw.bss_addr = bnx_COM_b06FwBssAddr;
fw.bss_len = bnx_COM_b06FwBssLen;
fw.bss_index = 0;
fw.bss = bnx_COM_b06FwBss;
fw.rodata_addr = bnx_COM_b06FwRodataAddr;
fw.rodata_len = bnx_COM_b06FwRodataLen;
fw.rodata_index = 0;
fw.rodata = bnx_COM_b06FwRodata;
DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
bnx_load_cpu_fw(sc, &cpu_reg, &fw);
break;
}
}
/****************************************************************************/
/* Initialize context memory. */
/* */
/* Clears the memory associated with each Context ID (CID). */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
void
bnx_init_context(struct bnx_softc *sc)
{
if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
/* DRC: Replace this constant value with a #define. */
int i, retry_cnt = 10;
uint32_t val;
/*
* BCM5709 context memory may be cached
* in host memory so prepare the host memory
* for access.
*/
val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
| (1 << 12);
val |= (BCM_PAGE_BITS - 8) << 16;
REG_WR(sc, BNX_CTX_COMMAND, val);
/* Wait for mem init command to complete. */
for (i = 0; i < retry_cnt; i++) {
val = REG_RD(sc, BNX_CTX_COMMAND);
if (!(val & BNX_CTX_COMMAND_MEM_INIT))
break;
DELAY(2);
}
/* ToDo: Consider returning an error here. */
for (i = 0; i < sc->ctx_pages; i++) {
int j;
/* Set the physaddr of the context memory cache. */
val = (uint32_t)(sc->ctx_segs[i].ds_addr);
REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
val = (uint32_t)
((uint64_t)sc->ctx_segs[i].ds_addr >> 32);
REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
/* Verify that the context memory write was successful. */
for (j = 0; j < retry_cnt; j++) {
val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
break;
DELAY(5);
}
/* ToDo: Consider returning an error here. */
}
} else {
uint32_t vcid_addr, offset;
/*
* For the 5706/5708, context memory is local to the
* controller, so initialize the controller context memory.
*/
vcid_addr = GET_CID_ADDR(96);
while (vcid_addr) {
vcid_addr -= BNX_PHY_CTX_SIZE;
REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
for (offset = 0; offset < BNX_PHY_CTX_SIZE;
offset += 4)
CTX_WR(sc, 0x00, offset, 0);
REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
}
}
}
/****************************************************************************/
/* Fetch the permanent MAC address of the controller. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
void
bnx_get_mac_addr(struct bnx_softc *sc)
{
uint32_t mac_lo = 0, mac_hi = 0;
/*
* The NetXtreme II bootcode populates various NIC
* power-on and runtime configuration items in a
* shared memory area. The factory configured MAC
* address is available from both NVRAM and the
* shared memory area so we'll read the value from
* shared memory for speed.
*/
mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
if ((mac_lo == 0) && (mac_hi == 0)) {
BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
__FILE__, __LINE__);
} else {
sc->eaddr[0] = (u_char)(mac_hi >> 8);
sc->eaddr[1] = (u_char)(mac_hi >> 0);
sc->eaddr[2] = (u_char)(mac_lo >> 24);
sc->eaddr[3] = (u_char)(mac_lo >> 16);
sc->eaddr[4] = (u_char)(mac_lo >> 8);
sc->eaddr[5] = (u_char)(mac_lo >> 0);
}
DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
"%s\n", ether_sprintf(sc->eaddr));
}
/****************************************************************************/
/* Program the MAC address. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
void
bnx_set_mac_addr(struct bnx_softc *sc)
{
uint32_t val;
const uint8_t *mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
"%s\n", ether_sprintf(sc->eaddr));
val = (mac_addr[0] << 8) | mac_addr[1];
REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
(mac_addr[4] << 8) | mac_addr[5];
REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
}
/****************************************************************************/
/* Stop the controller. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
void
bnx_stop(struct ifnet *ifp, int disable)
{
struct bnx_softc *sc = ifp->if_softc;
DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
if (disable) {
sc->bnx_detaching = 1;
callout_halt(&sc->bnx_timeout, NULL);
} else
callout_stop(&sc->bnx_timeout);
mii_down(&sc->bnx_mii);
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
/* Disable the transmit/receive blocks. */
REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
DELAY(20);
bnx_disable_intr(sc);
/* Tell firmware that the driver is going away. */
if (disable)
bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
else
bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
/* Free RX buffers. */
bnx_free_rx_chain(sc);
/* Free TX buffers. */
bnx_free_tx_chain(sc);
ifp->if_timer = 0;
sc->bnx_link = 0;
DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
bnx_mgmt_init(sc);
}
int
bnx_reset(struct bnx_softc *sc, uint32_t reset_code)
{
struct pci_attach_args *pa = &(sc->bnx_pa);
uint32_t val;
int i, rc = 0;
DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
/* Wait for pending PCI transactions to complete. */
if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708)) {
REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
DELAY(5);
} else {
/* Disable DMA */
val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
REG_RD(sc, BNX_MISC_NEW_CORE_CTL); /* barrier */
for (i = 0; i < 100; i++) {
delay(1 * 1000);
val = REG_RD(sc, BNX_PCICFG_DEVICE_CONTROL);
if ((val & PCIE_DCSR_TRANSACTION_PND) == 0)
break;
}
}
/* Assume bootcode is running. */
sc->bnx_fw_timed_out = 0;
/* Give the firmware a chance to prepare for the reset. */
rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
if (rc)
goto bnx_reset_exit;
/* Set a firmware reminder that this is a soft reset. */
REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
BNX_DRV_RESET_SIGNATURE_MAGIC);
/* Dummy read to force the chip to complete all current transactions. */
val = REG_RD(sc, BNX_MISC_ID);
/* Chip reset. */
if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
REG_RD(sc, BNX_MISC_COMMAND);
DELAY(5);
val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
val);
} else {
val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
/* Allow up to 30us for reset to complete. */
for (i = 0; i < 10; i++) {
val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
break;
}
DELAY(10);
}
/* Check that reset completed successfully. */
if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
__FILE__, __LINE__);
rc = EBUSY;
goto bnx_reset_exit;
}
}
/* Make sure byte swapping is properly configured. */
val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
if (val != 0x01020304) {
BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
__FILE__, __LINE__);
rc = ENODEV;
goto bnx_reset_exit;
}
/* Just completed a reset, assume that firmware is running again. */
sc->bnx_fw_timed_out = 0;
/* Wait for the firmware to finish its initialization. */
rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
if (rc)
BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
"initialization!\n", __FILE__, __LINE__);
bnx_reset_exit:
DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
return rc;
}
int
bnx_chipinit(struct bnx_softc *sc)
{
struct pci_attach_args *pa = &(sc->bnx_pa);
uint32_t val;
int rc = 0;
DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
/* Make sure the interrupt is not active. */
REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
/* Initialize DMA byte/word swapping, configure the number of DMA */
/* channels and PCI clock compensation delay. */
val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
BNX_DMA_CONFIG_DATA_WORD_SWAP |
#if BYTE_ORDER == BIG_ENDIAN
BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
#endif
BNX_DMA_CONFIG_CNTL_WORD_SWAP |
DMA_READ_CHANS << 12 |
DMA_WRITE_CHANS << 16;
val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
/*
* This setting resolves a problem observed on certain Intel PCI
* chipsets that cannot handle multiple outstanding DMA operations.
* See errata E9_5706A1_65.
