/* $NetBSD: ubsec.c,v 1.46 2018/12/22 14:07:53 maxv Exp $ */
/* $FreeBSD: src/sys/dev/ubsec/ubsec.c,v 1.6.2.6 2003/01/23 21:06:43 sam Exp $ */
/* $OpenBSD: ubsec.c,v 1.143 2009/03/27 13:31:30 reyk Exp$ */
/*
* Copyright (c) 2000 Jason L. Wright (jason@thought.net)
* Copyright (c) 2000 Theo de Raadt (deraadt@openbsd.org)
* Copyright (c) 2001 Patrik Lindergren (patrik@ipunplugged.com)
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Effort sponsored in part by the Defense Advanced Research Projects
* Agency (DARPA) and Air Force Research Laboratory, Air Force
* Materiel Command, USAF, under agreement number F30602-01-2-0537.
*
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: ubsec.c,v 1.46 2018/12/22 14:07:53 maxv Exp $");
#undef UBSEC_DEBUG
/*
* uBsec 5[56]01, 58xx hardware crypto accelerator
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/endian.h>
#ifdef __NetBSD__
#define UBSEC_NO_RNG /* hangs on attach */
#define letoh16 htole16
#define letoh32 htole32
#endif
#include <sys/errno.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/mbuf.h>
#include <sys/device.h>
#include <sys/module.h>
#include <sys/queue.h>
#include <sys/sysctl.h>
#include <opencrypto/cryptodev.h>
#include <opencrypto/xform.h>
#ifdef __OpenBSD__
#include <dev/rndvar.h>
#include <sys/md5k.h>
#else
#include <sys/cprng.h>
#include <sys/md5.h>
#include <sys/rndpool.h>
#include <sys/rndsource.h>
#endif
#include <sys/sha1.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <dev/pci/ubsecreg.h>
#include <dev/pci/ubsecvar.h>
/*
* Prototypes and count for the pci_device structure
*/
static int ubsec_probe(device_t, cfdata_t, void *);
static void ubsec_attach(device_t, device_t, void *);
static int ubsec_detach(device_t, int);
static int ubsec_sysctl_init(void);
static void ubsec_reset_board(struct ubsec_softc *);
static void ubsec_init_board(struct ubsec_softc *);
static void ubsec_init_pciregs(struct pci_attach_args *pa);
static void ubsec_cleanchip(struct ubsec_softc *);
static void ubsec_totalreset(struct ubsec_softc *);
static int ubsec_free_q(struct ubsec_softc*, struct ubsec_q *);
#ifdef __OpenBSD__
struct cfattach ubsec_ca = {
sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach,
};
struct cfdriver ubsec_cd = {
0, "ubsec", DV_DULL
};
#else
CFATTACH_DECL_NEW(ubsec, sizeof(struct ubsec_softc), ubsec_probe, ubsec_attach,
ubsec_detach, NULL);
extern struct cfdriver ubsec_cd;
#endif
/* patchable */
#ifdef UBSEC_DEBUG
extern int ubsec_debug;
int ubsec_debug=1;
#endif
static int ubsec_intr(void *);
static int ubsec_newsession(void*, u_int32_t *, struct cryptoini *);
static int ubsec_freesession(void*, u_int64_t);
static int ubsec_process(void*, struct cryptop *, int hint);
static void ubsec_callback(struct ubsec_softc *, struct ubsec_q *);
static void ubsec_feed(struct ubsec_softc *);
static void ubsec_mcopy(struct mbuf *, struct mbuf *, int, int);
static void ubsec_callback2(struct ubsec_softc *, struct ubsec_q2 *);
static void ubsec_feed2(struct ubsec_softc *);
static void ubsec_feed4(struct ubsec_softc *);
#ifndef UBSEC_NO_RNG
static void ubsec_rng(void *);
static void ubsec_rng_locked(void *);
static void ubsec_rng_get(size_t, void *);
#endif /* UBSEC_NO_RNG */
static int ubsec_dma_malloc(struct ubsec_softc *, bus_size_t,
struct ubsec_dma_alloc *, int);
static void ubsec_dma_free(struct ubsec_softc *, struct ubsec_dma_alloc *);
static int ubsec_dmamap_aligned(bus_dmamap_t);
static int ubsec_kprocess(void*, struct cryptkop *, int);
static int ubsec_kprocess_modexp_sw(struct ubsec_softc *,
struct cryptkop *, int);
static int ubsec_kprocess_modexp_hw(struct ubsec_softc *,
struct cryptkop *, int);
static int ubsec_kprocess_rsapriv(struct ubsec_softc *,
struct cryptkop *, int);
static void ubsec_kfree(struct ubsec_softc *, struct ubsec_q2 *);
static int ubsec_ksigbits(struct crparam *);
static void ubsec_kshift_r(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
static void ubsec_kshift_l(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
#ifdef UBSEC_DEBUG
static void ubsec_dump_pb(volatile struct ubsec_pktbuf *);
static void ubsec_dump_mcr(struct ubsec_mcr *);
static void ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *);
#endif
#define READ_REG(sc,r) \
bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
#define WRITE_REG(sc,reg,val) \
bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
#define SWAP32(x) (x) = htole32(ntohl((x)))
#ifndef HTOLE32
#define HTOLE32(x) (x) = htole32(x)
#endif
struct ubsec_stats ubsecstats;
static struct sysctllog *ubsec_sysctllog;
/*
* ubsec_maxbatch controls the number of crypto ops to voluntarily
* collect into one submission to the hardware. This batching happens
* when ops are dispatched from the crypto subsystem with a hint that
* more are to follow immediately. These ops must also not be marked
* with a ``no delay'' flag.
*/
static int ubsec_maxbatch = 1;
/*
* ubsec_maxaggr controls the number of crypto ops to submit to the
* hardware as a unit. This aggregation reduces the number of interrupts
* to the host at the expense of increased latency (for all but the last
* operation). For network traffic setting this to one yields the highest
* performance but at the expense of more interrupt processing.
