Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
/* $NetBSD: if_vge.c,v 1.73.2.2 2019/11/25 16:47:16 martin Exp $ */

/*-
 * Copyright (c) 2004
 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *	This product includes software developed by Bill Paul.
 * 4. Neither the name of the author nor the names of any co-contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 *
 * FreeBSD: src/sys/dev/vge/if_vge.c,v 1.5 2005/02/07 19:39:29 glebius Exp
 */

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_vge.c,v 1.73.2.2 2019/11/25 16:47:16 martin Exp $");

/*
 * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
 *
 * Written by Bill Paul <wpaul@windriver.com>
 * Senior Networking Software Engineer
 * Wind River Systems
 */

/*
 * The VIA Networking VT6122 is a 32bit, 33/66 MHz PCI device that
 * combines a tri-speed ethernet MAC and PHY, with the following
 * features:
 *
 *	o Jumbo frame support up to 16K
 *	o Transmit and receive flow control
 *	o IPv4 checksum offload
 *	o VLAN tag insertion and stripping
 *	o TCP large send
 *	o 64-bit multicast hash table filter
 *	o 64 entry CAM filter
 *	o 16K RX FIFO and 48K TX FIFO memory
 *	o Interrupt moderation
 *
 * The VT6122 supports up to four transmit DMA queues. The descriptors
 * in the transmit ring can address up to 7 data fragments; frames which
 * span more than 7 data buffers must be coalesced, but in general the
 * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
 * long. The receive descriptors address only a single buffer.
 *
 * There are two peculiar design issues with the VT6122. One is that
 * receive data buffers must be aligned on a 32-bit boundary. This is
 * not a problem where the VT6122 is used as a LOM device in x86-based
 * systems, but on architectures that generate unaligned access traps, we
 * have to do some copying.
 *
 * The other issue has to do with the way 64-bit addresses are handled.
 * The DMA descriptors only allow you to specify 48 bits of addressing
 * information. The remaining 16 bits are specified using one of the
 * I/O registers. If you only have a 32-bit system, then this isn't
 * an issue, but if you have a 64-bit system and more than 4GB of
 * memory, you must have to make sure your network data buffers reside
 * in the same 48-bit 'segment.'
 *
 * Special thanks to Ryan Fu at VIA Networking for providing documentation
 * and sample NICs for testing.
 */


#include <sys/param.h>
#include <sys/endian.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>

#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_ether.h>
#include <net/if_dl.h>
#include <net/if_media.h>

#include <net/bpf.h>

#include <sys/bus.h>

#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>

#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>

#include <dev/pci/if_vgereg.h>

#define VGE_IFQ_MAXLEN		64

#define VGE_RING_ALIGN		256

#define VGE_NTXDESC		256
#define VGE_NTXDESC_MASK	(VGE_NTXDESC - 1)
#define VGE_NEXT_TXDESC(x)	((x + 1) & VGE_NTXDESC_MASK)
#define VGE_PREV_TXDESC(x)	((x - 1) & VGE_NTXDESC_MASK)

#define VGE_NRXDESC		256	/* Must be a multiple of 4!! */
#define VGE_NRXDESC_MASK	(VGE_NRXDESC - 1)
#define VGE_NEXT_RXDESC(x)	((x + 1) & VGE_NRXDESC_MASK)
#define VGE_PREV_RXDESC(x)	((x - 1) & VGE_NRXDESC_MASK)

#define VGE_ADDR_LO(y)		((uint64_t)(y) & 0xFFFFFFFF)
#define VGE_ADDR_HI(y)		((uint64_t)(y) >> 32)
#define VGE_BUFLEN(y)		((y) & 0x7FFF)
#define ETHER_PAD_LEN		(ETHER_MIN_LEN - ETHER_CRC_LEN)

#define VGE_POWER_MANAGEMENT	0	/* disabled for now */

/*
 * Mbuf adjust factor to force 32-bit alignment of IP header.
 * Drivers should pad ETHER_ALIGN bytes when setting up a
 * RX mbuf so the upper layers get the IP header properly aligned
 * past the 14-byte Ethernet header.
 *
 * See also comment in vge_encap().
 */

#ifdef __NO_STRICT_ALIGNMENT
#define VGE_RX_BUFSIZE		MCLBYTES
#else
#define VGE_RX_PAD		sizeof(uint32_t)
#define VGE_RX_BUFSIZE		(MCLBYTES - VGE_RX_PAD)
#endif

/*
 * Control structures are DMA'd to the vge chip. We allocate them in
 * a single clump that maps to a single DMA segment to make several things
 * easier.
 */
struct vge_control_data {
	/* TX descriptors */
	struct vge_txdesc	vcd_txdescs[VGE_NTXDESC];
	/* RX descriptors */
	struct vge_rxdesc	vcd_rxdescs[VGE_NRXDESC];
	/* dummy data for TX padding */
	uint8_t			vcd_pad[ETHER_PAD_LEN];
};

#define VGE_CDOFF(x)	offsetof(struct vge_control_data, x)
#define VGE_CDTXOFF(x)	VGE_CDOFF(vcd_txdescs[(x)])
#define VGE_CDRXOFF(x)	VGE_CDOFF(vcd_rxdescs[(x)])
#define VGE_CDPADOFF()	VGE_CDOFF(vcd_pad[0])

/*
 * Software state for TX jobs.
 */
struct vge_txsoft {
	struct mbuf	*txs_mbuf;		/* head of our mbuf chain */
	bus_dmamap_t	txs_dmamap;		/* our DMA map */
};

/*
 * Software state for RX jobs.
 */
struct vge_rxsoft {
	struct mbuf	*rxs_mbuf;		/* head of our mbuf chain */
	bus_dmamap_t	rxs_dmamap;		/* our DMA map */
};


struct vge_softc {
	device_t		sc_dev;

	bus_space_tag_t		sc_bst;		/* bus space tag */
	bus_space_handle_t	sc_bsh;		/* bus space handle */
	bus_dma_tag_t		sc_dmat;

	struct ethercom		sc_ethercom;	/* interface info */
	uint8_t			sc_eaddr[ETHER_ADDR_LEN];

	void			*sc_intrhand;
	struct mii_data		sc_mii;
	uint8_t			sc_type;
	int			sc_if_flags;
	int			sc_link;
	int			sc_camidx;
	callout_t		sc_timeout;

	bus_dmamap_t		sc_cddmamap;
#define sc_cddma		sc_cddmamap->dm_segs[0].ds_addr

	struct vge_txsoft	sc_txsoft[VGE_NTXDESC];
	struct vge_rxsoft	sc_rxsoft[VGE_NRXDESC];
	struct vge_control_data	*sc_control_data;
#define sc_txdescs		sc_control_data->vcd_txdescs
#define sc_rxdescs		sc_control_data->vcd_rxdescs

	int			sc_tx_prodidx;
	int			sc_tx_considx;
	int			sc_tx_free;

	struct mbuf		*sc_rx_mhead;
	struct mbuf		*sc_rx_mtail;
	int			sc_rx_prodidx;
	int			sc_rx_consumed;

	int			sc_suspended;	/* 0 = normal  1 = suspended */
	uint32_t		sc_saved_maps[5];	/* pci data */
	uint32_t		sc_saved_biosaddr;
	uint8_t			sc_saved_intline;
	uint8_t			sc_saved_cachelnsz;
	uint8_t			sc_saved_lattimer;
};

#define VGE_CDTXADDR(sc, x)	((sc)->sc_cddma + VGE_CDTXOFF(x))
#define VGE_CDRXADDR(sc, x)	((sc)->sc_cddma + VGE_CDRXOFF(x))
#define VGE_CDPADADDR(sc)	((sc)->sc_cddma + VGE_CDPADOFF())