*/
if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
(BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
!(sc->bnx_flags & BNX_PCIX_FLAG))
val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
REG_WR(sc, BNX_DMA_CONFIG, val);
/* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
if (sc->bnx_flags & BNX_PCIX_FLAG) {
val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
val & ~0x20000);
}
/* Enable the RX_V2P and Context state machines before access. */
REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
/* Initialize context mapping and zero out the quick contexts. */
bnx_init_context(sc);
/* Initialize the on-boards CPUs */
bnx_init_cpus(sc);
/* Enable management frames (NC-SI) to flow to the MCP. */
if (sc->bnx_flags & BNX_MFW_ENABLE_FLAG) {
val = REG_RD(sc, BNX_RPM_MGMT_PKT_CTRL) |
BNX_RPM_MGMT_PKT_CTRL_MGMT_EN;
REG_WR(sc, BNX_RPM_MGMT_PKT_CTRL, val);
}
/* Prepare NVRAM for access. */
if (bnx_init_nvram(sc)) {
rc = ENODEV;
goto bnx_chipinit_exit;
}
/* Set the kernel bypass block size */
val = REG_RD(sc, BNX_MQ_CONFIG);
val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
/* Enable bins used on the 5709. */
if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
val |= BNX_MQ_CONFIG_HALT_DIS;
}
REG_WR(sc, BNX_MQ_CONFIG, val);
val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
val = (BCM_PAGE_BITS - 8) << 24;
REG_WR(sc, BNX_RV2P_CONFIG, val);
/* Configure page size. */
val = REG_RD(sc, BNX_TBDR_CONFIG);
val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
REG_WR(sc, BNX_TBDR_CONFIG, val);
#if 0
/* Set the perfect match control register to default. */
REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
#endif
bnx_chipinit_exit:
DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
return rc;
}
/****************************************************************************/
/* Initialize the controller in preparation to send/receive traffic. */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/****************************************************************************/
int
bnx_blockinit(struct bnx_softc *sc)
{
uint32_t reg, val;
int rc = 0;
DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
/* Load the hardware default MAC address. */
bnx_set_mac_addr(sc);
/* Set the Ethernet backoff seed value */
val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
(sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
sc->last_status_idx = 0;
sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
/* Set up link change interrupt generation. */
REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
/* Program the physical address of the status block. */
REG_WR(sc, BNX_HC_STATUS_ADDR_L, (uint32_t)(sc->status_block_paddr));
REG_WR(sc, BNX_HC_STATUS_ADDR_H,
(uint32_t)((uint64_t)sc->status_block_paddr >> 32));
/* Program the physical address of the statistics block. */
REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
(uint32_t)(sc->stats_block_paddr));
REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
(uint32_t)((uint64_t)sc->stats_block_paddr >> 32));
/* Program various host coalescing parameters. */
REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
<< 16) | sc->bnx_tx_quick_cons_trip);
REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
<< 16) | sc->bnx_rx_quick_cons_trip);
REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
sc->bnx_comp_prod_trip);
REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
sc->bnx_tx_ticks);
REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
sc->bnx_rx_ticks);
REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
sc->bnx_com_ticks);
REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
sc->bnx_cmd_ticks);
REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
REG_WR(sc, BNX_HC_CONFIG,
(BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
BNX_HC_CONFIG_COLLECT_STATS));
/* Clear the internal statistics counters. */
REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
/* Verify that bootcode is running. */
reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
__FILE__, __LINE__); reg = 0);
if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
BNX_DEV_INFO_SIGNATURE_MAGIC) {
BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
"Expected: 08%08X\n", __FILE__, __LINE__,
(reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
BNX_DEV_INFO_SIGNATURE_MAGIC);
rc = ENODEV;
goto bnx_blockinit_exit;
}
/* Enable DMA */
if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
}
/* Allow bootcode to apply any additional fixes before enabling MAC. */
rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
/* Disable management frames (NC-SI) from flowing to the MCP. */
if (sc->bnx_flags & BNX_MFW_ENABLE_FLAG) {
val = REG_RD(sc, BNX_RPM_MGMT_PKT_CTRL) &
~BNX_RPM_MGMT_PKT_CTRL_MGMT_EN;
REG_WR(sc, BNX_RPM_MGMT_PKT_CTRL, val);
}
/* Enable all remaining blocks in the MAC. */
if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
BNX_MISC_ENABLE_DEFAULT_XI);
} else
REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
DELAY(20);
bnx_blockinit_exit:
DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
return rc;
}
static int
bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, uint16_t *prod,
uint16_t *chain_prod, uint32_t *prod_bseq)
{
bus_dmamap_t map;
struct rx_bd *rxbd;
uint32_t addr;
int i;
#ifdef BNX_DEBUG
uint16_t debug_chain_prod = *chain_prod;
#endif
uint16_t first_chain_prod;
m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
/* Map the mbuf cluster into device memory. */
map = sc->rx_mbuf_map[*chain_prod];
first_chain_prod = *chain_prod;
if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
__FILE__, __LINE__);
m_freem(m_new);
DBRUNIF(1, sc->rx_mbuf_alloc--);
return ENOBUFS;
}
/* Make sure there is room in the receive chain. */
if (map->dm_nsegs > sc->free_rx_bd) {
bus_dmamap_unload(sc->bnx_dmatag, map);
m_freem(m_new);
return EFBIG;
}
#ifdef BNX_DEBUG
/* Track the distribution of buffer segments. */
sc->rx_mbuf_segs[map->dm_nsegs]++;
#endif
bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
BUS_DMASYNC_PREREAD);
/* Update some debug statistics counters */
DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
sc->rx_low_watermark = sc->free_rx_bd);
DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
/*
* Setup the rx_bd for the first segment
*/
rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
addr = (uint32_t)map->dm_segs[0].ds_addr;
rxbd->rx_bd_haddr_lo = addr;
addr = (uint32_t)((uint64_t)map->dm_segs[0].ds_addr >> 32);
rxbd->rx_bd_haddr_hi = addr;
rxbd->rx_bd_len = map->dm_segs[0].ds_len;
rxbd->rx_bd_flags = RX_BD_FLAGS_START;
*prod_bseq += map->dm_segs[0].ds_len;
bus_dmamap_sync(sc->bnx_dmatag,
sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
for (i = 1; i < map->dm_nsegs; i++) {
*prod = NEXT_RX_BD(*prod);
*chain_prod = RX_CHAIN_IDX(*prod);
rxbd =
&sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
addr = (uint32_t)map->dm_segs[i].ds_addr;
rxbd->rx_bd_haddr_lo = addr;
addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
rxbd->rx_bd_haddr_hi = addr;
rxbd->rx_bd_len = map->dm_segs[i].ds_len;
rxbd->rx_bd_flags = 0;
*prod_bseq += map->dm_segs[i].ds_len;
bus_dmamap_sync(sc->bnx_dmatag,
sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
sizeof(struct rx_bd) * RX_IDX(*chain_prod),
sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
bus_dmamap_sync(sc->bnx_dmatag,
sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
sizeof(struct rx_bd) * RX_IDX(*chain_prod),
sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/*
* Save the mbuf, adjust the map pointer (swap map for first and
* last rx_bd entry so that rx_mbuf_ptr and rx_mbuf_map matches)
* and update our counter.
*/
sc->rx_mbuf_ptr[*chain_prod] = m_new;
sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
sc->rx_mbuf_map[*chain_prod] = map;
sc->free_rx_bd -= map->dm_nsegs;
DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
map->dm_nsegs));
*prod = NEXT_RX_BD(*prod);
*chain_prod = RX_CHAIN_IDX(*prod);
return 0;
}
/****************************************************************************/
/* Encapsulate an mbuf cluster into the rx_bd chain. */
/* */
/* The NetXtreme II can support Jumbo frames by using multiple rx_bd's. */
/* This routine will map an mbuf cluster into 1 or more rx_bd's as */
/* necessary. */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/****************************************************************************/
int
bnx_get_buf(struct bnx_softc *sc, uint16_t *prod,
uint16_t *chain_prod, uint32_t *prod_bseq)
{
struct mbuf *m_new = NULL;
int rc = 0;
uint16_t min_free_bd;
DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
__func__);
/* Make sure the inputs are valid. */
DBRUNIF((*chain_prod > MAX_RX_BD),
aprint_error_dev(sc->bnx_dev,
"RX producer out of range: 0x%04X > 0x%04X\n",
*chain_prod, (uint16_t)MAX_RX_BD));
DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
"0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
*prod_bseq);
/* try to get in as many mbufs as possible */
if (sc->mbuf_alloc_size == MCLBYTES)
min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
else
min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
while (sc->free_rx_bd >= min_free_bd) {
/* Simulate an mbuf allocation failure. */
DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
aprint_error_dev(sc->bnx_dev,
"Simulating mbuf allocation failure.\n");
sc->mbuf_sim_alloc_failed++;
rc = ENOBUFS;
goto bnx_get_buf_exit);
/* This is a new mbuf allocation. */
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
DBPRINT(sc, BNX_WARN,
"%s(%d): RX mbuf header allocation failed!\n",
__FILE__, __LINE__);
sc->mbuf_alloc_failed++;
rc = ENOBUFS;
goto bnx_get_buf_exit;
}
DBRUNIF(1, sc->rx_mbuf_alloc++);
/* Simulate an mbuf cluster allocation failure. */
DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
m_freem(m_new);
sc->rx_mbuf_alloc--;
sc->mbuf_alloc_failed++;
sc->mbuf_sim_alloc_failed++;
rc = ENOBUFS;
goto bnx_get_buf_exit);
if (sc->mbuf_alloc_size == MCLBYTES)
MCLGET(m_new, M_DONTWAIT);
else
MEXTMALLOC(m_new, sc->mbuf_alloc_size,
M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
DBPRINT(sc, BNX_WARN,
"%s(%d): RX mbuf chain allocation failed!\n",
__FILE__, __LINE__);
m_freem(m_new);
DBRUNIF(1, sc->rx_mbuf_alloc--);
sc->mbuf_alloc_failed++;
rc = ENOBUFS;
goto bnx_get_buf_exit;
}
rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
if (rc != 0)
goto bnx_get_buf_exit;
}
bnx_get_buf_exit:
DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
"= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
*chain_prod, *prod_bseq);
DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
__func__);
return rc;
}
void
bnx_alloc_pkts(struct work * unused, void * arg)
{
struct bnx_softc *sc = arg;
struct ifnet *ifp = &sc->bnx_ec.ec_if;
struct bnx_pkt *pkt;
int i, s;
for (i = 0; i < 4; i++) { /* magic! */
pkt = pool_get(bnx_tx_pool, PR_WAITOK);
if (pkt == NULL)
break;
if (bus_dmamap_create(sc->bnx_dmatag,
MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
&pkt->pkt_dmamap) != 0)
goto put;
if (!ISSET(ifp->if_flags, IFF_UP))
goto stopping;
mutex_enter(&sc->tx_pkt_mtx);
TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
sc->tx_pkt_count++;
mutex_exit(&sc->tx_pkt_mtx);
}
mutex_enter(&sc->tx_pkt_mtx);
CLR(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
mutex_exit(&sc->tx_pkt_mtx);
/* fire-up TX now that allocations have been done */
s = splnet();
if (!IFQ_IS_EMPTY(&ifp->if_snd))
bnx_start(ifp);
splx(s);
return;
stopping:
bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
put:
pool_put(bnx_tx_pool, pkt);
return;
}
/****************************************************************************/
/* Initialize the TX context memory. */
/* */
/* Returns: */
/* Nothing */
/****************************************************************************/
void
bnx_init_tx_context(struct bnx_softc *sc)
{
uint32_t val;
/* Initialize the context ID for an L2 TX chain. */
if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
/* Set the CID type to support an L2 connection. */
val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
/* Point the hardware to the first page in the chain. */
val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
CTX_WR(sc, GET_CID_ADDR(TX_CID),
BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
CTX_WR(sc, GET_CID_ADDR(TX_CID),
BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
} else {
/* Set the CID type to support an L2 connection. */
val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
/* Point the hardware to the first page in the chain. */
val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
}
}
/****************************************************************************/
/* Allocate memory and initialize the TX data structures. */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/****************************************************************************/
int
bnx_init_tx_chain(struct bnx_softc *sc)
{
struct tx_bd *txbd;
uint32_t addr;
int i, rc = 0;
DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
/* Force an allocation of some dmamaps for tx up front */
bnx_alloc_pkts(NULL, sc);
/* Set the initial TX producer/consumer indices. */
sc->tx_prod = 0;
sc->tx_cons = 0;
sc->tx_prod_bseq = 0;
sc->used_tx_bd = 0;
sc->max_tx_bd = USABLE_TX_BD;
DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
DBRUNIF(1, sc->tx_full_count = 0);
/*
* The NetXtreme II supports a linked-list structure called
* a Buffer Descriptor Chain (or BD chain). A BD chain
* consists of a series of 1 or more chain pages, each of which
* consists of a fixed number of BD entries.
* The last BD entry on each page is a pointer to the next page
* in the chain, and the last pointer in the BD chain
* points back to the beginning of the chain.