*/
static int ubsec_maxaggr = 1;
static const struct ubsec_product {
pci_vendor_id_t ubsec_vendor;
pci_product_id_t ubsec_product;
int ubsec_flags;
int ubsec_statmask;
int ubsec_maxaggr;
const char *ubsec_name;
} ubsec_products[] = {
{ PCI_VENDOR_BLUESTEEL, PCI_PRODUCT_BLUESTEEL_5501,
0,
BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
UBS_MIN_AGGR,
"Bluesteel 5501"
},
{ PCI_VENDOR_BLUESTEEL, PCI_PRODUCT_BLUESTEEL_5601,
UBS_FLAGS_KEY | UBS_FLAGS_RNG,
BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
UBS_MIN_AGGR,
"Bluesteel 5601"
},
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5801,
0,
BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
UBS_MIN_AGGR,
"Broadcom BCM5801"
},
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5802,
UBS_FLAGS_KEY | UBS_FLAGS_RNG,
BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
UBS_MIN_AGGR,
"Broadcom BCM5802"
},
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5805,
UBS_FLAGS_KEY | UBS_FLAGS_RNG,
BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
UBS_MIN_AGGR,
"Broadcom BCM5805"
},
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5820,
UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
BS_STAT_MCR1_DONE | BS_STAT_DMAERR,
UBS_MIN_AGGR,
"Broadcom BCM5820"
},
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5821,
UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
UBS_MIN_AGGR,
"Broadcom BCM5821"
},
{ PCI_VENDOR_SUN, PCI_PRODUCT_SUN_SCA1K,
UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
UBS_MIN_AGGR,
"Sun Crypto Accelerator 1000"
},
{ PCI_VENDOR_SUN, PCI_PRODUCT_SUN_5821,
UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
UBS_MIN_AGGR,
"Broadcom BCM5821 (Sun)"
},
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5822,
UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY,
BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
UBS_MIN_AGGR,
"Broadcom BCM5822"
},
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5823,
UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
UBS_MIN_AGGR,
"Broadcom BCM5823"
},
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5825,
UBS_FLAGS_KEY | UBS_FLAGS_RNG | UBS_FLAGS_LONGCTX |
UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY,
UBS_MIN_AGGR,
"Broadcom BCM5825"
},
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5860,
UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM |
UBS_FLAGS_LONGCTX |
UBS_FLAGS_RNG | UBS_FLAGS_RNG4 |
UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY |
BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY,
UBS_MAX_AGGR,
"Broadcom BCM5860"
},
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5861,
UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM |
UBS_FLAGS_LONGCTX |
UBS_FLAGS_RNG | UBS_FLAGS_RNG4 |
UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY |
BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY,
UBS_MAX_AGGR,
"Broadcom BCM5861"
},
{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_5862,
UBS_FLAGS_MULTIMCR | UBS_FLAGS_HWNORM |
UBS_FLAGS_LONGCTX |
UBS_FLAGS_RNG | UBS_FLAGS_RNG4 |
UBS_FLAGS_KEY | UBS_FLAGS_BIGKEY | UBS_FLAGS_AES,
BS_STAT_MCR1_DONE | BS_STAT_DMAERR |
BS_STAT_MCR1_ALLEMPTY | BS_STAT_MCR2_ALLEMPTY |
BS_STAT_MCR3_ALLEMPTY | BS_STAT_MCR4_ALLEMPTY,
UBS_MAX_AGGR,
"Broadcom BCM5862"
},
{ 0, 0,
0,
0,
0,
NULL
}
};
static const struct ubsec_product *
ubsec_lookup(const struct pci_attach_args *pa)
{
const struct ubsec_product *up;
for (up = ubsec_products; up->ubsec_name != NULL; up++) {
if (PCI_VENDOR(pa->pa_id) == up->ubsec_vendor &&
PCI_PRODUCT(pa->pa_id) == up->ubsec_product)
return (up);
}
return (NULL);
}
static int
ubsec_probe(device_t parent, cfdata_t match, void *aux)
{
struct pci_attach_args *pa = (struct pci_attach_args *)aux;
if (ubsec_lookup(pa) != NULL)
return (1);
return (0);
}
static void
ubsec_attach(device_t parent, device_t self, void *aux)
{
struct ubsec_softc *sc = device_private(self);
struct pci_attach_args *pa = aux;
const struct ubsec_product *up;
pci_chipset_tag_t pc = pa->pa_pc;
pci_intr_handle_t ih;
const char *intrstr = NULL;
pcireg_t memtype;
struct ubsec_dma *dmap;
u_int32_t cmd, i;
char intrbuf[PCI_INTRSTR_LEN];
sc->sc_dev = self;
sc->sc_pct = pc;
up = ubsec_lookup(pa);
if (up == NULL) {
printf("\n");
panic("ubsec_attach: impossible");
}
pci_aprint_devinfo_fancy(pa, "Crypto processor", up->ubsec_name, 1);
SIMPLEQ_INIT(&sc->sc_queue);
SIMPLEQ_INIT(&sc->sc_qchip);
SIMPLEQ_INIT(&sc->sc_queue2);
SIMPLEQ_INIT(&sc->sc_qchip2);
SIMPLEQ_INIT(&sc->sc_queue4);
SIMPLEQ_INIT(&sc->sc_qchip4);
SIMPLEQ_INIT(&sc->sc_q2free);
sc->sc_flags = up->ubsec_flags;
sc->sc_statmask = up->ubsec_statmask;
sc->sc_maxaggr = up->ubsec_maxaggr;
cmd = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
cmd |= PCI_COMMAND_MASTER_ENABLE;
pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, cmd);
memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BS_BAR);
if (pci_mapreg_map(pa, BS_BAR, memtype, 0,
&sc->sc_st, &sc->sc_sh, NULL, &sc->sc_memsize)) {
aprint_error_dev(self, "can't find mem space");
return;
}
sc->sc_dmat = pa->pa_dmat;
if (pci_intr_map(pa, &ih)) {
aprint_error_dev(self, "couldn't map interrupt\n");
return;
}
intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, ubsec_intr, sc,
device_xname(self));
if (sc->sc_ih == NULL) {
aprint_error_dev(self, "couldn't establish interrupt");
if (intrstr != NULL)
aprint_error(" at %s", intrstr);
aprint_error("\n");
return;
}
aprint_normal_dev(self, "interrupting at %s\n", intrstr);
sc->sc_cid = crypto_get_driverid(0);
if (sc->sc_cid < 0) {
aprint_error_dev(self, "couldn't get crypto driver id\n");
pci_intr_disestablish(pc, sc->sc_ih);
return;
}
sc->sc_rng_need = RND_POOLBITS / NBBY;
mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_VM);
SIMPLEQ_INIT(&sc->sc_freequeue);
dmap = sc->sc_dmaa;
for (i = 0; i < UBS_MAX_NQUEUE; i++, dmap++) {
struct ubsec_q *q;
q = (struct ubsec_q *)malloc(sizeof(struct ubsec_q),
M_DEVBUF, M_ZERO|M_NOWAIT);
if (q == NULL) {
aprint_error_dev(self,
"can't allocate queue buffers\n");
break;
}
if (ubsec_dma_malloc(sc, sizeof(struct ubsec_dmachunk),
&dmap->d_alloc, 0)) {
aprint_error_dev(self, "can't allocate dma buffers\n");
free(q, M_DEVBUF);
break;
}
dmap->d_dma = (struct ubsec_dmachunk *)dmap->d_alloc.dma_vaddr;
q->q_dma = dmap;
sc->sc_queuea[i] = q;
SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
}
crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0,
ubsec_newsession, ubsec_freesession, ubsec_process, sc);
crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0,
ubsec_newsession, ubsec_freesession, ubsec_process, sc);
crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC_96, 0, 0,
ubsec_newsession, ubsec_freesession, ubsec_process, sc);
crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC_96, 0, 0,
ubsec_newsession, ubsec_freesession, ubsec_process, sc);
if (sc->sc_flags & UBS_FLAGS_AES) {
crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0,
ubsec_newsession, ubsec_freesession, ubsec_process, sc);
}
/*
* Reset Broadcom chip
*/
ubsec_reset_board(sc);
/*
* Init Broadcom specific PCI settings
*/
ubsec_init_pciregs(pa);
/*
* Init Broadcom chip
*/
ubsec_init_board(sc);
#ifndef UBSEC_NO_RNG
if (sc->sc_flags & UBS_FLAGS_RNG) {
if (sc->sc_flags & UBS_FLAGS_RNG4)
sc->sc_statmask |= BS_STAT_MCR4_DONE;
else
sc->sc_statmask |= BS_STAT_MCR2_DONE;
if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
&sc->sc_rng.rng_q.q_mcr, 0))
goto skip_rng;
if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rngbypass),
&sc->sc_rng.rng_q.q_ctx, 0)) {
ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
goto skip_rng;
}
if (ubsec_dma_malloc(sc, sizeof(u_int32_t) *
UBSEC_RNG_BUFSIZ, &sc->sc_rng.rng_buf, 0)) {
ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
goto skip_rng;
}
rndsource_setcb(&sc->sc_rnd_source, ubsec_rng_get, sc);
rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
RND_TYPE_RNG,
RND_FLAG_COLLECT_VALUE|RND_FLAG_HASCB);
if (hz >= 100)
sc->sc_rnghz = hz / 100;
else
sc->sc_rnghz = 1;
#ifdef __OpenBSD__
timeout_set(&sc->sc_rngto, ubsec_rng, sc);
timeout_add(&sc->sc_rngto, sc->sc_rnghz);
#else
callout_init(&sc->sc_rngto, 0);
callout_setfunc(&sc->sc_rngto, ubsec_rng, sc);
callout_schedule(&sc->sc_rngto, sc->sc_rnghz);
#endif
skip_rng:
if (sc->sc_rnghz)
aprint_normal_dev(self,
"random number generator enabled\n");
else
aprint_error_dev(self,
"WARNING: random number generator disabled\n");
}
#endif /* UBSEC_NO_RNG */
if (sc->sc_flags & UBS_FLAGS_KEY) {
sc->sc_statmask |= BS_STAT_MCR2_DONE;
crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0,
ubsec_kprocess, sc);
#if 0
crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0,
ubsec_kprocess, sc);
#endif
}
}
static int
ubsec_detach(device_t self, int flags)
{
struct ubsec_softc *sc = device_private(self);
struct ubsec_q *q, *qtmp;
volatile u_int32_t ctrl;
/* disable interrupts */
/* XXX wait/abort current ops? where is DMAERR enabled? */
ctrl = READ_REG(sc, BS_CTRL);
ctrl &= ~(BS_CTRL_MCR2INT | BS_CTRL_MCR1INT | BS_CTRL_DMAERR);
if (sc->sc_flags & UBS_FLAGS_MULTIMCR)
ctrl &= ~BS_CTRL_MCR4INT;
WRITE_REG(sc, BS_CTRL, ctrl);
#ifndef UBSEC_NO_RNG
if (sc->sc_flags & UBS_FLAGS_RNG) {
callout_halt(&sc->sc_rngto, NULL);
ubsec_dma_free(sc, &sc->sc_rng.rng_buf);
ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
rnd_detach_source(&sc->sc_rnd_source);
}
#endif /* UBSEC_NO_RNG */
crypto_unregister_all(sc->sc_cid);
mutex_spin_enter(&sc->sc_mtx);
ubsec_totalreset(sc); /* XXX leaves the chip running */
SIMPLEQ_FOREACH_SAFE(q, &sc->sc_freequeue, q_next, qtmp) {
ubsec_dma_free(sc, &q->q_dma->d_alloc);