#define VGE_TXDESCSYNC(sc, idx, ops)					\
	bus_dmamap_sync((sc)->sc_dmat,(sc)->sc_cddmamap,		\
	    VGE_CDTXOFF(idx),						\
	    offsetof(struct vge_txdesc, td_frag[0]),			\
	    (ops))
#define VGE_TXFRAGSYNC(sc, idx, nsegs, ops)				\
	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
	    VGE_CDTXOFF(idx) +						\
	    offsetof(struct vge_txdesc, td_frag[0]),			\
	    sizeof(struct vge_txfrag) * (nsegs),			\
	    (ops))
#define VGE_RXDESCSYNC(sc, idx, ops)					\
	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
	    VGE_CDRXOFF(idx),						\
	    sizeof(struct vge_rxdesc),					\
	    (ops))

/*
 * register space access macros
 */
#define CSR_WRITE_4(sc, reg, val)	\
	bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
#define CSR_WRITE_2(sc, reg, val)	\
	bus_space_write_2((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
#define CSR_WRITE_1(sc, reg, val)	\
	bus_space_write_1((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))

#define CSR_READ_4(sc, reg)		\
	bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
#define CSR_READ_2(sc, reg)		\
	bus_space_read_2((sc)->sc_bst, (sc)->sc_bsh, (reg))
#define CSR_READ_1(sc, reg)		\
	bus_space_read_1((sc)->sc_bst, (sc)->sc_bsh, (reg))

#define CSR_SETBIT_1(sc, reg, x)	\
	CSR_WRITE_1((sc), (reg), CSR_READ_1((sc), (reg)) | (x))
#define CSR_SETBIT_2(sc, reg, x)	\
	CSR_WRITE_2((sc), (reg), CSR_READ_2((sc), (reg)) | (x))
#define CSR_SETBIT_4(sc, reg, x)	\
	CSR_WRITE_4((sc), (reg), CSR_READ_4((sc), (reg)) | (x))

#define CSR_CLRBIT_1(sc, reg, x)	\
	CSR_WRITE_1((sc), (reg), CSR_READ_1((sc), (reg)) & ~(x))
#define CSR_CLRBIT_2(sc, reg, x)	\
	CSR_WRITE_2((sc), (reg), CSR_READ_2((sc), (reg)) & ~(x))
#define CSR_CLRBIT_4(sc, reg, x)	\
	CSR_WRITE_4((sc), (reg), CSR_READ_4((sc), (reg)) & ~(x))

#define VGE_TIMEOUT		10000

#define VGE_PCI_LOIO		 0x10
#define VGE_PCI_LOMEM		 0x14

static inline void vge_set_txaddr(struct vge_txfrag *, bus_addr_t);
static inline void vge_set_rxaddr(struct vge_rxdesc *, bus_addr_t);

static int vge_ifflags_cb(struct ethercom *);

static int vge_match(device_t, cfdata_t, void *);
static void vge_attach(device_t, device_t, void *);

static int vge_encap(struct vge_softc *, struct mbuf *, int);

static int vge_allocmem(struct vge_softc *);
static int vge_newbuf(struct vge_softc *, int, struct mbuf *);
#ifndef __NO_STRICT_ALIGNMENT
static inline void vge_fixup_rx(struct mbuf *);
#endif
static void vge_rxeof(struct vge_softc *);
static void vge_txeof(struct vge_softc *);
static int vge_intr(void *);
static void vge_tick(void *);
static void vge_start(struct ifnet *);
static int vge_ioctl(struct ifnet *, u_long, void *);
static int vge_init(struct ifnet *);
static void vge_stop(struct ifnet *, int);
static void vge_watchdog(struct ifnet *);
#if VGE_POWER_MANAGEMENT
static int vge_suspend(device_t);
static int vge_resume(device_t);
#endif
static bool vge_shutdown(device_t, int);

static uint16_t vge_read_eeprom(struct vge_softc *, int);

static void vge_miipoll_start(struct vge_softc *);
static void vge_miipoll_stop(struct vge_softc *);
static int vge_miibus_readreg(device_t, int, int, uint16_t *);
static int vge_miibus_writereg(device_t, int, int, uint16_t);
static void vge_miibus_statchg(struct ifnet *);

static void vge_cam_clear(struct vge_softc *);
static int vge_cam_set(struct vge_softc *, uint8_t *);
static void	vge_clrwol(struct vge_softc *);
static void vge_setmulti(struct vge_softc *);
static void vge_reset(struct vge_softc *);

CFATTACH_DECL_NEW(vge, sizeof(struct vge_softc),
    vge_match, vge_attach, NULL, NULL);

static inline void
vge_set_txaddr(struct vge_txfrag *f, bus_addr_t daddr)
{

	f->tf_addrlo = htole32((uint32_t)daddr);
	if (sizeof(bus_addr_t) == sizeof(uint64_t))
		f->tf_addrhi = htole16(((uint64_t)daddr >> 32) & 0xFFFF);
	else
		f->tf_addrhi = 0;
}

static inline void
vge_set_rxaddr(struct vge_rxdesc *rxd, bus_addr_t daddr)
{

	rxd->rd_addrlo = htole32((uint32_t)daddr);
	if (sizeof(bus_addr_t) == sizeof(uint64_t))
		rxd->rd_addrhi = htole16(((uint64_t)daddr >> 32) & 0xFFFF);
	else
		rxd->rd_addrhi = 0;
}

/*
 * Read a word of data stored in the EEPROM at address 'addr.'
 */
static uint16_t
vge_read_eeprom(struct vge_softc *sc, int addr)
{
	int i;
	uint16_t word = 0;

	/*
	 * Enter EEPROM embedded programming mode. In order to
	 * access the EEPROM at all, we first have to set the
	 * EELOAD bit in the CHIPCFG2 register.
	 */
	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*| VGE_EECSR_ECS*/);

	/* Select the address of the word we want to read */
	CSR_WRITE_1(sc, VGE_EEADDR, addr);

	/* Issue read command */
	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);

	/* Wait for the done bit to be set. */
	for (i = 0; i < VGE_TIMEOUT; i++) {
		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
			break;
	}

	if (i == VGE_TIMEOUT) {
		printf("%s: EEPROM read timed out\n", device_xname(sc->sc_dev));
		return 0;
	}

	/* Read the result */
	word = CSR_READ_2(sc, VGE_EERDDAT);

	/* Turn off EEPROM access mode. */
	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*| VGE_EECSR_ECS*/);
	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);

	return word;
}

static void
vge_miipoll_stop(struct vge_softc *sc)
{
	int i;

	CSR_WRITE_1(sc, VGE_MIICMD, 0);

	for (i = 0; i < VGE_TIMEOUT; i++) {
		DELAY(1);
		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
			break;
	}

	if (i == VGE_TIMEOUT) {
		printf("%s: failed to idle MII autopoll\n",
		    device_xname(sc->sc_dev));
	}
}

static void
vge_miipoll_start(struct vge_softc *sc)
{
	int i;

	/* First, make sure we're idle. */

	CSR_WRITE_1(sc, VGE_MIICMD, 0);
	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);

	for (i = 0; i < VGE_TIMEOUT; i++) {
		DELAY(1);
		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
			break;
	}

	if (i == VGE_TIMEOUT) {
		printf("%s: failed to idle MII autopoll\n",
		    device_xname(sc->sc_dev));
		return;
	}

	/* Now enable auto poll mode. */

	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);

	/* And make sure it started. */

	for (i = 0; i < VGE_TIMEOUT; i++) {
		DELAY(1);
		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
			break;
	}

	if (i == VGE_TIMEOUT) {
		printf("%s: failed to start MII autopoll\n",
		    device_xname(sc->sc_dev));
	}
}

static int
vge_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
{
	struct vge_softc *sc;
	int i, s;
	int rv = 0;

	sc = device_private(dev);
	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
		return -1;

	s = splnet();
	vge_miipoll_stop(sc);

	/* Specify the register we want to read. */
	CSR_WRITE_1(sc, VGE_MIIADDR, reg);

	/* Issue read command. */
	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);