*/
/* Set the TX next pointer chain entries. */
for (i = 0; i < TX_PAGES; i++) {
int j;
txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
/* Check if we've reached the last page. */
if (i == (TX_PAGES - 1))
j = 0;
else
j = i + 1;
addr = (uint32_t)sc->tx_bd_chain_paddr[j];
txbd->tx_bd_haddr_lo = addr;
addr = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[j] >> 32);
txbd->tx_bd_haddr_hi = addr;
bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
}
/*
* Initialize the context ID for an L2 TX chain.
*/
bnx_init_tx_context(sc);
DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
return rc;
}
/****************************************************************************/
/* Free memory and clear the TX data structures. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
void
bnx_free_tx_chain(struct bnx_softc *sc)
{
struct bnx_pkt *pkt;
int i;
DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
mutex_enter(&sc->tx_pkt_mtx);
while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
mutex_exit(&sc->tx_pkt_mtx);
bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
m_freem(pkt->pkt_mbuf);
DBRUNIF(1, sc->tx_mbuf_alloc--);
mutex_enter(&sc->tx_pkt_mtx);
TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
}
/* Destroy all the dmamaps we allocated for TX */
while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
sc->tx_pkt_count--;
mutex_exit(&sc->tx_pkt_mtx);
bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
pool_put(bnx_tx_pool, pkt);
mutex_enter(&sc->tx_pkt_mtx);
}
mutex_exit(&sc->tx_pkt_mtx);
/* Clear each TX chain page. */
for (i = 0; i < TX_PAGES; i++) {
memset(sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
}
sc->used_tx_bd = 0;
/* Check if we lost any mbufs in the process. */
DBRUNIF((sc->tx_mbuf_alloc),
aprint_error_dev(sc->bnx_dev,
"Memory leak! Lost %d mbufs from tx chain!\n",
sc->tx_mbuf_alloc));
DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
}
/****************************************************************************/
/* Initialize the RX context memory. */
/* */
/* Returns: */
/* Nothing */
/****************************************************************************/
void
bnx_init_rx_context(struct bnx_softc *sc)
{
uint32_t val;
/* Initialize the context ID for an L2 RX chain. */
val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
if (sc->bnx_flowflags & IFM_ETH_TXPAUSE)
val |= 0x000000ff;
CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
val = REG_RD(sc, BNX_MQ_MAP_L2_5);
REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
}
/* Point the hardware to the first page in the chain. */
val = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[0] >> 32);
CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
val = (uint32_t)(sc->rx_bd_chain_paddr[0]);
CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
}
/****************************************************************************/
/* Allocate memory and initialize the RX data structures. */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/****************************************************************************/
int
bnx_init_rx_chain(struct bnx_softc *sc)
{
struct rx_bd *rxbd;
int i, rc = 0;
uint16_t prod, chain_prod;
uint32_t prod_bseq, addr;
DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
/* Initialize the RX producer and consumer indices. */
sc->rx_prod = 0;
sc->rx_cons = 0;
sc->rx_prod_bseq = 0;
sc->free_rx_bd = USABLE_RX_BD;
sc->max_rx_bd = USABLE_RX_BD;
DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
DBRUNIF(1, sc->rx_empty_count = 0);
/* Initialize the RX next pointer chain entries. */
for (i = 0; i < RX_PAGES; i++) {
int j;
rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
/* Check if we've reached the last page. */
if (i == (RX_PAGES - 1))
j = 0;
else
j = i + 1;
/* Setup the chain page pointers. */
addr = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[j] >> 32);
rxbd->rx_bd_haddr_hi = addr;
addr = (uint32_t)sc->rx_bd_chain_paddr[j];
rxbd->rx_bd_haddr_lo = addr;
bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
0, BNX_RX_CHAIN_PAGE_SZ,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
/* Allocate mbuf clusters for the rx_bd chain. */
prod = prod_bseq = 0;
chain_prod = RX_CHAIN_IDX(prod);
if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
BNX_PRINTF(sc,
"Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
}
/* Save the RX chain producer index. */
sc->rx_prod = prod;
sc->rx_prod_bseq = prod_bseq;
for (i = 0; i < RX_PAGES; i++)
bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
sc->rx_bd_chain_map[i]->dm_mapsize,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/* Tell the chip about the waiting rx_bd's. */
REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
bnx_init_rx_context(sc);
DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
return rc;
}
/****************************************************************************/
/* Free memory and clear the RX data structures. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
void
bnx_free_rx_chain(struct bnx_softc *sc)
{
int i;
DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
/* Free any mbufs still in the RX mbuf chain. */
for (i = 0; i < TOTAL_RX_BD; i++) {
if (sc->rx_mbuf_ptr[i] != NULL) {
if (sc->rx_mbuf_map[i] != NULL) {
bus_dmamap_sync(sc->bnx_dmatag,
sc->rx_mbuf_map[i], 0,
sc->rx_mbuf_map[i]->dm_mapsize,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->bnx_dmatag,
sc->rx_mbuf_map[i]);
}
m_freem(sc->rx_mbuf_ptr[i]);
sc->rx_mbuf_ptr[i] = NULL;
DBRUNIF(1, sc->rx_mbuf_alloc--);
}
}
/* Clear each RX chain page. */
for (i = 0; i < RX_PAGES; i++)
memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
sc->free_rx_bd = sc->max_rx_bd;
/* Check if we lost any mbufs in the process. */
DBRUNIF((sc->rx_mbuf_alloc),
aprint_error_dev(sc->bnx_dev,
"Memory leak! Lost %d mbufs from rx chain!\n",
sc->rx_mbuf_alloc));
DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
}
/****************************************************************************/
/* Set media options. */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/****************************************************************************/
int
bnx_ifmedia_upd(struct ifnet *ifp)
{
struct bnx_softc *sc;
struct mii_data *mii;
int rc = 0;
sc = ifp->if_softc;
mii = &sc->bnx_mii;
sc->bnx_link = 0;
if (mii->mii_instance) {
struct mii_softc *miisc;
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
mii_phy_reset(miisc);
}
mii_mediachg(mii);
return rc;
}
/****************************************************************************/
/* Reports current media status. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
void
bnx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct bnx_softc *sc;
struct mii_data *mii;
int s;
sc = ifp->if_softc;
s = splnet();
mii = &sc->bnx_mii;
mii_pollstat(mii);
ifmr->ifm_status = mii->mii_media_status;
ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
sc->bnx_flowflags;
splx(s);
}
/****************************************************************************/
/* Handles PHY generated interrupt events. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
void
bnx_phy_intr(struct bnx_softc *sc)
{
uint32_t new_link_state, old_link_state;
bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
BUS_DMASYNC_POSTREAD);
new_link_state = sc->status_block->status_attn_bits &
STATUS_ATTN_BITS_LINK_STATE;
old_link_state = sc->status_block->status_attn_bits_ack &
STATUS_ATTN_BITS_LINK_STATE;
/* Handle any changes if the link state has changed. */
if (new_link_state != old_link_state) {
DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
sc->bnx_link = 0;
callout_stop(&sc->bnx_timeout);
bnx_tick(sc);
/* Update the status_attn_bits_ack field in the status block. */
if (new_link_state) {
REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
STATUS_ATTN_BITS_LINK_STATE);
DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
} else {
REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
STATUS_ATTN_BITS_LINK_STATE);
DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
}
}
/* Acknowledge the link change interrupt. */
REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
}
/****************************************************************************/
/* Handles received frame interrupt events. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
void
bnx_rx_intr(struct bnx_softc *sc)
{
struct status_block *sblk = sc->status_block;
struct ifnet *ifp = &sc->bnx_ec.ec_if;
uint16_t hw_cons, sw_cons, sw_chain_cons;
uint16_t sw_prod, sw_chain_prod;
uint32_t sw_prod_bseq;
struct l2_fhdr *l2fhdr;
int i;
DBRUNIF(1, sc->rx_interrupts++);
bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
BUS_DMASYNC_POSTREAD);
/* Prepare the RX chain pages to be accessed by the host CPU. */
for (i = 0; i < RX_PAGES; i++)
bus_dmamap_sync(sc->bnx_dmatag,
sc->rx_bd_chain_map[i], 0,
sc->rx_bd_chain_map[i]->dm_mapsize,
BUS_DMASYNC_POSTWRITE);
/* Get the hardware's view of the RX consumer index. */
hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
hw_cons++;
/* Get working copies of the driver's view of the RX indices. */
sw_cons = sc->rx_cons;
sw_prod = sc->rx_prod;
sw_prod_bseq = sc->rx_prod_bseq;
DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
"sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
__func__, sw_prod, sw_cons, sw_prod_bseq);
/* Prevent speculative reads from getting ahead of the status block. */
bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
BUS_SPACE_BARRIER_READ);
/* Update some debug statistics counters */
DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
sc->rx_low_watermark = sc->free_rx_bd);
DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
/*
* Scan through the receive chain as long
* as there is work to do.
*/
while (sw_cons != hw_cons) {
struct mbuf *m;
struct rx_bd *rxbd __diagused;
unsigned int len;
uint32_t status;
/* Convert the producer/consumer indices to an actual
* rx_bd index.
*/
sw_chain_cons = RX_CHAIN_IDX(sw_cons);
sw_chain_prod = RX_CHAIN_IDX(sw_prod);
/* Get the used rx_bd. */
rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
sc->free_rx_bd++;
DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
/* The mbuf is stored with the last rx_bd entry of a packet. */
if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
#ifdef DIAGNOSTIC
/* Validate that this is the last rx_bd. */
if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
printf("%s: Unexpected mbuf found in "
"rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
sw_chain_cons);
}
#endif
/* DRC - ToDo: If the received packet is small, say
* less than 128 bytes, allocate a new mbuf
* here, copy the data to that mbuf, and
* recycle the mapped jumbo frame.
*/
/* Unmap the mbuf from DMA space. */
#ifdef DIAGNOSTIC
if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
printf("invalid map sw_cons 0x%x "
"sw_prod 0x%x "
"sw_chain_cons 0x%x "
"sw_chain_prod 0x%x "
"hw_cons 0x%x "
"TOTAL_RX_BD_PER_PAGE 0x%x "
"TOTAL_RX_BD 0x%x\n",
sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
hw_cons,
(int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
}
#endif
bus_dmamap_sync(sc->bnx_dmatag,
sc->rx_mbuf_map[sw_chain_cons], 0,
sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->bnx_dmatag,
sc->rx_mbuf_map[sw_chain_cons]);
/* Remove the mbuf from the driver's chain. */
m = sc->rx_mbuf_ptr[sw_chain_cons];
sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
/*
* Frames received on the NetXteme II are prepended
* with the l2_fhdr structure which provides status
* information about the received frame (including
* VLAN tags and checksum info) and are also
* automatically adjusted to align the IP header
* (i.e. two null bytes are inserted before the
* Ethernet header).