if (q->q_src_map != NULL)
bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
if (q->q_cached_dst_map != NULL)
bus_dmamap_destroy(sc->sc_dmat, q->q_cached_dst_map);
free(q, M_DEVBUF);
}
mutex_spin_exit(&sc->sc_mtx);
if (sc->sc_ih != NULL) {
pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
sc->sc_ih = NULL;
}
if (sc->sc_memsize != 0) {
bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_memsize);
sc->sc_memsize = 0;
}
return 0;
}
MODULE(MODULE_CLASS_DRIVER, ubsec, "pci,opencrypto");
#ifdef _MODULE
#include "ioconf.c"
#endif
static int
ubsec_modcmd(modcmd_t cmd, void *data)
{
int error = 0;
switch (cmd) {
case MODULE_CMD_INIT:
#ifdef _MODULE
error = config_init_component(cfdriver_ioconf_ubsec,
cfattach_ioconf_ubsec, cfdata_ioconf_ubsec);
#endif
if (error == 0)
error = ubsec_sysctl_init();
return error;
case MODULE_CMD_FINI:
if (ubsec_sysctllog != NULL)
sysctl_teardown(&ubsec_sysctllog);
#ifdef _MODULE
error = config_fini_component(cfdriver_ioconf_ubsec,
cfattach_ioconf_ubsec, cfdata_ioconf_ubsec);
#endif
return error;
default:
return ENOTTY;
}
}
static int
ubsec_sysctl_init(void)
{
const struct sysctlnode *node = NULL;
ubsec_sysctllog = NULL;
sysctl_createv(&ubsec_sysctllog, 0, NULL, &node,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "ubsec",
SYSCTL_DESCR("ubsec opetions"),
NULL, 0, NULL, 0,
CTL_HW, CTL_CREATE, CTL_EOL);
sysctl_createv(&ubsec_sysctllog, 0, &node, NULL,
CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
CTLTYPE_INT, "maxbatch",
SYSCTL_DESCR("max ops to batch w/o interrupt"),
NULL, 0, &ubsec_maxbatch, 0,
CTL_CREATE, CTL_EOL);
sysctl_createv(&ubsec_sysctllog, 0, &node, NULL,
CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
CTLTYPE_INT, "maxaggr",
SYSCTL_DESCR("max ops to aggregate under one interrupt"),
NULL, 0, &ubsec_maxaggr, 0,
CTL_CREATE, CTL_EOL);
return 0;
}
/*
* UBSEC Interrupt routine
*/
static int
ubsec_intr(void *arg)
{
struct ubsec_softc *sc = arg;
volatile u_int32_t stat;
struct ubsec_q *q;
struct ubsec_dma *dmap;
int flags;
int npkts = 0, i;
mutex_spin_enter(&sc->sc_mtx);
stat = READ_REG(sc, BS_STAT);
stat &= sc->sc_statmask;
if (stat == 0) {
mutex_spin_exit(&sc->sc_mtx);
return (0);
}
WRITE_REG(sc, BS_STAT, stat); /* IACK */
/*
* Check to see if we have any packets waiting for us
*/
if ((stat & BS_STAT_MCR1_DONE)) {
while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
q = SIMPLEQ_FIRST(&sc->sc_qchip);
dmap = q->q_dma;
if ((dmap->d_dma->d_mcr.mcr_flags
& htole16(UBS_MCR_DONE)) == 0)
break;
q = SIMPLEQ_FIRST(&sc->sc_qchip);
SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next);
npkts = q->q_nstacked_mcrs;
sc->sc_nqchip -= 1+npkts;
/*
* search for further sc_qchip ubsec_q's that share
* the same MCR, and complete them too, they must be
* at the top.
*/
for (i = 0; i < npkts; i++) {
if(q->q_stacked_mcr[i])
ubsec_callback(sc, q->q_stacked_mcr[i]);
else
break;
}
ubsec_callback(sc, q);
}
/*
* Don't send any more packet to chip if there has been
* a DMAERR.
*/
if (!(stat & BS_STAT_DMAERR))
ubsec_feed(sc);
}
/*
* Check to see if we have any key setups/rng's waiting for us
*/
if ((sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG)) &&
(stat & BS_STAT_MCR2_DONE)) {
struct ubsec_q2 *q2;
struct ubsec_mcr *mcr;
while (!SIMPLEQ_EMPTY(&sc->sc_qchip2)) {
q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map,
0, q2->q_mcr.dma_map->dm_mapsize,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
/* A bug in new devices requires to swap this field */
if (sc->sc_flags & UBS_FLAGS_MULTIMCR)
flags = htole16(mcr->mcr_flags);
else
flags = mcr->mcr_flags;
if ((flags & htole16(UBS_MCR_DONE)) == 0) {
bus_dmamap_sync(sc->sc_dmat,
q2->q_mcr.dma_map, 0,
q2->q_mcr.dma_map->dm_mapsize,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
break;
}
q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip2, /*q2,*/ q_next);
ubsec_callback2(sc, q2);
/*
* Don't send any more packet to chip if there has been
* a DMAERR.
*/
if (!(stat & BS_STAT_DMAERR))
ubsec_feed2(sc);
}
}
if ((sc->sc_flags & UBS_FLAGS_RNG4) && (stat & BS_STAT_MCR4_DONE)) {
struct ubsec_q2 *q2;
struct ubsec_mcr *mcr;
while (!SIMPLEQ_EMPTY(&sc->sc_qchip4)) {
q2 = SIMPLEQ_FIRST(&sc->sc_qchip4);
bus_dmamap_sync(sc->sc_dmat, q2->q_mcr.dma_map,
0, q2->q_mcr.dma_map->dm_mapsize,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
/* A bug in new devices requires to swap this field */
flags = htole16(mcr->mcr_flags);
if ((flags & htole16(UBS_MCR_DONE)) == 0) {
bus_dmamap_sync(sc->sc_dmat,
q2->q_mcr.dma_map, 0,
q2->q_mcr.dma_map->dm_mapsize,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
break;
}
SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip4, q_next);
ubsec_callback2(sc, q2);
/*
* Don't send any more packet to chip if there has been
* a DMAERR.