	/* Wait for the read command bit to self-clear. */
	for (i = 0; i < VGE_TIMEOUT; i++) {
		DELAY(1);
		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
			break;
	}

	if (i == VGE_TIMEOUT) {
		printf("%s: MII read timed out\n", device_xname(sc->sc_dev));
		rv = ETIMEDOUT;
	} else
		*val = CSR_READ_2(sc, VGE_MIIDATA);

	vge_miipoll_start(sc);
	splx(s);

	return rv;
}

static int
vge_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
{
	struct vge_softc *sc;
	int i, s, rv = 0;

	sc = device_private(dev);
	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
		return -1;

	s = splnet();
	vge_miipoll_stop(sc);

	/* Specify the register we want to write. */
	CSR_WRITE_1(sc, VGE_MIIADDR, reg);

	/* Specify the data we want to write. */
	CSR_WRITE_2(sc, VGE_MIIDATA, val);

	/* Issue write command. */
	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);

	/* Wait for the write command bit to self-clear. */
	for (i = 0; i < VGE_TIMEOUT; i++) {
		DELAY(1);
		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
			break;
	}

	if (i == VGE_TIMEOUT) {
		printf("%s: MII write timed out\n", device_xname(sc->sc_dev));
		rv = ETIMEDOUT;
	}

	vge_miipoll_start(sc);
	splx(s);

	return rv;
}

static void
vge_cam_clear(struct vge_softc *sc)
{
	int i;

	/*
	 * Turn off all the mask bits. This tells the chip
	 * that none of the entries in the CAM filter are valid.
	 * desired entries will be enabled as we fill the filter in.
	 */

	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
	for (i = 0; i < 8; i++)
		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);

	/* Clear the VLAN filter too. */

	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE | VGE_CAMADDR_AVSEL);
	for (i = 0; i < 8; i++)
		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);

	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);

	sc->sc_camidx = 0;
}

static int
vge_cam_set(struct vge_softc *sc, uint8_t *addr)
{
	int i, error;

	error = 0;

	if (sc->sc_camidx == VGE_CAM_MAXADDRS)
		return ENOSPC;

	/* Select the CAM data page. */
	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);

	/* Set the filter entry we want to update and enable writing. */
	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE | sc->sc_camidx);

	/* Write the address to the CAM registers */
	for (i = 0; i < ETHER_ADDR_LEN; i++)
		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);

	/* Issue a write command. */
	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);

	/* Wake for it to clear. */
	for (i = 0; i < VGE_TIMEOUT; i++) {
		DELAY(1);
		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
			break;
	}

	if (i == VGE_TIMEOUT) {
		printf("%s: setting CAM filter failed\n",
		    device_xname(sc->sc_dev));
		error = EIO;
		goto fail;
	}

	/* Select the CAM mask page. */
	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);

	/* Set the mask bit that enables this filter. */
	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->sc_camidx / 8),
	    1 << (sc->sc_camidx & 7));

	sc->sc_camidx++;

 fail:
	/* Turn off access to CAM. */
	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);

	return error;
}

/*
 * Program the multicast filter. We use the 64-entry CAM filter
 * for perfect filtering. If there's more than 64 multicast addresses,
 * we use the hash filter instead.
 */
static void
vge_setmulti(struct vge_softc *sc)
{
	struct ethercom *ec = &sc->sc_ethercom;
	struct ifnet *ifp = &ec->ec_if;
	int error;
	uint32_t h, hashes[2] = { 0, 0 };
	struct ether_multi *enm;
	struct ether_multistep step;

	error = 0;

	/* First, zot all the multicast entries. */
	vge_cam_clear(sc);
	CSR_WRITE_4(sc, VGE_MAR0, 0);
	CSR_WRITE_4(sc, VGE_MAR1, 0);
	ifp->if_flags &= ~IFF_ALLMULTI;

	/*
	 * If the user wants allmulti or promisc mode, enable reception
	 * of all multicast frames.
	 */
	if (ifp->if_flags & IFF_PROMISC) {
 allmulti:
		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
		ifp->if_flags |= IFF_ALLMULTI;
		return;
	}

	/* Now program new ones */
	ETHER_LOCK(ec);
	ETHER_FIRST_MULTI(step, ec, enm);
	while (enm != NULL) {
		/*
		 * If multicast range, fall back to ALLMULTI.
		 */
		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
		    ETHER_ADDR_LEN) != 0) {
			ETHER_UNLOCK(ec);
			goto allmulti;
		}

		error = vge_cam_set(sc, enm->enm_addrlo);
		if (error)
			break;

		ETHER_NEXT_MULTI(step, enm);
	}
	ETHER_UNLOCK(ec);

	/* If there were too many addresses, use the hash filter. */
	if (error) {
		vge_cam_clear(sc);

		ETHER_LOCK(ec);
		ETHER_FIRST_MULTI(step, ec, enm);
		while (enm != NULL) {
			/*
			 * If multicast range, fall back to ALLMULTI.
			 */
			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
			    ETHER_ADDR_LEN) != 0) {
				ETHER_UNLOCK(ec);
				goto allmulti;
			}

			h = ether_crc32_be(enm->enm_addrlo,
			    ETHER_ADDR_LEN) >> 26;
			hashes[h >> 5] |= 1 << (h & 0x1f);

			ETHER_NEXT_MULTI(step, enm);
		}
		ETHER_UNLOCK(ec);

		CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
		CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
	}
}

static void
vge_reset(struct vge_softc *sc)
{
	int i;

	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);

	for (i = 0; i < VGE_TIMEOUT; i++) {
		DELAY(5);
		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
			break;
	}

	if (i == VGE_TIMEOUT) {
		printf("%s: soft reset timed out", device_xname(sc->sc_dev));
		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
		DELAY(2000);
	}

	DELAY(5000);

	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);

	for (i = 0; i < VGE_TIMEOUT; i++) {
		DELAY(5);
		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
			break;
	}

	if (i == VGE_TIMEOUT) {
		printf("%s: EEPROM reload timed out\n",
		    device_xname(sc->sc_dev));
		return;
	}

	/*
	 * On some machine, the first read data from EEPROM could be
	 * messed up, so read one dummy data here to avoid the mess.
	 */
	(void)vge_read_eeprom(sc, 0);

	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
}

/*
 * Probe for a VIA gigabit chip. Check the PCI vendor and device
 * IDs against our list and return a device name if we find a match.
 */
static int
vge_match(device_t parent, cfdata_t match, void *aux)
{
	struct pci_attach_args *pa = aux;

	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_VIATECH
	    && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_VIATECH_VT612X)
		return 1;

	return 0;
}

static int
vge_allocmem(struct vge_softc *sc)
{
	int error;
	int nseg;
	int i;
	bus_dma_segment_t seg;

	/*
	 * Allocate memory for control data.
	 */

	error = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct vge_control_data),
	     VGE_RING_ALIGN, 0, &seg, 1, &nseg, BUS_DMA_NOWAIT);
	if (error) {
		aprint_error_dev(sc->sc_dev,
		    "could not allocate control data dma memory\n");
		goto fail_1;
	}

	/* Map the memory to kernel VA space */

	error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
	    sizeof(struct vge_control_data), (void **)&sc->sc_control_data,
	    BUS_DMA_NOWAIT);
	if (error) {
		aprint_error_dev(sc->sc_dev,
		    "could not map control data dma memory\n");
		goto fail_2;
	}
	memset(sc->sc_control_data, 0, sizeof(struct vge_control_data));

	/*
	 * Create map for control data.
	 */
	error = bus_dmamap_create(sc->sc_dmat,
	    sizeof(struct vge_control_data), 1,
	    sizeof(struct vge_control_data), 0, BUS_DMA_NOWAIT,
	    &sc->sc_cddmamap);
	if (error) {
		aprint_error_dev(sc->sc_dev,
		    "could not create control data dmamap\n");
		goto fail_3;
	}