*/
l2fhdr = mtod(m, struct l2_fhdr *);
len = l2fhdr->l2_fhdr_pkt_len;
status = l2fhdr->l2_fhdr_status;
DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
aprint_error("Simulating l2_fhdr status error.\n");
status = status | L2_FHDR_ERRORS_PHY_DECODE);
/* Watch for unusual sized frames. */
DBRUNIF(((len < BNX_MIN_MTU) ||
(len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
aprint_error_dev(sc->bnx_dev,
"Unusual frame size found. "
"Min(%d), Actual(%d), Max(%d)\n",
(int)BNX_MIN_MTU, len,
(int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
bnx_dump_mbuf(sc, m);
bnx_breakpoint(sc));
len -= ETHER_CRC_LEN;
/* Check the received frame for errors. */
if ((status & (L2_FHDR_ERRORS_BAD_CRC |
L2_FHDR_ERRORS_PHY_DECODE |
L2_FHDR_ERRORS_ALIGNMENT |
L2_FHDR_ERRORS_TOO_SHORT |
L2_FHDR_ERRORS_GIANT_FRAME)) ||
len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
len >
(BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
ifp->if_ierrors++;
DBRUNIF(1, sc->l2fhdr_status_errors++);
/* Reuse the mbuf for a new frame. */
if (bnx_add_buf(sc, m, &sw_prod,
&sw_chain_prod, &sw_prod_bseq)) {
DBRUNIF(1, bnx_breakpoint(sc));
panic("%s: Can't reuse RX mbuf!\n",
device_xname(sc->bnx_dev));
}
continue;
}
/*
* Get a new mbuf for the rx_bd. If no new
* mbufs are available then reuse the current mbuf,
* log an ierror on the interface, and generate
* an error in the system log.
*/
if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
&sw_prod_bseq)) {
DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
"Failed to allocate "
"new mbuf, incoming frame dropped!\n"));
ifp->if_ierrors++;
/* Try and reuse the exisitng mbuf. */
if (bnx_add_buf(sc, m, &sw_prod,
&sw_chain_prod, &sw_prod_bseq)) {
DBRUNIF(1, bnx_breakpoint(sc));
panic("%s: Double mbuf allocation "
"failure!",
device_xname(sc->bnx_dev));
}
continue;
}
/* Skip over the l2_fhdr when passing the data up
* the stack.
*/
m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
/* Adjust the pckt length to match the received data. */
m->m_pkthdr.len = m->m_len = len;
/* Send the packet to the appropriate interface. */
m_set_rcvif(m, ifp);
DBRUN(BNX_VERBOSE_RECV,
struct ether_header *eh;
eh = mtod(m, struct ether_header *);
aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
__func__, ether_sprintf(eh->ether_dhost),
ether_sprintf(eh->ether_shost),
htons(eh->ether_type)));
/* Validate the checksum. */
/* Check for an IP datagram. */
if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
/* Check if the IP checksum is valid. */
if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
#ifdef BNX_DEBUG
else
DBPRINT(sc, BNX_WARN_SEND,
"%s(): Invalid IP checksum "
"= 0x%04X!\n",
__func__,
l2fhdr->l2_fhdr_ip_xsum
);
#endif
}
/* Check for a valid TCP/UDP frame. */
if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
L2_FHDR_STATUS_UDP_DATAGRAM)) {
/* Check for a good TCP/UDP checksum. */
if ((status &
(L2_FHDR_ERRORS_TCP_XSUM |
L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
m->m_pkthdr.csum_flags |=
M_CSUM_TCPv4 |
M_CSUM_UDPv4;
} else {
DBPRINT(sc, BNX_WARN_SEND,
"%s(): Invalid TCP/UDP "
"checksum = 0x%04X!\n",
__func__,
l2fhdr->l2_fhdr_tcp_udp_xsum);
}
}
/*
* If we received a packet with a vlan tag,
* attach that information to the packet.
*/
if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
!(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
vlan_set_tag(m, l2fhdr->l2_fhdr_vlan_tag);
}
/* Pass the mbuf off to the upper layers. */
DBPRINT(sc, BNX_VERBOSE_RECV,
"%s(): Passing received frame up.\n", __func__);
if_percpuq_enqueue(ifp->if_percpuq, m);
DBRUNIF(1, sc->rx_mbuf_alloc--);
}
sw_cons = NEXT_RX_BD(sw_cons);
/* Refresh hw_cons to see if there's new work */
if (sw_cons == hw_cons) {
hw_cons = sc->hw_rx_cons =
sblk->status_rx_quick_consumer_index0;
if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
USABLE_RX_BD_PER_PAGE)
hw_cons++;
}
/* Prevent speculative reads from getting ahead of
* the status block.
*/
bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
BUS_SPACE_BARRIER_READ);
}
for (i = 0; i < RX_PAGES; i++)
bus_dmamap_sync(sc->bnx_dmatag,
sc->rx_bd_chain_map[i], 0,
sc->rx_bd_chain_map[i]->dm_mapsize,
BUS_DMASYNC_PREWRITE);
sc->rx_cons = sw_cons;
sc->rx_prod = sw_prod;
sc->rx_prod_bseq = sw_prod_bseq;
REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
"rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
__func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
}
/****************************************************************************/
/* Handles transmit completion interrupt events. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
void
bnx_tx_intr(struct bnx_softc *sc)
{
struct status_block *sblk = sc->status_block;
struct ifnet *ifp = &sc->bnx_ec.ec_if;
struct bnx_pkt *pkt;
bus_dmamap_t map;
uint16_t hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
DBRUNIF(1, sc->tx_interrupts++);
bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
BUS_DMASYNC_POSTREAD);
/* Get the hardware's view of the TX consumer index. */
hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
/* Skip to the next entry if this is a chain page pointer. */
if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
hw_tx_cons++;
sw_tx_cons = sc->tx_cons;
/* Prevent speculative reads from getting ahead of the status block. */
bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
BUS_SPACE_BARRIER_READ);
/* Cycle through any completed TX chain page entries. */
while (sw_tx_cons != hw_tx_cons) {
#ifdef BNX_DEBUG
struct tx_bd *txbd = NULL;
#endif
sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
"sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
__func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
aprint_error_dev(sc->bnx_dev,
"TX chain consumer out of range! 0x%04X > 0x%04X\n",
sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
DBRUNIF(1, txbd = &sc->tx_bd_chain
[TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
DBRUNIF((txbd == NULL),
aprint_error_dev(sc->bnx_dev,
"Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
bnx_breakpoint(sc));
DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
mutex_enter(&sc->tx_pkt_mtx);
pkt = TAILQ_FIRST(&sc->tx_used_pkts);
if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
mutex_exit(&sc->tx_pkt_mtx);
/*
* Free the associated mbuf. Remember
* that only the last tx_bd of a packet
* has an mbuf pointer and DMA map.
*/
map = pkt->pkt_dmamap;
bus_dmamap_sync(sc->bnx_dmatag, map, 0,
map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->bnx_dmatag, map);
m_freem(pkt->pkt_mbuf);
DBRUNIF(1, sc->tx_mbuf_alloc--);
ifp->if_opackets++;
mutex_enter(&sc->tx_pkt_mtx);
TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
}
mutex_exit(&sc->tx_pkt_mtx);
sc->used_tx_bd--;
DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
__FILE__, __LINE__, sc->used_tx_bd);
sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
/* Refresh hw_cons to see if there's new work. */
hw_tx_cons = sc->hw_tx_cons =
sblk->status_tx_quick_consumer_index0;
if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
USABLE_TX_BD_PER_PAGE)
hw_tx_cons++;
/* Prevent speculative reads from getting ahead of
* the status block.
*/
bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
BUS_SPACE_BARRIER_READ);
}
/* Clear the TX timeout timer. */
ifp->if_timer = 0;
/* Clear the tx hardware queue full flag. */
if (sc->used_tx_bd < sc->max_tx_bd) {
DBRUNIF((ifp->if_flags & IFF_OACTIVE),
aprint_debug_dev(sc->bnx_dev,
"Open TX chain! %d/%d (used/total)\n",
sc->used_tx_bd, sc->max_tx_bd));
ifp->if_flags &= ~IFF_OACTIVE;
}
sc->tx_cons = sw_tx_cons;
}
/****************************************************************************/
/* Disables interrupt generation. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
void
bnx_disable_intr(struct bnx_softc *sc)
{
REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
}
/****************************************************************************/
/* Enables interrupt generation. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
void
bnx_enable_intr(struct bnx_softc *sc)
{
uint32_t val;
REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
sc->last_status_idx);
val = REG_RD(sc, BNX_HC_COMMAND);
REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
}
/****************************************************************************/
/* Handles controller initialization. */
/* */
/****************************************************************************/
int
bnx_init(struct ifnet *ifp)
{
struct bnx_softc *sc = ifp->if_softc;
uint32_t ether_mtu;
int s, error = 0;
DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
s = splnet();
bnx_stop(ifp, 0);
if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
aprint_error_dev(sc->bnx_dev,
"Controller reset failed!\n");
goto bnx_init_exit;
}
if ((error = bnx_chipinit(sc)) != 0) {
aprint_error_dev(sc->bnx_dev,
"Controller initialization failed!\n");
goto bnx_init_exit;
}
if ((error = bnx_blockinit(sc)) != 0) {
aprint_error_dev(sc->bnx_dev,
"Block initialization failed!\n");
goto bnx_init_exit;
}
/* Calculate and program the Ethernet MRU size. */
if (ifp->if_mtu <= ETHERMTU) {
ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
sc->mbuf_alloc_size = MCLBYTES;
} else {
ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
}
DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n", __func__, ether_mtu);
/*
* Program the MRU and enable Jumbo frame
* support.