*/
if (!(stat & BS_STAT_DMAERR))
ubsec_feed4(sc);
}
}
/*
* Check to see if we got any DMA Error
*/
if (stat & BS_STAT_DMAERR) {
#ifdef UBSEC_DEBUG
if (ubsec_debug) {
volatile u_int32_t a = READ_REG(sc, BS_ERR);
printf("%s: dmaerr %s@%08x\n", device_xname(sc->sc_dev),
(a & BS_ERR_READ) ? "read" : "write",
a & BS_ERR_ADDR);
}
#endif /* UBSEC_DEBUG */
ubsecstats.hst_dmaerr++;
ubsec_totalreset(sc);
ubsec_feed(sc);
}
if (sc->sc_needwakeup) { /* XXX check high watermark */
int wkeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
#ifdef UBSEC_DEBUG
if (ubsec_debug)
printf("%s: wakeup crypto (%x)\n",
device_xname(sc->sc_dev), sc->sc_needwakeup);
#endif /* UBSEC_DEBUG */
sc->sc_needwakeup &= ~wkeup;
crypto_unblock(sc->sc_cid, wkeup);
}
mutex_spin_exit(&sc->sc_mtx);
return (1);
}
/*
* ubsec_feed() - aggregate and post requests to chip
* OpenBSD comments:
* It is assumed that the caller set splnet()
*/
static void
ubsec_feed(struct ubsec_softc *sc)
{
struct ubsec_q *q, *q2;
int npkts, i;
void *v;
u_int32_t stat;
#ifdef UBSEC_DEBUG
static int max;
#endif /* UBSEC_DEBUG */
npkts = sc->sc_nqueue;
if (npkts > ubsecstats.hst_maxqueue)
ubsecstats.hst_maxqueue = npkts;
if (npkts < 2)
goto feed1;
/*
* Decide how many ops to combine in a single MCR. We cannot
* aggregate more than UBS_MAX_AGGR because this is the number
* of slots defined in the data structure. Otherwise we clamp
* based on the tunable parameter ubsec_maxaggr. Note that
* aggregation can happen in two ways: either by batching ops
* from above or because the h/w backs up and throttles us.
* Aggregating ops reduces the number of interrupts to the host
* but also (potentially) increases the latency for processing
* completed ops as we only get an interrupt when all aggregated
* ops have completed.
*/
if (npkts > sc->sc_maxaggr)
npkts = sc->sc_maxaggr;
if (npkts > ubsec_maxaggr)
npkts = ubsec_maxaggr;
if (npkts > ubsecstats.hst_maxbatch)
ubsecstats.hst_maxbatch = npkts;
if (npkts < 2)
goto feed1;
ubsecstats.hst_totbatch += npkts-1;
if ((stat = READ_REG(sc, BS_STAT))
& (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
if (stat & BS_STAT_DMAERR) {
ubsec_totalreset(sc);
ubsecstats.hst_dmaerr++;
} else {
ubsecstats.hst_mcr1full++;
}
return;
}
#ifdef UBSEC_DEBUG
if (ubsec_debug)
printf("merging %d records\n", npkts);
/* XXX temporary aggregation statistics reporting code */
if (max < npkts) {
max = npkts;
printf("%s: new max aggregate %d\n", device_xname(sc->sc_dev),
max);
}
#endif /* UBSEC_DEBUG */
q = SIMPLEQ_FIRST(&sc->sc_queue);
SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next);
--sc->sc_nqueue;
bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
if (q->q_dst_map != NULL)
bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
q->q_nstacked_mcrs = npkts - 1; /* Number of packets stacked */
for (i = 0; i < q->q_nstacked_mcrs; i++) {
q2 = SIMPLEQ_FIRST(&sc->sc_queue);
bus_dmamap_sync(sc->sc_dmat, q2->q_src_map,
0, q2->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
if (q2->q_dst_map != NULL)
bus_dmamap_sync(sc->sc_dmat, q2->q_dst_map,
0, q2->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
q2= SIMPLEQ_FIRST(&sc->sc_queue);
SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q2,*/ q_next);
--sc->sc_nqueue;
v = ((void *)&q2->q_dma->d_dma->d_mcr);
v = (char*)v + (sizeof(struct ubsec_mcr) -
sizeof(struct ubsec_mcr_add));
memcpy(&q->q_dma->d_dma->d_mcradd[i], v,
sizeof(struct ubsec_mcr_add));
q->q_stacked_mcr[i] = q2;
}
q->q_dma->d_dma->d_mcr.mcr_pkts = htole16(npkts);
SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
sc->sc_nqchip += npkts;
if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
ubsecstats.hst_maxqchip = sc->sc_nqchip;
bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
0, q->q_dma->d_alloc.dma_map->dm_mapsize,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
offsetof(struct ubsec_dmachunk, d_mcr));
return;
feed1:
while (!SIMPLEQ_EMPTY(&sc->sc_queue)) {
if ((stat = READ_REG(sc, BS_STAT))
& (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
if (stat & BS_STAT_DMAERR) {
ubsec_totalreset(sc);
ubsecstats.hst_dmaerr++;
} else {
ubsecstats.hst_mcr1full++;
}
break;
}
q = SIMPLEQ_FIRST(&sc->sc_queue);
bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
if (q->q_dst_map != NULL)
bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
0, q->q_dma->d_alloc.dma_map->dm_mapsize,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
offsetof(struct ubsec_dmachunk, d_mcr));
#ifdef UBSEC_DEBUG
if (ubsec_debug)
printf("feed: q->chip %p %08x stat %08x\n",
q, (u_int32_t)q->q_dma->d_alloc.dma_paddr,
stat);
#endif /* UBSEC_DEBUG */
q = SIMPLEQ_FIRST(&sc->sc_queue);
SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, /*q,*/ q_next);
--sc->sc_nqueue;
SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
sc->sc_nqchip++;
}
if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
ubsecstats.hst_maxqchip = sc->sc_nqchip;
}
/*
* Allocate a new 'session' and return an encoded session id. 'sidp'
* contains our registration id, and should contain an encoded session
* id on successful allocation.