	/* Load the map for the control data. */
	error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
	    sc->sc_control_data, sizeof(struct vge_control_data), NULL,
	    BUS_DMA_NOWAIT);
	if (error) {
		aprint_error_dev(sc->sc_dev,
		    "could not load control data dma memory\n");
		goto fail_4;
	}

	/* Create DMA maps for TX buffers */

	for (i = 0; i < VGE_NTXDESC; i++) {
		error = bus_dmamap_create(sc->sc_dmat, VGE_TX_MAXLEN,
		    VGE_TX_FRAGS, VGE_TX_MAXLEN, 0, BUS_DMA_NOWAIT,
		    &sc->sc_txsoft[i].txs_dmamap);
		if (error) {
			aprint_error_dev(sc->sc_dev,
			    "can't create DMA map for TX descs\n");
			goto fail_5;
		}
	}

	/* Create DMA maps for RX buffers */

	for (i = 0; i < VGE_NRXDESC; i++) {
		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
		    1, MCLBYTES, 0, BUS_DMA_NOWAIT,
		    &sc->sc_rxsoft[i].rxs_dmamap);
		if (error) {
			aprint_error_dev(sc->sc_dev,
			    "can't create DMA map for RX descs\n");
			goto fail_6;
		}
		sc->sc_rxsoft[i].rxs_mbuf = NULL;
	}

	return 0;

 fail_6:
	for (i = 0; i < VGE_NRXDESC; i++) {
		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
			bus_dmamap_destroy(sc->sc_dmat,
			    sc->sc_rxsoft[i].rxs_dmamap);
	}
 fail_5:
	for (i = 0; i < VGE_NTXDESC; i++) {
		if (sc->sc_txsoft[i].txs_dmamap != NULL)
			bus_dmamap_destroy(sc->sc_dmat,
			    sc->sc_txsoft[i].txs_dmamap);
	}
	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
 fail_4:
	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
 fail_3:
	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
	    sizeof(struct vge_control_data));
 fail_2:
	bus_dmamem_free(sc->sc_dmat, &seg, nseg);
 fail_1:
	return ENOMEM;
}

/*
 * Attach the interface. Allocate softc structures, do ifmedia
 * setup and ethernet/BPF attach.
 */
static void
vge_attach(device_t parent, device_t self, void *aux)
{
	uint8_t	*eaddr;
	struct vge_softc *sc = device_private(self);
	struct ifnet *ifp;
	struct mii_data * const mii = &sc->sc_mii;
	struct pci_attach_args *pa = aux;
	pci_chipset_tag_t pc = pa->pa_pc;
	const char *intrstr;
	pci_intr_handle_t ih;
	uint16_t val;
	char intrbuf[PCI_INTRSTR_LEN];

	sc->sc_dev = self;

	pci_aprint_devinfo_fancy(pa, NULL, "VIA VT612X Gigabit Ethernet", 1);

	/* Make sure bus-mastering is enabled */
	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
	    PCI_COMMAND_MASTER_ENABLE);

	/*
	 * Map control/status registers.
	 */
	if (pci_mapreg_map(pa, VGE_PCI_LOMEM, PCI_MAPREG_TYPE_MEM, 0,
	    &sc->sc_bst, &sc->sc_bsh, NULL, NULL) != 0) {
		aprint_error_dev(self, "couldn't map memory\n");
		return;
	}

	/*
	 * Map and establish our interrupt.
	 */
	if (pci_intr_map(pa, &ih)) {
		aprint_error_dev(self, "unable to map interrupt\n");
		return;
	}
	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
	sc->sc_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, vge_intr,
	    sc, device_xname(self));
	if (sc->sc_intrhand == NULL) {
		aprint_error_dev(self, "unable to establish interrupt");
		if (intrstr != NULL)
			aprint_error(" at %s", intrstr);
		aprint_error("\n");
		return;
	}
	aprint_normal_dev(self, "interrupting at %s\n", intrstr);

	/* Reset the adapter. */
	vge_reset(sc);

	/*
	 * Get station address from the EEPROM.
	 */
	eaddr = sc->sc_eaddr;
	val = vge_read_eeprom(sc, VGE_EE_EADDR + 0);
	eaddr[0] = val & 0xff;
	eaddr[1] = val >> 8;
	val = vge_read_eeprom(sc, VGE_EE_EADDR + 1);
	eaddr[2] = val & 0xff;
	eaddr[3] = val >> 8;
	val = vge_read_eeprom(sc, VGE_EE_EADDR + 2);
	eaddr[4] = val & 0xff;
	eaddr[5] = val >> 8;

	aprint_normal_dev(self, "Ethernet address %s\n",
	    ether_sprintf(eaddr));

	/* Clear WOL and take hardware from powerdown. */
	vge_clrwol(sc);

	/*
	 * Use the 32bit tag. Hardware supports 48bit physical addresses,
	 * but we don't use that for now.
	 */
	sc->sc_dmat = pa->pa_dmat;

	if (vge_allocmem(sc) != 0)
		return;

	ifp = &sc->sc_ethercom.ec_if;
	ifp->if_softc = sc;
	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
	ifp->if_mtu = ETHERMTU;
	ifp->if_baudrate = IF_Gbps(1);
	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
	ifp->if_ioctl = vge_ioctl;
	ifp->if_start = vge_start;
	ifp->if_init = vge_init;
	ifp->if_stop = vge_stop;

	/*
	 * We can support 802.1Q VLAN-sized frames and jumbo
	 * Ethernet frames.
	 */
	sc->sc_ethercom.ec_capabilities |=
	    ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU |
	    ETHERCAP_VLAN_HWTAGGING;
	sc->sc_ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;

	/*
	 * We can do IPv4/TCPv4/UDPv4 checksums in hardware.
	 */
	ifp->if_capabilities |=
	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;

#ifdef DEVICE_POLLING
#ifdef IFCAP_POLLING
	ifp->if_capabilities |= IFCAP_POLLING;
#endif
#endif
	ifp->if_watchdog = vge_watchdog;
	IFQ_SET_MAXLEN(&ifp->if_snd, uimax(VGE_IFQ_MAXLEN, IFQ_MAXLEN));
	IFQ_SET_READY(&ifp->if_snd);

	/*
	 * Initialize our media structures and probe the MII.
	 */
	mii->mii_ifp = ifp;
	mii->mii_readreg = vge_miibus_readreg;
	mii->mii_writereg = vge_miibus_writereg;
	mii->mii_statchg = vge_miibus_statchg;

	sc->sc_ethercom.ec_mii = mii;
	ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
	mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
	    MII_OFFSET_ANY, MIIF_DOPAUSE);
	if (LIST_FIRST(&mii->mii_phys) == NULL) {
		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
	} else
		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);

	/*
	 * Attach the interface.
	 */
	if_attach(ifp);
	if_deferred_start_init(ifp, NULL);
	ether_ifattach(ifp, eaddr);
	ether_set_ifflags_cb(&sc->sc_ethercom, vge_ifflags_cb);

	callout_init(&sc->sc_timeout, 0);
	callout_setfunc(&sc->sc_timeout, vge_tick, sc);

	/*
	 * Make sure the interface is shutdown during reboot.
	 */
	if (pmf_device_register1(self, NULL, NULL, vge_shutdown))
		pmf_class_network_register(self, ifp);
	else
		aprint_error_dev(self, "couldn't establish power handler\n");
}

static int
vge_newbuf(struct vge_softc *sc, int idx, struct mbuf *m)
{
	struct mbuf *m_new;
	struct vge_rxdesc *rxd;
	struct vge_rxsoft *rxs;
	bus_dmamap_t map;
	int i;
#ifdef DIAGNOSTIC
	uint32_t rd_sts;
#endif

	m_new = NULL;
	if (m == NULL) {
		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
		if (m_new == NULL)
			return ENOBUFS;

		MCLGET(m_new, M_DONTWAIT);
		if ((m_new->m_flags & M_EXT) == 0) {
			m_freem(m_new);
			return ENOBUFS;
		}

		m = m_new;
	} else
		m->m_data = m->m_ext.ext_buf;