*/
REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
/* Calculate the RX Ethernet frame size for rx_bd's. */
sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
"max_frame_size = %d\n", __func__, (int)MCLBYTES,
sc->mbuf_alloc_size, sc->max_frame_size);
/* Program appropriate promiscuous/multicast filtering. */
bnx_iff(sc);
/* Init RX buffer descriptor chain. */
bnx_init_rx_chain(sc);
/* Init TX buffer descriptor chain. */
bnx_init_tx_chain(sc);
/* Enable host interrupts. */
bnx_enable_intr(sc);
bnx_ifmedia_upd(ifp);
SET(ifp->if_flags, IFF_RUNNING);
CLR(ifp->if_flags, IFF_OACTIVE);
callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
bnx_init_exit:
DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
splx(s);
return error;
}
void
bnx_mgmt_init(struct bnx_softc *sc)
{
struct ifnet *ifp = &sc->bnx_ec.ec_if;
uint32_t val;
/* Check if the driver is still running and bail out if it is. */
if (ifp->if_flags & IFF_RUNNING)
goto bnx_mgmt_init_exit;
/* Initialize the on-boards CPUs */
bnx_init_cpus(sc);
val = (BCM_PAGE_BITS - 8) << 24;
REG_WR(sc, BNX_RV2P_CONFIG, val);
/* Enable all critical blocks in the MAC. */
REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
BNX_MISC_ENABLE_SET_BITS_RX_V2P_ENABLE |
BNX_MISC_ENABLE_SET_BITS_RX_DMA_ENABLE |
BNX_MISC_ENABLE_SET_BITS_COMPLETION_ENABLE);
REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
DELAY(20);
bnx_ifmedia_upd(ifp);
bnx_mgmt_init_exit:
DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
}
/****************************************************************************/
/* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
/* memory visible to the controller. */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/****************************************************************************/
int
bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
{
struct bnx_pkt *pkt;
bus_dmamap_t map;
struct tx_bd *txbd = NULL;
uint16_t vlan_tag = 0, flags = 0;
uint16_t chain_prod, prod;
#ifdef BNX_DEBUG
uint16_t debug_prod;
#endif
uint32_t addr, prod_bseq;
int i, error;
static struct work bnx_wk; /* Dummy work. Statically allocated. */
bool remap = true;
mutex_enter(&sc->tx_pkt_mtx);
pkt = TAILQ_FIRST(&sc->tx_free_pkts);
if (pkt == NULL) {
if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
mutex_exit(&sc->tx_pkt_mtx);
return ENETDOWN;
}
if (sc->tx_pkt_count <= TOTAL_TX_BD &&
!ISSET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG)) {
workqueue_enqueue(sc->bnx_wq, &bnx_wk, NULL);
SET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
}
mutex_exit(&sc->tx_pkt_mtx);
return ENOMEM;
}
TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
mutex_exit(&sc->tx_pkt_mtx);
/* Transfer any checksum offload flags to the bd. */
if (m->m_pkthdr.csum_flags) {
if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
flags |= TX_BD_FLAGS_IP_CKSUM;
if (m->m_pkthdr.csum_flags &
(M_CSUM_TCPv4 | M_CSUM_UDPv4))
flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
}
/* Transfer any VLAN tags to the bd. */
if (vlan_has_tag(m)) {
flags |= TX_BD_FLAGS_VLAN_TAG;
vlan_tag = vlan_get_tag(m);
}
/* Map the mbuf into DMAable memory. */
prod = sc->tx_prod;
chain_prod = TX_CHAIN_IDX(prod);
map = pkt->pkt_dmamap;
/* Map the mbuf into our DMA address space. */
retry:
error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
if (__predict_false(error)) {
if (error == EFBIG) {
if (remap == true) {
struct mbuf *newm;
remap = false;
newm = m_defrag(m, M_NOWAIT);
if (newm != NULL) {
m = newm;
goto retry;
}
}
}
sc->tx_dma_map_failures++;
goto maperr;
}
bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
/* Make sure there's room in the chain */
if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
goto nospace;
/* prod points to an empty tx_bd at this point. */
prod_bseq = sc->tx_prod_bseq;
#ifdef BNX_DEBUG
debug_prod = chain_prod;
#endif
DBPRINT(sc, BNX_INFO_SEND,
"%s(): Start: prod = 0x%04X, chain_prod = %04X, "
"prod_bseq = 0x%08X\n",
__func__, prod, chain_prod, prod_bseq);
/*
* Cycle through each mbuf segment that makes up
* the outgoing frame, gathering the mapping info
* for that segment and creating a tx_bd for the
* mbuf.
*/
for (i = 0; i < map->dm_nsegs ; i++) {
chain_prod = TX_CHAIN_IDX(prod);
txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
addr = (uint32_t)map->dm_segs[i].ds_addr;
txbd->tx_bd_haddr_lo = addr;
addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
txbd->tx_bd_haddr_hi = addr;
txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
txbd->tx_bd_vlan_tag = vlan_tag;
txbd->tx_bd_flags = flags;
prod_bseq += map->dm_segs[i].ds_len;
if (i == 0)
txbd->tx_bd_flags |= TX_BD_FLAGS_START;
prod = NEXT_TX_BD(prod);
}
/* Set the END flag on the last TX buffer descriptor. */
txbd->tx_bd_flags |= TX_BD_FLAGS_END;
DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
DBPRINT(sc, BNX_INFO_SEND,
"%s(): End: prod = 0x%04X, chain_prod = %04X, "
"prod_bseq = 0x%08X\n",
__func__, prod, chain_prod, prod_bseq);
pkt->pkt_mbuf = m;
pkt->pkt_end_desc = chain_prod;
mutex_enter(&sc->tx_pkt_mtx);
TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
mutex_exit(&sc->tx_pkt_mtx);
sc->used_tx_bd += map->dm_nsegs;
DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
__FILE__, __LINE__, sc->used_tx_bd);
/* Update some debug statistics counters */
DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
sc->tx_hi_watermark = sc->used_tx_bd);
DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
DBRUNIF(1, sc->tx_mbuf_alloc++);
DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
map->dm_nsegs));
/* prod points to the next free tx_bd at this point. */
sc->tx_prod = prod;
sc->tx_prod_bseq = prod_bseq;
return 0;
nospace:
bus_dmamap_unload(sc->bnx_dmatag, map);
maperr:
mutex_enter(&sc->tx_pkt_mtx);
TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
mutex_exit(&sc->tx_pkt_mtx);
return ENOMEM;
}
/****************************************************************************/
/* Main transmit routine. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
void
bnx_start(struct ifnet *ifp)
{
struct bnx_softc *sc = ifp->if_softc;
struct mbuf *m_head = NULL;
int count = 0;
#ifdef BNX_DEBUG
uint16_t tx_chain_prod;
#endif
/* If there's no link or the transmit queue is empty then just exit. */
if (!sc->bnx_link
||(ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING) {
DBPRINT(sc, BNX_INFO_SEND,
"%s(): output active or device not running.\n", __func__);
goto bnx_start_exit;
}
/* prod points to the next free tx_bd. */
#ifdef BNX_DEBUG
tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
#endif
DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
"tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
"used_tx %d max_tx %d\n",
__func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq,
sc->used_tx_bd, sc->max_tx_bd);
/*
* Keep adding entries while there is space in the ring.
*/
while (sc->used_tx_bd < sc->max_tx_bd) {
/* Check for any frames to send. */
IFQ_POLL(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/*
* Pack the data into the transmit ring. If we
* don't have room, set the OACTIVE flag to wait
* for the NIC to drain the chain.
*/
if (bnx_tx_encap(sc, m_head)) {
ifp->if_flags |= IFF_OACTIVE;
DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
"business! Total tx_bd used = %d\n",
sc->used_tx_bd);
break;
}
IFQ_DEQUEUE(&ifp->if_snd, m_head);
count++;
/* Send a copy of the frame to any BPF listeners. */
bpf_mtap(ifp, m_head, BPF_D_OUT);
}
if (count == 0) {
/* no packets were dequeued */
DBPRINT(sc, BNX_VERBOSE_SEND,
"%s(): No packets were dequeued\n", __func__);
goto bnx_start_exit;
}
/* Update the driver's counters. */
#ifdef BNX_DEBUG
tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
#endif
DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, "
"tx_chain_prod = 0x%04X, tx_prod_bseq = 0x%08X\n",
__func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq);
/* Start the transmit. */
REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
/* Set the tx timeout. */
ifp->if_timer = BNX_TX_TIMEOUT;
bnx_start_exit:
return;
}
/****************************************************************************/
/* Handles any IOCTL calls from the operating system. */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/****************************************************************************/
int
bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
{
struct bnx_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
struct mii_data *mii = &sc->bnx_mii;
int s, error = 0;
s = splnet();
switch (command) {
case SIOCSIFFLAGS:
if ((error = ifioctl_common(ifp, command, data)) != 0)
break;
/* XXX set an ifflags callback and let ether_ioctl
* handle all of this.
*/
if (ISSET(ifp->if_flags, IFF_UP)) {
if (ifp->if_flags & IFF_RUNNING)
error = ENETRESET;
else
bnx_init(ifp);
} else if (ifp->if_flags & IFF_RUNNING)
bnx_stop(ifp, 1);
break;
case SIOCSIFMEDIA:
/* Flow control requires full-duplex mode. */
if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
(ifr->ifr_media & IFM_FDX) == 0)
ifr->ifr_media &= ~IFM_ETH_FMASK;
if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
/* We can do both TXPAUSE and RXPAUSE. */
ifr->ifr_media |=
IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
}
sc->bnx_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
}
DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
sc->bnx_phy_flags);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
break;
default:
error = ether_ioctl(ifp, command, data);
}
if (error == ENETRESET) {
if (ifp->if_flags & IFF_RUNNING)
bnx_iff(sc);
error = 0;
}
splx(s);
return error;
}
/****************************************************************************/
/* Transmit timeout handler. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
void
bnx_watchdog(struct ifnet *ifp)
{
struct bnx_softc *sc = ifp->if_softc;
DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
bnx_dump_status_block(sc));
/*
* If we are in this routine because of pause frames, then
* don't reset the hardware.
*/
if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
return;
aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
/* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
bnx_init(ifp);
ifp->if_oerrors++;
}
/*
* Interrupt handler.
*/
/****************************************************************************/
/* Main interrupt entry point. Verifies that the controller generated the */
/* interrupt and then calls a separate routine for handle the various */
/* interrupt causes (PHY, TX, RX). */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/****************************************************************************/
int
bnx_intr(void *xsc)
{
struct bnx_softc *sc = xsc;
struct ifnet *ifp = &sc->bnx_ec.ec_if;
uint32_t status_attn_bits;
uint16_t status_idx;
const struct status_block *sblk;
int rv = 0;
if (!device_is_active(sc->bnx_dev) ||
(ifp->if_flags & IFF_RUNNING) == 0)
return 0;
DBRUNIF(1, sc->interrupts_generated++);
bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
sc->status_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
sblk = sc->status_block;
/*
* If the hardware status block index
* matches the last value read by the
* driver and we haven't asserted our
* interrupt then there's nothing to do.