*/
static int
ubsec_newsession(void *arg, u_int32_t *sidp, struct cryptoini *cri)
{
struct cryptoini *c, *encini = NULL, *macini = NULL;
struct ubsec_softc *sc;
struct ubsec_session *ses = NULL;
MD5_CTX md5ctx;
SHA1_CTX sha1ctx;
int i, sesn;
sc = arg;
KASSERT(sc != NULL /*, ("ubsec_newsession: null softc")*/);
if (sidp == NULL || cri == NULL || sc == NULL)
return (EINVAL);
for (c = cri; c != NULL; c = c->cri_next) {
if (c->cri_alg == CRYPTO_MD5_HMAC_96 ||
c->cri_alg == CRYPTO_SHA1_HMAC_96) {
if (macini)
return (EINVAL);
macini = c;
} else if (c->cri_alg == CRYPTO_DES_CBC ||
c->cri_alg == CRYPTO_3DES_CBC ||
c->cri_alg == CRYPTO_AES_CBC) {
if (encini)
return (EINVAL);
encini = c;
} else
return (EINVAL);
}
if (encini == NULL && macini == NULL)
return (EINVAL);
if (encini && encini->cri_alg == CRYPTO_AES_CBC) {
switch (encini->cri_klen) {
case 128:
case 192:
case 256:
break;
default:
return (EINVAL);
}
}
if (sc->sc_sessions == NULL) {
ses = sc->sc_sessions = (struct ubsec_session *)malloc(
sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
if (ses == NULL)
return (ENOMEM);
sesn = 0;
sc->sc_nsessions = 1;
} else {
for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
if (sc->sc_sessions[sesn].ses_used == 0) {
ses = &sc->sc_sessions[sesn];
break;
}
}
if (ses == NULL) {
sesn = sc->sc_nsessions;
ses = (struct ubsec_session *)malloc((sesn + 1) *
sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
if (ses == NULL)
return (ENOMEM);
memcpy(ses, sc->sc_sessions, sesn *
sizeof(struct ubsec_session));
memset(sc->sc_sessions, 0, sesn *
sizeof(struct ubsec_session));
free(sc->sc_sessions, M_DEVBUF);
sc->sc_sessions = ses;
ses = &sc->sc_sessions[sesn];
sc->sc_nsessions++;
}
}
memset(ses, 0, sizeof(struct ubsec_session));
ses->ses_used = 1;
if (encini) {
/* get an IV, network byte order */
#ifdef __NetBSD__
cprng_fast(ses->ses_iv, sizeof(ses->ses_iv));
#else
get_random_bytes(ses->ses_iv, sizeof(ses->ses_iv));
#endif
/* Go ahead and compute key in ubsec's byte order */
if (encini->cri_alg == CRYPTO_AES_CBC) {
memcpy(ses->ses_key, encini->cri_key,
encini->cri_klen / 8);
}
if (encini->cri_alg == CRYPTO_DES_CBC) {
memcpy(&ses->ses_key[0], encini->cri_key, 8);
memcpy(&ses->ses_key[2], encini->cri_key, 8);
memcpy(&ses->ses_key[4], encini->cri_key, 8);
} else
memcpy(ses->ses_key, encini->cri_key, 24);
SWAP32(ses->ses_key[0]);
SWAP32(ses->ses_key[1]);
SWAP32(ses->ses_key[2]);
SWAP32(ses->ses_key[3]);
SWAP32(ses->ses_key[4]);
SWAP32(ses->ses_key[5]);
}
if (macini) {
for (i = 0; i < macini->cri_klen / 8; i++)
macini->cri_key[i] ^= HMAC_IPAD_VAL;
if (macini->cri_alg == CRYPTO_MD5_HMAC_96) {
MD5Init(&md5ctx);
MD5Update(&md5ctx, macini->cri_key,
macini->cri_klen / 8);
MD5Update(&md5ctx, hmac_ipad_buffer,
HMAC_BLOCK_LEN - (macini->cri_klen / 8));
memcpy(ses->ses_hminner, md5ctx.state,
sizeof(md5ctx.state));
} else {
SHA1Init(&sha1ctx);
SHA1Update(&sha1ctx, macini->cri_key,
macini->cri_klen / 8);
SHA1Update(&sha1ctx, hmac_ipad_buffer,
HMAC_BLOCK_LEN - (macini->cri_klen / 8));
memcpy(ses->ses_hminner, sha1ctx.state,
sizeof(sha1ctx.state));
}
for (i = 0; i < macini->cri_klen / 8; i++)
macini->cri_key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
if (macini->cri_alg == CRYPTO_MD5_HMAC_96) {
MD5Init(&md5ctx);
MD5Update(&md5ctx, macini->cri_key,
macini->cri_klen / 8);
MD5Update(&md5ctx, hmac_opad_buffer,
HMAC_BLOCK_LEN - (macini->cri_klen / 8));
memcpy(ses->ses_hmouter, md5ctx.state,
sizeof(md5ctx.state));
} else {
SHA1Init(&sha1ctx);
SHA1Update(&sha1ctx, macini->cri_key,
macini->cri_klen / 8);
SHA1Update(&sha1ctx, hmac_opad_buffer,
HMAC_BLOCK_LEN - (macini->cri_klen / 8));
memcpy(ses->ses_hmouter, sha1ctx.state,
sizeof(sha1ctx.state));
}
for (i = 0; i < macini->cri_klen / 8; i++)
macini->cri_key[i] ^= HMAC_OPAD_VAL;
}
*sidp = UBSEC_SID(device_unit(sc->sc_dev), sesn);
return (0);
}
/*
* Deallocate a session.