	/*
	 * This is part of an evil trick to deal with non-x86 platforms.
	 * The VIA chip requires RX buffers to be aligned on 32-bit
	 * boundaries, but that will hose non-x86 machines. To get around
	 * this, we leave some empty space at the start of each buffer
	 * and for non-x86 hosts, we copy the buffer back two bytes
	 * to achieve word alignment. This is slightly more efficient
	 * than allocating a new buffer, copying the contents, and
	 * discarding the old buffer.
	 */
	m->m_len = m->m_pkthdr.len = VGE_RX_BUFSIZE;
#ifndef __NO_STRICT_ALIGNMENT
	m->m_data += VGE_RX_PAD;
#endif
	rxs = &sc->sc_rxsoft[idx];
	map = rxs->rxs_dmamap;

	if (bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT) != 0)
		goto out;

	rxd = &sc->sc_rxdescs[idx];

#ifdef DIAGNOSTIC
	/* If this descriptor is still owned by the chip, bail. */
	VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
	rd_sts = le32toh(rxd->rd_sts);
	VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
	if (rd_sts & VGE_RDSTS_OWN) {
		panic("%s: tried to map busy RX descriptor",
		    device_xname(sc->sc_dev));
	}
#endif

	rxs->rxs_mbuf = m;
	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
	    BUS_DMASYNC_PREREAD);

	rxd->rd_buflen =
	    htole16(VGE_BUFLEN(map->dm_segs[0].ds_len) | VGE_RXDESC_I);
	vge_set_rxaddr(rxd, map->dm_segs[0].ds_addr);
	rxd->rd_sts = 0;
	rxd->rd_ctl = 0;
	VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);

	/*
	 * Note: the manual fails to document the fact that for
	 * proper opration, the driver needs to replentish the RX
	 * DMA ring 4 descriptors at a time (rather than one at a
	 * time, like most chips). We can allocate the new buffers
	 * but we should not set the OWN bits until we're ready
	 * to hand back 4 of them in one shot.
	 */

#define VGE_RXCHUNK 4
	sc->sc_rx_consumed++;
	if (sc->sc_rx_consumed == VGE_RXCHUNK) {
		for (i = idx; i != idx - VGE_RXCHUNK; i--) {
			KASSERT(i >= 0);
			sc->sc_rxdescs[i].rd_sts |= htole32(VGE_RDSTS_OWN);
			VGE_RXDESCSYNC(sc, i,
			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
		}
		sc->sc_rx_consumed = 0;
	}

	return 0;
 out:
	if (m_new != NULL)
		m_freem(m_new);
	return ENOMEM;
}

#ifndef __NO_STRICT_ALIGNMENT
static inline void
vge_fixup_rx(struct mbuf *m)
{
	int i;
	uint16_t *src, *dst;

	src = mtod(m, uint16_t *);
	dst = src - 1;

	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
		*dst++ = *src++;

	m->m_data -= ETHER_ALIGN;
}
#endif

/*
 * RX handler. We support the reception of jumbo frames that have
 * been fragmented across multiple 2K mbuf cluster buffers.
 */
static void
vge_rxeof(struct vge_softc *sc)
{
	struct mbuf *m;
	struct ifnet *ifp;
	int idx, total_len, lim;
	struct vge_rxdesc *cur_rxd;
	struct vge_rxsoft *rxs;
	uint32_t rxstat, rxctl;

	ifp = &sc->sc_ethercom.ec_if;
	lim = 0;

	/* Invalidate the descriptor memory */

	for (idx = sc->sc_rx_prodidx;; idx = VGE_NEXT_RXDESC(idx)) {
		cur_rxd = &sc->sc_rxdescs[idx];

		VGE_RXDESCSYNC(sc, idx,
		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
		rxstat = le32toh(cur_rxd->rd_sts);
		if ((rxstat & VGE_RDSTS_OWN) != 0) {
			VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
			break;
		}

		rxctl = le32toh(cur_rxd->rd_ctl);
		rxs = &sc->sc_rxsoft[idx];
		m = rxs->rxs_mbuf;
		total_len = (rxstat & VGE_RDSTS_BUFSIZ) >> 16;

		/* Invalidate the RX mbuf and unload its map */

		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap,
		    0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);

		/*
		 * If the 'start of frame' bit is set, this indicates
		 * either the first fragment in a multi-fragment receive,
		 * or an intermediate fragment. Either way, we want to
		 * accumulate the buffers.
		 */
		if (rxstat & VGE_RXPKT_SOF) {
			m->m_len = VGE_RX_BUFSIZE;
			if (sc->sc_rx_mhead == NULL)
				sc->sc_rx_mhead = sc->sc_rx_mtail = m;
			else {
				m->m_flags &= ~M_PKTHDR;
				sc->sc_rx_mtail->m_next = m;
				sc->sc_rx_mtail = m;
			}
			vge_newbuf(sc, idx, NULL);
			continue;
		}

		/*
		 * Bad/error frames will have the RXOK bit cleared.
		 * However, there's one error case we want to allow:
		 * if a VLAN tagged frame arrives and the chip can't
		 * match it against the CAM filter, it considers this
		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
		 * We don't want to drop the frame though: our VLAN
		 * filtering is done in software.
		 */
		if ((rxstat & VGE_RDSTS_RXOK) == 0 &&
		    (rxstat & VGE_RDSTS_VIDM) == 0 &&
		    (rxstat & VGE_RDSTS_CSUMERR) == 0) {
			ifp->if_ierrors++;
			/*
			 * If this is part of a multi-fragment packet,
			 * discard all the pieces.
			 */
			if (sc->sc_rx_mhead != NULL) {
				m_freem(sc->sc_rx_mhead);
				sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
			}
			vge_newbuf(sc, idx, m);
			continue;
		}

		/*
		 * If allocating a replacement mbuf fails,
		 * reload the current one.
		 */

		if (vge_newbuf(sc, idx, NULL)) {
			ifp->if_ierrors++;
			if (sc->sc_rx_mhead != NULL) {
				m_freem(sc->sc_rx_mhead);
				sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
			}
			vge_newbuf(sc, idx, m);
			continue;
		}

		if (sc->sc_rx_mhead != NULL) {
			m->m_len = total_len % VGE_RX_BUFSIZE;
			/*
			 * Special case: if there's 4 bytes or less
			 * in this buffer, the mbuf can be discarded:
			 * the last 4 bytes is the CRC, which we don't
			 * care about anyway.
			 */
			if (m->m_len <= ETHER_CRC_LEN) {
				sc->sc_rx_mtail->m_len -=
				    (ETHER_CRC_LEN - m->m_len);
				m_freem(m);
			} else {
				m->m_len -= ETHER_CRC_LEN;
				m->m_flags &= ~M_PKTHDR;
				sc->sc_rx_mtail->m_next = m;
			}
			m = sc->sc_rx_mhead;
			sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
		} else
			m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN;

#ifndef __NO_STRICT_ALIGNMENT
		vge_fixup_rx(m);
#endif
		m_set_rcvif(m, ifp);

		/* Do RX checksumming if enabled */
		if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {

			/* Check IP header checksum */
			if (rxctl & VGE_RDCTL_IPPKT)
				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
			if ((rxctl & VGE_RDCTL_IPCSUMOK) == 0)
				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
		}

		if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
			/* Check UDP checksum */
			if (rxctl & VGE_RDCTL_TCPPKT)
				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;

			if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
		}

		if (ifp->if_csum_flags_rx & M_CSUM_UDPv4) {
			/* Check UDP checksum */
			if (rxctl & VGE_RDCTL_UDPPKT)
				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;

			if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0)
				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
		}

		if (rxstat & VGE_RDSTS_VTAG) {
			/*
			 * We use bswap16() here because:
			 * On LE machines, tag is stored in BE as stream data.
			 * On BE machines, tag is stored in BE as stream data
			 *  but it was already swapped by le32toh() above.
			 */
			vlan_set_tag(m, bswap16(rxctl & VGE_RDCTL_VLANID));
		}

		if_percpuq_enqueue(ifp->if_percpuq, m);

		lim++;
		if (lim == VGE_NRXDESC)
			break;
	}

	sc->sc_rx_prodidx = idx;
	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
}

static void
vge_txeof(struct vge_softc *sc)
{
	struct ifnet *ifp;
	struct vge_txsoft *txs;
	uint32_t txstat;
	int idx;

	ifp = &sc->sc_ethercom.ec_if;

	for (idx = sc->sc_tx_considx;
	    sc->sc_tx_free < VGE_NTXDESC;
	    idx = VGE_NEXT_TXDESC(idx), sc->sc_tx_free++) {
		VGE_TXDESCSYNC(sc, idx,
		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
		txstat = le32toh(sc->sc_txdescs[idx].td_sts);
		VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
		if (txstat & VGE_TDSTS_OWN) {
			break;
		}

		txs = &sc->sc_txsoft[idx];
		m_freem(txs->txs_mbuf);
		txs->txs_mbuf = NULL;
		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 0,
		    txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
		if (txstat & (VGE_TDSTS_EXCESSCOLL | VGE_TDSTS_COLL))
			ifp->if_collisions++;
		if (txstat & VGE_TDSTS_TXERR)
			ifp->if_oerrors++;
		else
			ifp->if_opackets++;
	}

	sc->sc_tx_considx = idx;

	if (sc->sc_tx_free > 0) {
		ifp->if_flags &= ~IFF_OACTIVE;
	}

	/*
	 * If not all descriptors have been released reaped yet,
	 * reload the timer so that we will eventually get another
	 * interrupt that will cause us to re-enter this routine.
	 * This is done in case the transmitter has gone idle.
	 */
	if (sc->sc_tx_free < VGE_NTXDESC)
		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
	else
		ifp->if_timer = 0;
}

static void
vge_tick(void *arg)
{
	struct vge_softc *sc;
	struct ifnet *ifp;
	struct mii_data *mii;
	int s;

	sc = arg;
	ifp = &sc->sc_ethercom.ec_if;
	mii = &sc->sc_mii;

	s = splnet();

	callout_schedule(&sc->sc_timeout, hz);

	mii_tick(mii);
	if (sc->sc_link) {
		if ((mii->mii_media_status & IFM_ACTIVE) == 0)
			sc->sc_link = 0;
	} else {
		if (mii->mii_media_status & IFM_ACTIVE &&
		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
			sc->sc_link = 1;
			if (!IFQ_IS_EMPTY(&ifp->if_snd))
				vge_start(ifp);
		}
	}

	splx(s);
}

static int
vge_intr(void *arg)
{
	struct vge_softc *sc;
	struct ifnet *ifp;
	uint32_t status;
	int claim;

	sc = arg;
	claim = 0;
	if (sc->sc_suspended) {
		return claim;
	}

	ifp = &sc->sc_ethercom.ec_if;

	if ((ifp->if_flags & IFF_UP) == 0) {
		return claim;
	}

	/* Disable interrupts */
	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);

	for (;;) {

		status = CSR_READ_4(sc, VGE_ISR);
		/* If the card has gone away the read returns 0xffffffff. */
		if (status == 0xFFFFFFFF)
			break;

		if (status) {
			claim = 1;
			CSR_WRITE_4(sc, VGE_ISR, status);
		}

		if ((status & VGE_INTRS) == 0)
			break;

		if (status & (VGE_ISR_RXOK | VGE_ISR_RXOK_HIPRIO))
			vge_rxeof(sc);

		if (status & (VGE_ISR_RXOFLOW | VGE_ISR_RXNODESC)) {
			vge_rxeof(sc);
			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
		}

		if (status & (VGE_ISR_TXOK0 | VGE_ISR_TIMER0))
			vge_txeof(sc);

		if (status & (VGE_ISR_TXDMA_STALL | VGE_ISR_RXDMA_STALL))
			vge_init(ifp);

		if (status & VGE_ISR_LINKSTS)
			vge_tick(sc);
	}

	/* Re-enable interrupts */
	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);

	if (claim)
		if_schedule_deferred_start(ifp);

	return claim;
}

static int
vge_encap(struct vge_softc *sc, struct mbuf *m_head, int idx)
{
	struct vge_txsoft *txs;
	struct vge_txdesc *txd;
	struct vge_txfrag *f;
	struct mbuf *m_new;
	bus_dmamap_t map;
	int m_csumflags, seg, error, flags;
	size_t sz;
	uint32_t td_sts, td_ctl;

	KASSERT(sc->sc_tx_free > 0);

	txd = &sc->sc_txdescs[idx];

#ifdef DIAGNOSTIC
	/* If this descriptor is still owned by the chip, bail. */
	VGE_TXDESCSYNC(sc, idx,
	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
	td_sts = le32toh(txd->td_sts);
	VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
	if (td_sts & VGE_TDSTS_OWN) {
		return ENOBUFS;
	}
#endif

	/*
	 * Preserve m_pkthdr.csum_flags here since m_head might be
	 * updated by m_defrag()
	 */
	m_csumflags = m_head->m_pkthdr.csum_flags;

	txs = &sc->sc_txsoft[idx];
	map = txs->txs_dmamap;
	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m_head, BUS_DMA_NOWAIT);

	/* If too many segments to map, coalesce */
	if (error == EFBIG ||
	    (m_head->m_pkthdr.len < ETHER_PAD_LEN &&
	     map->dm_nsegs == VGE_TX_FRAGS)) {
		m_new = m_defrag(m_head, M_DONTWAIT);
		if (m_new == NULL)
			return EFBIG;

		error = bus_dmamap_load_mbuf(sc->sc_dmat, map,
		    m_new, BUS_DMA_NOWAIT);
		if (error) {
			m_freem(m_new);
			return error;
		}

		m_head = m_new;
	} else if (error)
		return error;

	txs->txs_mbuf = m_head;

	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
	    BUS_DMASYNC_PREWRITE);

	for (seg = 0, f = &txd->td_frag[0]; seg < map->dm_nsegs; seg++, f++) {
		f->tf_buflen = htole16(VGE_BUFLEN(map->dm_segs[seg].ds_len));
		vge_set_txaddr(f, map->dm_segs[seg].ds_addr);
	}

	/* Argh. This chip does not autopad short frames */
	sz = m_head->m_pkthdr.len;
	if (sz < ETHER_PAD_LEN) {
		f->tf_buflen = htole16(VGE_BUFLEN(ETHER_PAD_LEN - sz));
		vge_set_txaddr(f, VGE_CDPADADDR(sc));
		sz = ETHER_PAD_LEN;
		seg++;
	}
	VGE_TXFRAGSYNC(sc, idx, seg, BUS_DMASYNC_PREWRITE);

	/*
	 * When telling the chip how many segments there are, we
	 * must use nsegs + 1 instead of just nsegs. Darned if I
	 * know why.
	 */
	seg++;

	flags = 0;
	if (m_csumflags & M_CSUM_IPv4)
		flags |= VGE_TDCTL_IPCSUM;
	if (m_csumflags & M_CSUM_TCPv4)
		flags |= VGE_TDCTL_TCPCSUM;
	if (m_csumflags & M_CSUM_UDPv4)
		flags |= VGE_TDCTL_UDPCSUM;
	td_sts = sz << 16;
	td_ctl = flags | (seg << 28) | VGE_TD_LS_NORM;

	if (sz > ETHERMTU + ETHER_HDR_LEN)
		td_ctl |= VGE_TDCTL_JUMBO;