*/
status_idx = sblk->status_idx;
if ((status_idx != sc->last_status_idx) ||
!ISSET(REG_RD(sc, BNX_PCICFG_MISC_STATUS),
BNX_PCICFG_MISC_STATUS_INTA_VALUE)) {
rv = 1;
/* Ack the interrupt */
REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | status_idx);
status_attn_bits = sblk->status_attn_bits;
DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
aprint_debug("Simulating unexpected status attention bit set.");
status_attn_bits = status_attn_bits |
STATUS_ATTN_BITS_PARITY_ERROR);
/* Was it a link change interrupt? */
if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
(sblk->status_attn_bits_ack &
STATUS_ATTN_BITS_LINK_STATE))
bnx_phy_intr(sc);
/* If any other attention is asserted then the chip is toast. */
if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
(sblk->status_attn_bits_ack &
~STATUS_ATTN_BITS_LINK_STATE))) {
DBRUN(sc->unexpected_attentions++);
BNX_PRINTF(sc, "Fatal attention detected: 0x%08X\n",
sblk->status_attn_bits);
DBRUNIF((bnx_debug_unexpected_attention == 0),
bnx_breakpoint(sc));
bnx_init(ifp);
goto out;
}
/* Check for any completed RX frames. */
if (sblk->status_rx_quick_consumer_index0 != sc->hw_rx_cons)
bnx_rx_intr(sc);
/* Check for any completed TX frames. */
if (sblk->status_tx_quick_consumer_index0 != sc->hw_tx_cons)
bnx_tx_intr(sc);
/*
* Save the status block index value for use during the
* next interrupt.
*/
sc->last_status_idx = status_idx;
/* Start moving packets again */
if (ifp->if_flags & IFF_RUNNING)
if_schedule_deferred_start(ifp);
}
out:
bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
sc->status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
return rv;
}
/****************************************************************************/
/* Programs the various packet receive modes (broadcast and multicast). */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
void
bnx_iff(struct bnx_softc *sc)
{
struct ethercom *ec = &sc->bnx_ec;
struct ifnet *ifp = &ec->ec_if;
struct ether_multi *enm;
struct ether_multistep step;
uint32_t hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
uint32_t rx_mode, sort_mode;
int h, i;
/* Initialize receive mode default settings. */
rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
ifp->if_flags &= ~IFF_ALLMULTI;
/*
* ASF/IPMI/UMP firmware requires that VLAN tag stripping
* be enbled.
*/
if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
/*
* Check for promiscuous, all multicast, or selected
* multicast address filtering.
*/
if (ifp->if_flags & IFF_PROMISC) {
DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
ifp->if_flags |= IFF_ALLMULTI;
/* Enable promiscuous mode. */
rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
} else if (ifp->if_flags & IFF_ALLMULTI) {
allmulti:
DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
ifp->if_flags |= IFF_ALLMULTI;
/* Enable all multicast addresses. */
for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
0xffffffff);
sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
} else {
/* Accept one or more multicast(s). */
DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
ETHER_LOCK(ec);
ETHER_FIRST_MULTI(step, ec, enm);
while (enm != NULL) {
if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
ETHER_ADDR_LEN)) {
ETHER_UNLOCK(ec);
goto allmulti;
}
h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
0xFF;
hashes[(h & 0xE0) >> 5] |= __BIT(h & 0x1F);
ETHER_NEXT_MULTI(step, enm);
}
ETHER_UNLOCK(ec);
for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
hashes[i]);
sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
}
/* Only make changes if the recive mode has actually changed. */
if (rx_mode != sc->rx_mode) {
DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
rx_mode);
sc->rx_mode = rx_mode;
REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
}
/* Disable and clear the exisitng sort before enabling a new sort. */
REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
}
/****************************************************************************/
/* Called periodically to updates statistics from the controllers */
/* statistics block. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
void
bnx_stats_update(struct bnx_softc *sc)
{
struct ifnet *ifp = &sc->bnx_ec.ec_if;
struct statistics_block *stats;
DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
BUS_DMASYNC_POSTREAD);
stats = (struct statistics_block *)sc->stats_block;
/*
* Update the interface statistics from the
* hardware statistics.
*/
ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
(u_long)stats->stat_EtherStatsOverrsizePkts +
(u_long)stats->stat_IfInMBUFDiscards +
(u_long)stats->stat_Dot3StatsAlignmentErrors +
(u_long)stats->stat_Dot3StatsFCSErrors;
ifp->if_oerrors = (u_long)
stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
(u_long)stats->stat_Dot3StatsExcessiveCollisions +
(u_long)stats->stat_Dot3StatsLateCollisions;
/*
* Certain controllers don't report
* carrier sense errors correctly.
* See errata E11_5708CA0_1165.
*/
if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
!(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
/*
* Update the sysctl statistics from the
* hardware statistics.
*/
sc->stat_IfHCInOctets = ((uint64_t)stats->stat_IfHCInOctets_hi << 32) +
(uint64_t) stats->stat_IfHCInOctets_lo;
sc->stat_IfHCInBadOctets =
((uint64_t) stats->stat_IfHCInBadOctets_hi << 32) +
(uint64_t) stats->stat_IfHCInBadOctets_lo;
sc->stat_IfHCOutOctets =
((uint64_t) stats->stat_IfHCOutOctets_hi << 32) +
(uint64_t) stats->stat_IfHCOutOctets_lo;
sc->stat_IfHCOutBadOctets =
((uint64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
(uint64_t) stats->stat_IfHCOutBadOctets_lo;
sc->stat_IfHCInUcastPkts =
((uint64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
(uint64_t) stats->stat_IfHCInUcastPkts_lo;
sc->stat_IfHCInMulticastPkts =
((uint64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
(uint64_t) stats->stat_IfHCInMulticastPkts_lo;
sc->stat_IfHCInBroadcastPkts =
((uint64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
(uint64_t) stats->stat_IfHCInBroadcastPkts_lo;
sc->stat_IfHCOutUcastPkts =
((uint64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
(uint64_t) stats->stat_IfHCOutUcastPkts_lo;
sc->stat_IfHCOutMulticastPkts =
((uint64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
(uint64_t) stats->stat_IfHCOutMulticastPkts_lo;
sc->stat_IfHCOutBroadcastPkts =
((uint64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
(uint64_t) stats->stat_IfHCOutBroadcastPkts_lo;
sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
sc->stat_Dot3StatsCarrierSenseErrors =
stats->stat_Dot3StatsCarrierSenseErrors;
sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
sc->stat_Dot3StatsAlignmentErrors =
stats->stat_Dot3StatsAlignmentErrors;
sc->stat_Dot3StatsSingleCollisionFrames =
stats->stat_Dot3StatsSingleCollisionFrames;
sc->stat_Dot3StatsMultipleCollisionFrames =
stats->stat_Dot3StatsMultipleCollisionFrames;
sc->stat_Dot3StatsDeferredTransmissions =
stats->stat_Dot3StatsDeferredTransmissions;
sc->stat_Dot3StatsExcessiveCollisions =
stats->stat_Dot3StatsExcessiveCollisions;
sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
sc->stat_EtherStatsPktsRx64Octets =
stats->stat_EtherStatsPktsRx64Octets;
sc->stat_EtherStatsPktsRx65Octetsto127Octets =
stats->stat_EtherStatsPktsRx65Octetsto127Octets;
sc->stat_EtherStatsPktsRx128Octetsto255Octets =
stats->stat_EtherStatsPktsRx128Octetsto255Octets;
sc->stat_EtherStatsPktsRx256Octetsto511Octets =
stats->stat_EtherStatsPktsRx256Octetsto511Octets;
sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
sc->stat_EtherStatsPktsTx64Octets =
stats->stat_EtherStatsPktsTx64Octets;
sc->stat_EtherStatsPktsTx65Octetsto127Octets =
stats->stat_EtherStatsPktsTx65Octetsto127Octets;
sc->stat_EtherStatsPktsTx128Octetsto255Octets =
stats->stat_EtherStatsPktsTx128Octetsto255Octets;
sc->stat_EtherStatsPktsTx256Octetsto511Octets =
stats->stat_EtherStatsPktsTx256Octetsto511Octets;
sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
sc->stat_OutXonSent = stats->stat_OutXonSent;
sc->stat_OutXoffSent = stats->stat_OutXoffSent;
sc->stat_FlowControlDone = stats->stat_FlowControlDone;
sc->stat_MacControlFramesReceived =
stats->stat_MacControlFramesReceived;
sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
sc->stat_IfInFramesL2FilterDiscards =
stats->stat_IfInFramesL2FilterDiscards;
sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
sc->stat_CatchupInRuleCheckerDiscards =
stats->stat_CatchupInRuleCheckerDiscards;
sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
sc->stat_CatchupInRuleCheckerP4Hit =
stats->stat_CatchupInRuleCheckerP4Hit;
DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
}
void
bnx_tick(void *xsc)
{
struct bnx_softc *sc = xsc;
struct ifnet *ifp = &sc->bnx_ec.ec_if;
struct mii_data *mii;
uint32_t msg;
uint16_t prod, chain_prod;
uint32_t prod_bseq;
int s = splnet();
/* Tell the firmware that the driver is still running. */
#ifdef BNX_DEBUG
msg = (uint32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
#else
msg = (uint32_t)++sc->bnx_fw_drv_pulse_wr_seq;
#endif
REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
/* Update the statistics from the hardware statistics block. */
bnx_stats_update(sc);
/* Schedule the next tick. */
if (!sc->bnx_detaching)
callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
if (sc->bnx_link)
goto bnx_tick_exit;
mii = &sc->bnx_mii;
mii_tick(mii);
/* Check if the link has come up. */
if (!sc->bnx_link && mii->mii_media_status & IFM_ACTIVE &&
IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
sc->bnx_link++;
/* Now that link is up, handle any outstanding TX traffic. */
if_schedule_deferred_start(ifp);
}
bnx_tick_exit:
/* try to get more RX buffers, just in case */
prod = sc->rx_prod;
prod_bseq = sc->rx_prod_bseq;
chain_prod = RX_CHAIN_IDX(prod);
bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
sc->rx_prod = prod;
sc->rx_prod_bseq = prod_bseq;
splx(s);
return;
}
/****************************************************************************/
/* BNX Debug Routines */
/****************************************************************************/
#ifdef BNX_DEBUG
/****************************************************************************/
/* Prints out information about an mbuf. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
void
bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
{
struct mbuf *mp = m;
if (m == NULL) {
/* Index out of range. */
aprint_error("mbuf ptr is null!\n");
return;
}
while (mp) {
aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
mp, mp->m_len);
if (mp->m_flags & M_EXT)
aprint_debug("M_EXT ");
if (mp->m_flags & M_PKTHDR)
aprint_debug("M_PKTHDR ");
aprint_debug("\n");
if (mp->m_flags & M_EXT)
aprint_debug("- m_ext: vaddr = %p, "
"ext_size = 0x%04zX\n", mp, mp->m_ext.ext_size);
mp = mp->m_next;
}
}
/****************************************************************************/
/* Prints out the mbufs in the TX mbuf chain. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
void
bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
{
#if 0
struct mbuf *m;
int i;
aprint_debug_dev(sc->bnx_dev,
"----------------------------"
" tx mbuf data "
"----------------------------\n");
for (i = 0; i < count; i++) {
m = sc->tx_mbuf_ptr[chain_prod];
BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
bnx_dump_mbuf(sc, m);
chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
}
aprint_debug_dev(sc->bnx_dev,
"--------------------------------------------"
"----------------------------\n");
#endif
}
/*
* This routine prints the RX mbuf chain.