*/
static int
ubsec_freesession(void *arg, u_int64_t tid)
{
struct ubsec_softc *sc;
int session;
u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
sc = arg;
KASSERT(sc != NULL /*, ("ubsec_freesession: null softc")*/);
session = UBSEC_SESSION(sid);
if (session >= sc->sc_nsessions)
return (EINVAL);
memset(&sc->sc_sessions[session], 0, sizeof(sc->sc_sessions[session]));
return (0);
}
#ifdef __FreeBSD__ /* Ugly gratuitous changes to bus_dma */
static void
ubsec_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize,
int error)
{
struct ubsec_operand *op = arg;
KASSERT(nsegs <= UBS_MAX_SCATTER
/*, ("Too many DMA segments returned when mapping operand")*/);
#ifdef UBSEC_DEBUG
if (ubsec_debug)
printf("ubsec_op_cb: mapsize %u nsegs %d\n",
(u_int) mapsize, nsegs);
#endif
op->mapsize = mapsize;
op->nsegs = nsegs;
memcpy(op->segs, seg, nsegs * sizeof (seg[0]));
}
#endif
static int
ubsec_process(void *arg, struct cryptop *crp, int hint)
{
struct ubsec_q *q = NULL;
#ifdef __OpenBSD__
int card;
#endif
int err = 0, i, j, nicealign;
struct ubsec_softc *sc;
struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
int encoffset = 0, macoffset = 0, cpskip, cpoffset;
int sskip, dskip, stheend, dtheend;
int16_t coffset;
struct ubsec_session *ses, key;
struct ubsec_dma *dmap = NULL;
u_int16_t flags = 0;
int ivlen = 0, keylen = 0;
sc = arg;
KASSERT(sc != NULL /*, ("ubsec_process: null softc")*/);
if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
ubsecstats.hst_invalid++;
return (EINVAL);
}
if (UBSEC_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
ubsecstats.hst_badsession++;
return (EINVAL);
}
mutex_spin_enter(&sc->sc_mtx);
if (SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
ubsecstats.hst_queuefull++;
sc->sc_needwakeup |= CRYPTO_SYMQ;
mutex_spin_exit(&sc->sc_mtx);
return(ERESTART);
}
q = SIMPLEQ_FIRST(&sc->sc_freequeue);
SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, /*q,*/ q_next);
mutex_spin_exit(&sc->sc_mtx);
dmap = q->q_dma; /* Save dma pointer */
/* don't lose the cached dmamaps q_src_map and q_cached_dst_map */
memset(q, 0, offsetof(struct ubsec_q, q_src_map));
memset(&key, 0, sizeof(key));
q->q_sesn = UBSEC_SESSION(crp->crp_sid);
q->q_dma = dmap;
ses = &sc->sc_sessions[q->q_sesn];
if (crp->crp_flags & CRYPTO_F_IMBUF) {
q->q_src_m = (struct mbuf *)crp->crp_buf;
q->q_dst_m = (struct mbuf *)crp->crp_buf;
} else if (crp->crp_flags & CRYPTO_F_IOV) {
q->q_src_io = (struct uio *)crp->crp_buf;
q->q_dst_io = (struct uio *)crp->crp_buf;
} else {
ubsecstats.hst_badflags++;
err = EINVAL;
goto errout; /* XXX we don't handle contiguous blocks! */
}
memset(&dmap->d_dma->d_mcr, 0, sizeof(struct ubsec_mcr));
dmap->d_dma->d_mcr.mcr_pkts = htole16(1);
dmap->d_dma->d_mcr.mcr_flags = 0;
q->q_crp = crp;
crd1 = crp->crp_desc;
if (crd1 == NULL) {
ubsecstats.hst_nodesc++;
err = EINVAL;
goto errout;
}
crd2 = crd1->crd_next;
if (crd2 == NULL) {
if (crd1->crd_alg == CRYPTO_MD5_HMAC_96 ||
crd1->crd_alg == CRYPTO_SHA1_HMAC_96) {
maccrd = crd1;
enccrd = NULL;
} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
crd1->crd_alg == CRYPTO_3DES_CBC ||
crd1->crd_alg == CRYPTO_AES_CBC) {
maccrd = NULL;
enccrd = crd1;
} else {
ubsecstats.hst_badalg++;
err = EINVAL;
goto errout;
}
} else {
if ((crd1->crd_alg == CRYPTO_MD5_HMAC_96 ||
crd1->crd_alg == CRYPTO_SHA1_HMAC_96) &&
(crd2->crd_alg == CRYPTO_DES_CBC ||
crd2->crd_alg == CRYPTO_3DES_CBC ||
crd2->crd_alg == CRYPTO_AES_CBC) &&
((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
maccrd = crd1;
enccrd = crd2;
} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
crd1->crd_alg == CRYPTO_3DES_CBC ||
crd1->crd_alg == CRYPTO_AES_CBC) &&
(crd2->crd_alg == CRYPTO_MD5_HMAC_96 ||
crd2->crd_alg == CRYPTO_SHA1_HMAC_96) &&
(crd1->crd_flags & CRD_F_ENCRYPT)) {
enccrd = crd1;
maccrd = crd2;
} else {
/*
* We cannot order the ubsec as requested
*/
ubsecstats.hst_badalg++;
err = EINVAL;
goto errout;
}
}
if (enccrd) {
if (enccrd->crd_alg == CRYPTO_AES_CBC) {
if ((sc->sc_flags & UBS_FLAGS_AES) == 0) {
/*
* We cannot order the ubsec as requested
*/
ubsecstats.hst_badalg++;
err = EINVAL;
goto errout;
}
flags |= htole16(UBS_PKTCTX_ENC_AES);
switch (enccrd->crd_klen) {
case 128:
case 192:
case 256:
keylen = enccrd->crd_klen / 8;
break;
default:
err = EINVAL;
goto errout;
}
ivlen = 16;
} else {
flags |= htole16(UBS_PKTCTX_ENC_3DES);
ivlen = 8;
keylen = 24;
}
encoffset = enccrd->crd_skip;
if (enccrd->crd_flags & CRD_F_ENCRYPT) {
q->q_flags |= UBSEC_QFLAGS_COPYOUTIV;
if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
memcpy(key.ses_iv, enccrd->crd_iv, ivlen);
else {
for (i = 0; i < (ivlen / 4); i++)
key.ses_iv[i] = ses->ses_iv[i];
}
if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
if (crp->crp_flags & CRYPTO_F_IMBUF)
m_copyback(q->q_src_m,
enccrd->crd_inject,
ivlen, (void *)key.ses_iv);
else if (crp->crp_flags & CRYPTO_F_IOV)
cuio_copyback(q->q_src_io,
enccrd->crd_inject,
ivlen, (void *)key.ses_iv);
}
} else {
flags |= htole16(UBS_PKTCTX_INBOUND);
if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
memcpy(key.ses_iv, enccrd->crd_iv, ivlen);
else if (crp->crp_flags & CRYPTO_F_IMBUF)
m_copydata(q->q_src_m, enccrd->crd_inject,
ivlen, (void *)key.ses_iv);
else if (crp->crp_flags & CRYPTO_F_IOV)
cuio_copydata(q->q_src_io,
enccrd->crd_inject, 8,
(void *)key.ses_iv);
}
for (i = 0; i < (keylen / 4); i++)
key.ses_key[i] = ses->ses_key[i];
for (i = 0; i < (ivlen / 4); i++)
SWAP32(key.ses_iv[i]);
}
if (maccrd) {
macoffset = maccrd->crd_skip;
if (maccrd->crd_alg == CRYPTO_MD5_HMAC_96)
flags |= htole16(UBS_PKTCTX_AUTH_MD5);
else
flags |= htole16(UBS_PKTCTX_AUTH_SHA1);
for (i = 0; i < 5; i++) {
key.ses_hminner[i] = ses->ses_hminner[i];
key.ses_hmouter[i] = ses->ses_hmouter[i];
HTOLE32(key.ses_hminner[i]);
HTOLE32(key.ses_hmouter[i]);
}
}
if (enccrd && maccrd) {
/*
* ubsec cannot handle packets where the end of encryption
* and authentication are not the same, or where the
* encrypted part begins before the authenticated part.