	/*
	 * Set up hardware VLAN tagging.
	 */
	if (vlan_has_tag(m_head)) {
		/*
		 * No need htons() here since vge(4) chip assumes
		 * that tags are written in little endian and
		 * we already use htole32() here.
		 */
		td_ctl |= vlan_get_tag(m_head) | VGE_TDCTL_VTAG;
	}
	txd->td_ctl = htole32(td_ctl);
	txd->td_sts = htole32(td_sts);
	VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);

	txd->td_sts = htole32(VGE_TDSTS_OWN | td_sts);
	VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);

	sc->sc_tx_free--;

	return 0;
}

/*
 * Main transmit routine.
 */

static void
vge_start(struct ifnet *ifp)
{
	struct vge_softc *sc;
	struct vge_txsoft *txs;
	struct mbuf *m_head;
	int idx, pidx, ofree, error;

	sc = ifp->if_softc;

	if (!sc->sc_link ||
	    (ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
		return;
	}

	m_head = NULL;
	idx = sc->sc_tx_prodidx;
	pidx = VGE_PREV_TXDESC(idx);
	ofree = sc->sc_tx_free;

	/*
	 * Loop through the send queue, setting up transmit descriptors
	 * until we drain the queue, or use up all available transmit
	 * descriptors.
	 */
	for (;;) {
		/* Grab a packet off the queue. */
		IFQ_POLL(&ifp->if_snd, m_head);
		if (m_head == NULL)
			break;

		if (sc->sc_tx_free == 0) {
			/*
			 * All slots used, stop for now.
			 */
			ifp->if_flags |= IFF_OACTIVE;
			break;
		}

		txs = &sc->sc_txsoft[idx];
		KASSERT(txs->txs_mbuf == NULL);

		if ((error = vge_encap(sc, m_head, idx))) {
			if (error == EFBIG) {
				printf("%s: Tx packet consumes too many "
				    "DMA segments, dropping...\n",
				    device_xname(sc->sc_dev));
				IFQ_DEQUEUE(&ifp->if_snd, m_head);
				m_freem(m_head);
				continue;
			}

			/*
			 * Short on resources, just stop for now.
			 */
			if (error == ENOBUFS)
				ifp->if_flags |= IFF_OACTIVE;
			break;
		}

		IFQ_DEQUEUE(&ifp->if_snd, m_head);

		/*
		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
		 */

		sc->sc_txdescs[pidx].td_frag[0].tf_buflen |=
		    htole16(VGE_TXDESC_Q);
		VGE_TXFRAGSYNC(sc, pidx, 1,
		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);

		if (txs->txs_mbuf != m_head) {
			m_freem(m_head);
			m_head = txs->txs_mbuf;
		}

		pidx = idx;
		idx = VGE_NEXT_TXDESC(idx);

		/*
		 * If there's a BPF listener, bounce a copy of this frame
		 * to him.
		 */
		bpf_mtap(ifp, m_head, BPF_D_OUT);
	}

	if (sc->sc_tx_free < ofree) {
		/* TX packet queued */

		sc->sc_tx_prodidx = idx;

		/* Issue a transmit command. */
		CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);

		/*
		 * Use the countdown timer for interrupt moderation.
		 * 'TX done' interrupts are disabled. Instead, we reset the
		 * countdown timer, which will begin counting until it hits
		 * the value in the SSTIMER register, and then trigger an
		 * interrupt. Each time we set the TIMER0_ENABLE bit, the
		 * the timer count is reloaded. Only when the transmitter
		 * is idle will the timer hit 0 and an interrupt fire.
		 */
		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);

		/*
		 * Set a timeout in case the chip goes out to lunch.
		 */
		ifp->if_timer = 5;
	}
}

static int
vge_init(struct ifnet *ifp)
{
	struct vge_softc *sc;
	int i, rc = 0;

	sc = ifp->if_softc;

	/*
	 * Cancel pending I/O and free all RX/TX buffers.
	 */
	vge_stop(ifp, 0);
	vge_reset(sc);

	/* Initialize the RX descriptors and mbufs. */
	memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs));
	sc->sc_rx_consumed = 0;
	for (i = 0; i < VGE_NRXDESC; i++) {
		if (vge_newbuf(sc, i, NULL) == ENOBUFS) {
			printf("%s: unable to allocate or map rx buffer\n",
			    device_xname(sc->sc_dev));
			return 1; /* XXX */
		}
	}
	sc->sc_rx_prodidx = 0;
	sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;

	/* Initialize the  TX descriptors and mbufs. */
	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
	    VGE_CDTXOFF(0), sizeof(sc->sc_txdescs),
	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
	for (i = 0; i < VGE_NTXDESC; i++)
		sc->sc_txsoft[i].txs_mbuf = NULL;

	sc->sc_tx_prodidx = 0;
	sc->sc_tx_considx = 0;
	sc->sc_tx_free = VGE_NTXDESC;

	/* Set our station address */
	for (i = 0; i < ETHER_ADDR_LEN; i++)
		CSR_WRITE_1(sc, VGE_PAR0 + i, sc->sc_eaddr[i]);

	/*
	 * Set receive FIFO threshold. Also allow transmission and
	 * reception of VLAN tagged frames.
	 */
	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR | VGE_RXCFG_VTAGOPT);
	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES | VGE_VTAG_OPT2);

	/* Set DMA burst length */
	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);

	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO | VGE_TXCFG_NONBLK);

	/* Set collision backoff algorithm */
	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM |
	    VGE_CHIPCFG1_CAP | VGE_CHIPCFG1_MBA | VGE_CHIPCFG1_BAKOPT);
	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);

	/* Disable LPSEL field in priority resolution */
	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);

	/*
	 * Load the addresses of the DMA queues into the chip.
	 * Note that we only use one transmit queue.
	 */

	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0, VGE_ADDR_LO(VGE_CDTXADDR(sc, 0)));
	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_NTXDESC - 1);

	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, VGE_ADDR_LO(VGE_CDRXADDR(sc, 0)));
	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_NRXDESC - 1);
	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_NRXDESC);

	/* Enable and wake up the RX descriptor queue */
	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);

	/* Enable the TX descriptor queue */
	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);

	/* Set up the receive filter -- allow large frames for VLANs. */
	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST | VGE_RXCTL_RX_GIANT);

	/* If we want promiscuous mode, set the allframes bit. */
	if (ifp->if_flags & IFF_PROMISC) {
		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
	}

	/* Set capture broadcast bit to capture broadcast frames. */
	if (ifp->if_flags & IFF_BROADCAST) {
		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
	}

	/* Set multicast bit to capture multicast frames. */
	if (ifp->if_flags & IFF_MULTICAST) {
		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
	}

	/* Init the cam filter. */
	vge_cam_clear(sc);

	/* Init the multicast filter. */
	vge_setmulti(sc);

	/* Enable flow control */

	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);

	/* Enable jumbo frame reception (if desired) */

	/* Start the MAC. */
	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
	CSR_WRITE_1(sc, VGE_CRS0,
	    VGE_CR0_TX_ENABLE | VGE_CR0_RX_ENABLE | VGE_CR0_START);

	/*
	 * Configure one-shot timer for microsecond
	 * resulution and load it for 500 usecs.
	 */
	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
	CSR_WRITE_2(sc, VGE_SSTIMER, 400);

	/*
	 * Configure interrupt moderation for receive. Enable
	 * the holdoff counter and load it, and set the RX
	 * suppression count to the number of descriptors we
	 * want to allow before triggering an interrupt.
	 * The holdoff timer is in units of 20 usecs.
	 */

#ifdef notyet
	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
	/* Select the interrupt holdoff timer page. */
	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */

	/* Enable use of the holdoff timer. */
	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);

	/* Select the RX suppression threshold page. */
	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */

	/* Restore the page select bits. */
	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
#endif