*/
void
bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
{
struct mbuf *m;
int i;
aprint_debug_dev(sc->bnx_dev,
"----------------------------"
" rx mbuf data "
"----------------------------\n");
for (i = 0; i < count; i++) {
m = sc->rx_mbuf_ptr[chain_prod];
BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
bnx_dump_mbuf(sc, m);
chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
}
aprint_debug_dev(sc->bnx_dev,
"--------------------------------------------"
"----------------------------\n");
}
void
bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
{
if (idx > MAX_TX_BD)
/* Index out of range. */
BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
/* TX Chain page pointer. */
BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
"page pointer\n", idx, txbd->tx_bd_haddr_hi,
txbd->tx_bd_haddr_lo);
else
/* Normal tx_bd entry. */
BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
"0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
txbd->tx_bd_flags);
}
void
bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
{
if (idx > MAX_RX_BD)
/* Index out of range. */
BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
/* TX Chain page pointer. */
BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
"pointer\n", idx, rxbd->rx_bd_haddr_hi,
rxbd->rx_bd_haddr_lo);
else
/* Normal tx_bd entry. */
BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
"0x%08X, flags = 0x%08X\n", idx,
rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
rxbd->rx_bd_len, rxbd->rx_bd_flags);
}
void
bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
{
BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
"pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
"tcp_udp_xsum = 0x%04X\n", idx,
l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
l2fhdr->l2_fhdr_tcp_udp_xsum);
}
/*
* This routine prints the TX chain.
*/
void
bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
{
struct tx_bd *txbd;
int i;
/* First some info about the tx_bd chain structure. */
aprint_debug_dev(sc->bnx_dev,
"----------------------------"
" tx_bd chain "
"----------------------------\n");
BNX_PRINTF(sc,
"page size = 0x%08X, tx chain pages = 0x%08X\n",
(uint32_t)BCM_PAGE_SIZE, (uint32_t) TX_PAGES);
BNX_PRINTF(sc,
"tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
(uint32_t)TOTAL_TX_BD_PER_PAGE, (uint32_t)USABLE_TX_BD_PER_PAGE);
BNX_PRINTF(sc, "total tx_bd = 0x%08X\n", (uint32_t)TOTAL_TX_BD);
aprint_error_dev(sc->bnx_dev, ""
"-----------------------------"
" tx_bd data "
"-----------------------------\n");
/* Now print out the tx_bd's themselves. */
for (i = 0; i < count; i++) {
txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
bnx_dump_txbd(sc, tx_prod, txbd);
tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
}
aprint_debug_dev(sc->bnx_dev,
"-----------------------------"
"--------------"
"-----------------------------\n");
}
/*
* This routine prints the RX chain.
*/
void
bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
{
struct rx_bd *rxbd;
int i;
/* First some info about the tx_bd chain structure. */
aprint_debug_dev(sc->bnx_dev,
"----------------------------"
" rx_bd chain "
"----------------------------\n");
aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
BNX_PRINTF(sc,
"page size = 0x%08X, rx chain pages = 0x%08X\n",
(uint32_t)BCM_PAGE_SIZE, (uint32_t)RX_PAGES);
BNX_PRINTF(sc,
"rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
(uint32_t)TOTAL_RX_BD_PER_PAGE, (uint32_t)USABLE_RX_BD_PER_PAGE);
BNX_PRINTF(sc, "total rx_bd = 0x%08X\n", (uint32_t)TOTAL_RX_BD);
aprint_error_dev(sc->bnx_dev,
"----------------------------"
" rx_bd data "
"----------------------------\n");
/* Now print out the rx_bd's themselves. */
for (i = 0; i < count; i++) {
rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
bnx_dump_rxbd(sc, rx_prod, rxbd);
rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
}
aprint_debug_dev(sc->bnx_dev,
"----------------------------"
"--------------"
"----------------------------\n");
}
/*
* This routine prints the status block.
*/
void
bnx_dump_status_block(struct bnx_softc *sc)
{
struct status_block *sblk;
bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
BUS_DMASYNC_POSTREAD);
sblk = sc->status_block;
aprint_debug_dev(sc->bnx_dev, "----------------------------- "
"Status Block -----------------------------\n");
BNX_PRINTF(sc,
"attn_bits = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
sblk->status_attn_bits, sblk->status_attn_bits_ack,
sblk->status_idx);
BNX_PRINTF(sc, "rx_cons0 = 0x%08X, tx_cons0 = 0x%08X\n",
sblk->status_rx_quick_consumer_index0,
sblk->status_tx_quick_consumer_index0);
BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
/* Theses indices are not used for normal L2 drivers. */
if (sblk->status_rx_quick_consumer_index1 ||
sblk->status_tx_quick_consumer_index1)
BNX_PRINTF(sc, "rx_cons1 = 0x%08X, tx_cons1 = 0x%08X\n",
sblk->status_rx_quick_consumer_index1,
sblk->status_tx_quick_consumer_index1);
if (sblk->status_rx_quick_consumer_index2 ||
sblk->status_tx_quick_consumer_index2)
BNX_PRINTF(sc, "rx_cons2 = 0x%08X, tx_cons2 = 0x%08X\n",
sblk->status_rx_quick_consumer_index2,
sblk->status_tx_quick_consumer_index2);
if (sblk->status_rx_quick_consumer_index3 ||
sblk->status_tx_quick_consumer_index3)
BNX_PRINTF(sc, "rx_cons3 = 0x%08X, tx_cons3 = 0x%08X\n",
sblk->status_rx_quick_consumer_index3,
sblk->status_tx_quick_consumer_index3);
if (sblk->status_rx_quick_consumer_index4 ||
sblk->status_rx_quick_consumer_index5)
BNX_PRINTF(sc, "rx_cons4 = 0x%08X, rx_cons5 = 0x%08X\n",
sblk->status_rx_quick_consumer_index4,
sblk->status_rx_quick_consumer_index5);
if (sblk->status_rx_quick_consumer_index6 ||
sblk->status_rx_quick_consumer_index7)
BNX_PRINTF(sc, "rx_cons6 = 0x%08X, rx_cons7 = 0x%08X\n",
sblk->status_rx_quick_consumer_index6,
sblk->status_rx_quick_consumer_index7);
if (sblk->status_rx_quick_consumer_index8 ||
sblk->status_rx_quick_consumer_index9)
BNX_PRINTF(sc, "rx_cons8 = 0x%08X, rx_cons9 = 0x%08X\n",
sblk->status_rx_quick_consumer_index8,
sblk->status_rx_quick_consumer_index9);
if (sblk->status_rx_quick_consumer_index10 ||
sblk->status_rx_quick_consumer_index11)
BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11 = 0x%08X\n",
sblk->status_rx_quick_consumer_index10,
sblk->status_rx_quick_consumer_index11);
if (sblk->status_rx_quick_consumer_index12 ||
sblk->status_rx_quick_consumer_index13)
BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13 = 0x%08X\n",
sblk->status_rx_quick_consumer_index12,
sblk->status_rx_quick_consumer_index13);
if (sblk->status_rx_quick_consumer_index14 ||
sblk->status_rx_quick_consumer_index15)
BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15 = 0x%08X\n",
sblk->status_rx_quick_consumer_index14,
sblk->status_rx_quick_consumer_index15);
if (sblk->status_completion_producer_index ||
sblk->status_cmd_consumer_index)
BNX_PRINTF(sc, "com_prod = 0x%08X, cmd_cons = 0x%08X\n",
sblk->status_completion_producer_index,
sblk->status_cmd_consumer_index);
aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
"-----------------------------\n");
}
/*
* This routine prints the statistics block.