#ifdef DEVICE_POLLING
	/*
	 * Disable interrupts if we are polling.
	 */
	if (ifp->if_flags & IFF_POLLING) {
		CSR_WRITE_4(sc, VGE_IMR, 0);
		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
	} else	/* otherwise ... */
#endif /* DEVICE_POLLING */
	{
	/*
	 * Enable interrupts.
	 */
		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
		CSR_WRITE_4(sc, VGE_ISR, 0);
		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
	}

	if ((rc = ether_mediachange(ifp)) != 0)
		goto out;

	ifp->if_flags |= IFF_RUNNING;
	ifp->if_flags &= ~IFF_OACTIVE;

	sc->sc_if_flags = 0;
	sc->sc_link = 0;

	callout_schedule(&sc->sc_timeout, hz);

out:
	return rc;
}

static void
vge_miibus_statchg(struct ifnet *ifp)
{
	struct vge_softc *sc = ifp->if_softc;
	struct mii_data *mii = &sc->sc_mii;
	struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
	uint8_t dctl;

	/*
	 * If the user manually selects a media mode, we need to turn
	 * on the forced MAC mode bit in the DIAGCTL register. If the
	 * user happens to choose a full duplex mode, we also need to
	 * set the 'force full duplex' bit. This applies only to
	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
	 * mode is disabled, and in 1000baseT mode, full duplex is
	 * always implied, so we turn on the forced mode bit but leave
	 * the FDX bit cleared.
	 */
	dctl = CSR_READ_1(sc, VGE_DIAGCTL);

	if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
		dctl &= ~VGE_DIAGCTL_MACFORCE;
		dctl &= ~VGE_DIAGCTL_FDXFORCE;
	} else {
		u_int ifmword;

		/* If the link is up, use the current active media. */
		if ((mii->mii_media_status & IFM_ACTIVE) != 0)
			ifmword = mii->mii_media_active;
		else
			ifmword = ife->ifm_media;

		dctl |= VGE_DIAGCTL_MACFORCE;
		if ((ifmword & IFM_FDX) != 0)
			dctl |= VGE_DIAGCTL_FDXFORCE;
		else
			dctl &= ~VGE_DIAGCTL_FDXFORCE;

		if (IFM_SUBTYPE(ifmword) == IFM_1000_T) {
			/*
			 * It means the user setting is not auto but it's
			 * 1000baseT-FDX or 1000baseT.
			 */
			dctl |= VGE_DIAGCTL_GMII;
		} else
			dctl &= ~VGE_DIAGCTL_GMII;
	}

	CSR_WRITE_1(sc, VGE_DIAGCTL, dctl);
}

static int
vge_ifflags_cb(struct ethercom *ec)
{
	struct ifnet *ifp = &ec->ec_if;
	struct vge_softc *sc = ifp->if_softc;
	int change = ifp->if_flags ^ sc->sc_if_flags;

	if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
		return ENETRESET;
	else if ((change & IFF_PROMISC) == 0)
		return 0;

	if ((ifp->if_flags & IFF_PROMISC) == 0)
		CSR_CLRBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
	else
		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
	vge_setmulti(sc);
	return 0;
}

static int
vge_ioctl(struct ifnet *ifp, u_long command, void *data)
{
	struct vge_softc *sc;
	int s, error;

	sc = ifp->if_softc;
	error = 0;

	s = splnet();

	if ((error = ether_ioctl(ifp, command, data)) == ENETRESET) {
		error = 0;
		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
			;
		else if (ifp->if_flags & IFF_RUNNING) {
			/*
			 * Multicast list has changed; set the hardware filter
			 * accordingly.
			 */
			vge_setmulti(sc);
		}
	}
	sc->sc_if_flags = ifp->if_flags;

	splx(s);
	return error;
}

static void
vge_watchdog(struct ifnet *ifp)
{
	struct vge_softc *sc;
	int s;

	sc = ifp->if_softc;
	s = splnet();
	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
	ifp->if_oerrors++;

	vge_txeof(sc);
	vge_rxeof(sc);

	vge_init(ifp);

	splx(s);
}

/*
 * Stop the adapter and free any mbufs allocated to the
 * RX and TX lists.
 */
static void
vge_stop(struct ifnet *ifp, int disable)
{
	struct vge_softc *sc = ifp->if_softc;
	struct vge_txsoft *txs;
	struct vge_rxsoft *rxs;
	int i, s;

	s = splnet();
	ifp->if_timer = 0;

	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
#ifdef DEVICE_POLLING
	ether_poll_deregister(ifp);
#endif /* DEVICE_POLLING */

	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);

	if (sc->sc_rx_mhead != NULL) {
		m_freem(sc->sc_rx_mhead);
		sc->sc_rx_mhead = sc->sc_rx_mtail = NULL;
	}

	/* Free the TX list buffers. */

	for (i = 0; i < VGE_NTXDESC; i++) {
		txs = &sc->sc_txsoft[i];
		if (txs->txs_mbuf != NULL) {
			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
			m_freem(txs->txs_mbuf);
			txs->txs_mbuf = NULL;
		}
	}

	/* Free the RX list buffers. */

	for (i = 0; i < VGE_NRXDESC; i++) {
		rxs = &sc->sc_rxsoft[i];
		if (rxs->rxs_mbuf != NULL) {
			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
			m_freem(rxs->rxs_mbuf);
			rxs->rxs_mbuf = NULL;
		}
	}

	splx(s);
}

#if VGE_POWER_MANAGEMENT
/*
 * Device suspend routine.  Stop the interface and save some PCI
 * settings in case the BIOS doesn't restore them properly on
 * resume.
 */
static int
vge_suspend(device_t dev)
{
	struct vge_softc *sc;
	int i;

	sc = device_get_softc(dev);

	vge_stop(sc);

	for (i = 0; i < 5; i++)
		sc->sc_saved_maps[i] =
		    pci_read_config(dev, PCIR_MAPS + i * 4, 4);
	sc->sc_saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
	sc->sc_saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
	sc->sc_saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
	sc->sc_saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);

	sc->suspended = 1;

	return 0;
}

/*
 * Device resume routine.  Restore some PCI settings in case the BIOS
 * doesn't, re-enable busmastering, and restart the interface if
 * appropriate.
 */
static int
vge_resume(device_t dev)
{
	struct vge_softc *sc;
	struct ifnet *ifp;
	int i;

	sc = device_private(dev);
	ifp = &sc->sc_ethercom.ec_if;

	/* better way to do this? */
	for (i = 0; i < 5; i++)
		pci_write_config(dev, PCIR_MAPS + i * 4,
		    sc->sc_saved_maps[i], 4);
	pci_write_config(dev, PCIR_BIOS, sc->sc_saved_biosaddr, 4);
	pci_write_config(dev, PCIR_INTLINE, sc->sc_saved_intline, 1);
	pci_write_config(dev, PCIR_CACHELNSZ, sc->sc_saved_cachelnsz, 1);
	pci_write_config(dev, PCIR_LATTIMER, sc->sc_saved_lattimer, 1);

	/* reenable busmastering */
	pci_enable_busmaster(dev);
	pci_enable_io(dev, SYS_RES_MEMORY);

	/* reinitialize interface if necessary */
	if (ifp->if_flags & IFF_UP)
		vge_init(sc);

	sc->suspended = 0;

	return 0;
}
#endif

/*
 * Stop all chip I/O so that the kernel's probe routines don't
 * get confused by errant DMAs when rebooting.
 */
static bool
vge_shutdown(device_t self, int howto)
{
	struct vge_softc *sc;

	sc = device_private(self);
	vge_stop(&sc->sc_ethercom.ec_if, 1);

	return true;
}

static void
vge_clrwol(struct vge_softc *sc)
{
	uint8_t val;

	val = CSR_READ_1(sc, VGE_PWRSTAT);
	val &= ~VGE_STICKHW_SWPTAG;
	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
	/* Disable WOL and clear power state indicator. */
	val = CSR_READ_1(sc, VGE_PWRSTAT);
	val &= ~(VGE_STICKHW_DS0 | VGE_STICKHW_DS1);
	CSR_WRITE_1(sc, VGE_PWRSTAT, val);

	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);

	/* Clear WOL on pattern match. */
	CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
	/* Disable WOL on magic/unicast packet. */
	CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
	CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
	    VGE_WOLCFG_PMEOVR);
	/* Clear WOL status on pattern match. */
	CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
	CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
}