*/
void
bnx_dump_stats_block(struct bnx_softc *sc)
{
struct statistics_block *sblk;
bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
BUS_DMASYNC_POSTREAD);
sblk = sc->stats_block;
aprint_debug_dev(sc->bnx_dev, ""
"-----------------------------"
" Stats Block "
"-----------------------------\n");
BNX_PRINTF(sc, "IfHcInOctets = 0x%08X:%08X, "
"IfHcInBadOctets = 0x%08X:%08X\n",
sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
BNX_PRINTF(sc, "IfHcOutOctets = 0x%08X:%08X, "
"IfHcOutBadOctets = 0x%08X:%08X\n",
sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
BNX_PRINTF(sc, "IfHcInUcastPkts = 0x%08X:%08X, "
"IfHcInMulticastPkts = 0x%08X:%08X\n",
sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
sblk->stat_IfHCInMulticastPkts_hi,
sblk->stat_IfHCInMulticastPkts_lo);
BNX_PRINTF(sc, "IfHcInBroadcastPkts = 0x%08X:%08X, "
"IfHcOutUcastPkts = 0x%08X:%08X\n",
sblk->stat_IfHCInBroadcastPkts_hi,
sblk->stat_IfHCInBroadcastPkts_lo,
sblk->stat_IfHCOutUcastPkts_hi,
sblk->stat_IfHCOutUcastPkts_lo);
BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
"IfHcOutBroadcastPkts = 0x%08X:%08X\n",
sblk->stat_IfHCOutMulticastPkts_hi,
sblk->stat_IfHCOutMulticastPkts_lo,
sblk->stat_IfHCOutBroadcastPkts_hi,
sblk->stat_IfHCOutBroadcastPkts_lo);
if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
BNX_PRINTF(sc, "0x%08X : "
"emac_tx_stat_dot3statsinternalmactransmiterrors\n",
sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
if (sblk->stat_Dot3StatsCarrierSenseErrors)
BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
sblk->stat_Dot3StatsCarrierSenseErrors);
if (sblk->stat_Dot3StatsFCSErrors)
BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
sblk->stat_Dot3StatsFCSErrors);
if (sblk->stat_Dot3StatsAlignmentErrors)
BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
sblk->stat_Dot3StatsAlignmentErrors);
if (sblk->stat_Dot3StatsSingleCollisionFrames)
BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
sblk->stat_Dot3StatsSingleCollisionFrames);
if (sblk->stat_Dot3StatsMultipleCollisionFrames)
BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
sblk->stat_Dot3StatsMultipleCollisionFrames);
if (sblk->stat_Dot3StatsDeferredTransmissions)
BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
sblk->stat_Dot3StatsDeferredTransmissions);
if (sblk->stat_Dot3StatsExcessiveCollisions)
BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
sblk->stat_Dot3StatsExcessiveCollisions);
if (sblk->stat_Dot3StatsLateCollisions)
BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
sblk->stat_Dot3StatsLateCollisions);
if (sblk->stat_EtherStatsCollisions)
BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
sblk->stat_EtherStatsCollisions);
if (sblk->stat_EtherStatsFragments)
BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
sblk->stat_EtherStatsFragments);
if (sblk->stat_EtherStatsJabbers)
BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
sblk->stat_EtherStatsJabbers);
if (sblk->stat_EtherStatsUndersizePkts)
BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
sblk->stat_EtherStatsUndersizePkts);
if (sblk->stat_EtherStatsOverrsizePkts)
BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
sblk->stat_EtherStatsOverrsizePkts);
if (sblk->stat_EtherStatsPktsRx64Octets)
BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
sblk->stat_EtherStatsPktsRx64Octets);
if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
BNX_PRINTF(sc, "0x%08X : "
"EtherStatsPktsRx128Octetsto255Octets\n",
sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
BNX_PRINTF(sc, "0x%08X : "
"EtherStatsPktsRx256Octetsto511Octets\n",
sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
BNX_PRINTF(sc, "0x%08X : "
"EtherStatsPktsRx512Octetsto1023Octets\n",
sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
BNX_PRINTF(sc, "0x%08X : "
"EtherStatsPktsRx1024Octetsto1522Octets\n",
sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
BNX_PRINTF(sc, "0x%08X : "
"EtherStatsPktsRx1523Octetsto9022Octets\n",
sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
if (sblk->stat_EtherStatsPktsTx64Octets)
BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
sblk->stat_EtherStatsPktsTx64Octets);
if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
BNX_PRINTF(sc, "0x%08X : "
"EtherStatsPktsTx128Octetsto255Octets\n",
sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
BNX_PRINTF(sc, "0x%08X : "
"EtherStatsPktsTx256Octetsto511Octets\n",
sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
BNX_PRINTF(sc, "0x%08X : "
"EtherStatsPktsTx512Octetsto1023Octets\n",
sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
BNX_PRINTF(sc, "0x%08X : "
"EtherStatsPktsTx1024Octetsto1522Octets\n",
sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
BNX_PRINTF(sc, "0x%08X : "
"EtherStatsPktsTx1523Octetsto9022Octets\n",
sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
if (sblk->stat_XonPauseFramesReceived)
BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
sblk->stat_XonPauseFramesReceived);
if (sblk->stat_XoffPauseFramesReceived)
BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
sblk->stat_XoffPauseFramesReceived);
if (sblk->stat_OutXonSent)
BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
sblk->stat_OutXonSent);
if (sblk->stat_OutXoffSent)
BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
sblk->stat_OutXoffSent);
if (sblk->stat_FlowControlDone)
BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
sblk->stat_FlowControlDone);
if (sblk->stat_MacControlFramesReceived)
BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
sblk->stat_MacControlFramesReceived);
if (sblk->stat_XoffStateEntered)
BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
sblk->stat_XoffStateEntered);
if (sblk->stat_IfInFramesL2FilterDiscards)
BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
sblk->stat_IfInFramesL2FilterDiscards);
if (sblk->stat_IfInRuleCheckerDiscards)
BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
sblk->stat_IfInRuleCheckerDiscards);
if (sblk->stat_IfInFTQDiscards)
BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
sblk->stat_IfInFTQDiscards);
if (sblk->stat_IfInMBUFDiscards)
BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
sblk->stat_IfInMBUFDiscards);
if (sblk->stat_IfInRuleCheckerP4Hit)
BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
sblk->stat_IfInRuleCheckerP4Hit);
if (sblk->stat_CatchupInRuleCheckerDiscards)
BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
sblk->stat_CatchupInRuleCheckerDiscards);
if (sblk->stat_CatchupInFTQDiscards)
BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
sblk->stat_CatchupInFTQDiscards);
if (sblk->stat_CatchupInMBUFDiscards)
BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
sblk->stat_CatchupInMBUFDiscards);
if (sblk->stat_CatchupInRuleCheckerP4Hit)
BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
sblk->stat_CatchupInRuleCheckerP4Hit);
aprint_debug_dev(sc->bnx_dev,
"-----------------------------"
"--------------"
"-----------------------------\n");
}
void
bnx_dump_driver_state(struct bnx_softc *sc)
{
aprint_debug_dev(sc->bnx_dev,
"-----------------------------"
" Driver State "
"-----------------------------\n");
BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
"address\n", sc);
BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
sc->status_block);
BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
"address\n", sc->stats_block);
BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
"address\n", sc->tx_bd_chain);
#if 0
BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
sc->rx_bd_chain);
BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
sc->tx_mbuf_ptr);
#endif
BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
sc->rx_mbuf_ptr);
BNX_PRINTF(sc,
" 0x%08X - (sc->interrupts_generated) h/w intrs\n",
sc->interrupts_generated);
BNX_PRINTF(sc,
" 0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
sc->rx_interrupts);
BNX_PRINTF(sc,
" 0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
sc->tx_interrupts);
BNX_PRINTF(sc,
" 0x%08X - (sc->last_status_idx) status block index\n",
sc->last_status_idx);
BNX_PRINTF(sc, " 0x%08X - (sc->tx_prod) tx producer index\n",
sc->tx_prod);
BNX_PRINTF(sc, " 0x%08X - (sc->tx_cons) tx consumer index\n",
sc->tx_cons);
BNX_PRINTF(sc,
" 0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
sc->tx_prod_bseq);
BNX_PRINTF(sc,
" 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
sc->tx_mbuf_alloc);
BNX_PRINTF(sc,
" 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
sc->used_tx_bd);
BNX_PRINTF(sc,
" 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
sc->tx_hi_watermark, sc->max_tx_bd);
BNX_PRINTF(sc, " 0x%08X - (sc->rx_prod) rx producer index\n",
sc->rx_prod);
BNX_PRINTF(sc, " 0x%08X - (sc->rx_cons) rx consumer index\n",
sc->rx_cons);
BNX_PRINTF(sc,
" 0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
sc->rx_prod_bseq);
BNX_PRINTF(sc,
" 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
sc->rx_mbuf_alloc);
BNX_PRINTF(sc, " 0x%08X - (sc->free_rx_bd) free rx_bd's\n",
sc->free_rx_bd);
BNX_PRINTF(sc,
"0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
sc->rx_low_watermark, sc->max_rx_bd);
BNX_PRINTF(sc,
" 0x%08X - (sc->mbuf_alloc_failed) "
"mbuf alloc failures\n",
sc->mbuf_alloc_failed);
BNX_PRINTF(sc,
" 0x%0X - (sc->mbuf_sim_allocated_failed) "
"simulated mbuf alloc failures\n",
sc->mbuf_sim_alloc_failed);
aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
"-----------------------------\n");
}
void
bnx_dump_hw_state(struct bnx_softc *sc)
{
uint32_t val1;
int i;
aprint_debug_dev(sc->bnx_dev,
"----------------------------"
" Hardware State "
"----------------------------\n");
val1 = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_BC_REV);
BNX_PRINTF(sc, "0x%08X : bootcode version\n", val1);
val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
val1, BNX_MISC_ENABLE_STATUS_BITS);
val1 = REG_RD(sc, BNX_DMA_STATUS);
BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
val1 = REG_RD(sc, BNX_CTX_STATUS);
BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
val1 = REG_RD(sc, BNX_EMAC_STATUS);
BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
BNX_EMAC_STATUS);
val1 = REG_RD(sc, BNX_RPM_STATUS);
BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
val1 = REG_RD(sc, BNX_TBDR_STATUS);
BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
BNX_TBDR_STATUS);
val1 = REG_RD(sc, BNX_TDMA_STATUS);
BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
BNX_TDMA_STATUS);
val1 = REG_RD(sc, BNX_HC_STATUS);
BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
aprint_debug_dev(sc->bnx_dev,
"----------------------------"
"----------------"
"----------------------------\n");
aprint_debug_dev(sc->bnx_dev,
"----------------------------"
" Register Dump "
"----------------------------\n");
for (i = 0x400; i < 0x8000; i += 0x10)
BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
aprint_debug_dev(sc->bnx_dev,
"----------------------------"
"----------------"
"----------------------------\n");
}
void
bnx_breakpoint(struct bnx_softc *sc)
{
/* Unreachable code to shut the compiler up about unused functions. */
if (0) {
bnx_dump_txbd(sc, 0, NULL);
bnx_dump_rxbd(sc, 0, NULL);
bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
bnx_dump_l2fhdr(sc, 0, NULL);
bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
bnx_dump_status_block(sc);
bnx_dump_stats_block(sc);
bnx_dump_driver_state(sc);
bnx_dump_hw_state(sc);
}
bnx_dump_driver_state(sc);
/* Print the important status block fields. */
bnx_dump_status_block(sc);
#if 0
/* Call the debugger. */
breakpoint();
#endif
return;
}
#endif