*/
if ((encoffset + enccrd->crd_len) !=
(macoffset + maccrd->crd_len)) {
ubsecstats.hst_lenmismatch++;
err = EINVAL;
goto errout;
}
if (enccrd->crd_skip < maccrd->crd_skip) {
ubsecstats.hst_skipmismatch++;
err = EINVAL;
goto errout;
}
sskip = maccrd->crd_skip;
cpskip = dskip = enccrd->crd_skip;
stheend = maccrd->crd_len;
dtheend = enccrd->crd_len;
coffset = enccrd->crd_skip - maccrd->crd_skip;
cpoffset = cpskip + dtheend;
#ifdef UBSEC_DEBUG
if (ubsec_debug) {
printf("mac: skip %d, len %d, inject %d\n",
maccrd->crd_skip, maccrd->crd_len,
maccrd->crd_inject);
printf("enc: skip %d, len %d, inject %d\n",
enccrd->crd_skip, enccrd->crd_len,
enccrd->crd_inject);
printf("src: skip %d, len %d\n", sskip, stheend);
printf("dst: skip %d, len %d\n", dskip, dtheend);
printf("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n",
coffset, stheend, cpskip, cpoffset);
}
#endif
} else {
cpskip = dskip = sskip = macoffset + encoffset;
dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len;
cpoffset = cpskip + dtheend;
coffset = 0;
}
if (q->q_src_map == NULL) {
/* XXX FIXME: jonathan asks, what the heck's that 0xfff0? */
if (bus_dmamap_create(sc->sc_dmat, 0xfff0, UBS_MAX_SCATTER,
0xfff0, 0, BUS_DMA_NOWAIT, &q->q_src_map) != 0) {
err = ENOMEM;
goto errout;
}
}
if (crp->crp_flags & CRYPTO_F_IMBUF) {
if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_src_map,
q->q_src_m, BUS_DMA_NOWAIT) != 0) {
ubsecstats.hst_noload++;
err = ENOMEM;
goto errout;
}
} else if (crp->crp_flags & CRYPTO_F_IOV) {
if (bus_dmamap_load_uio(sc->sc_dmat, q->q_src_map,
q->q_src_io, BUS_DMA_NOWAIT) != 0) {
ubsecstats.hst_noload++;
err = ENOMEM;
goto errout;
}
}
nicealign = ubsec_dmamap_aligned(q->q_src_map);
dmap->d_dma->d_mcr.mcr_pktlen = htole16(stheend);
#ifdef UBSEC_DEBUG
if (ubsec_debug)
printf("src skip: %d nicealign: %u\n", sskip, nicealign);
#endif
for (i = j = 0; i < q->q_src_map->dm_nsegs; i++) {
struct ubsec_pktbuf *pb;
bus_size_t packl = q->q_src_map->dm_segs[i].ds_len;
bus_addr_t packp = q->q_src_map->dm_segs[i].ds_addr;
if (sskip >= packl) {
sskip -= packl;
continue;
}
packl -= sskip;
packp += sskip;
sskip = 0;
if (packl > 0xfffc) {
err = EIO;
goto errout;
}
if (j == 0)
pb = &dmap->d_dma->d_mcr.mcr_ipktbuf;
else
pb = &dmap->d_dma->d_sbuf[j - 1];
pb->pb_addr = htole32(packp);
if (stheend) {
if (packl > stheend) {
pb->pb_len = htole32(stheend);
stheend = 0;
} else {
pb->pb_len = htole32(packl);
stheend -= packl;
}
} else
pb->pb_len = htole32(packl);
if ((i + 1) == q->q_src_map->dm_nsegs)
pb->pb_next = 0;
else
pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
offsetof(struct ubsec_dmachunk, d_sbuf[j]));
j++;
}
if (enccrd == NULL && maccrd != NULL) {
dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr = 0;
dmap->d_dma->d_mcr.mcr_opktbuf.pb_len = 0;
dmap->d_dma->d_mcr.mcr_opktbuf.pb_next = htole32(dmap->d_alloc.dma_paddr +
offsetof(struct ubsec_dmachunk, d_macbuf[0]));
#ifdef UBSEC_DEBUG
if (ubsec_debug)
printf("opkt: %x %x %x\n",
dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr,
dmap->d_dma->d_mcr.mcr_opktbuf.pb_len,
dmap->d_dma->d_mcr.mcr_opktbuf.pb_next);
#endif
} else {
if (crp->crp_flags & CRYPTO_F_IOV) {
if (!nicealign) {
ubsecstats.hst_iovmisaligned++;
err = EINVAL;
goto errout;
}
if (q->q_dst_map == NULL) {
if (q->q_cached_dst_map == NULL) {
/*
* XXX: ``what the heck's that''
* 0xfff0?
*/
if (bus_dmamap_create(sc->sc_dmat,
0xfff0, UBS_MAX_SCATTER, 0xfff0, 0,
BUS_DMA_NOWAIT,
&q->q_cached_dst_map) != 0) {
ubsecstats.hst_nomap++;
err = ENOMEM;
goto errout;
}
}
q->q_dst_map = q->q_cached_dst_map;
}
if (bus_dmamap_load_uio(sc->sc_dmat, q->q_dst_map,
q->q_dst_io, BUS_DMA_NOWAIT) != 0) {
ubsecstats.hst_noload++;
err = ENOMEM;
goto errout;
}
} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
if (nicealign) {
q->q_dst_m = q->q_src_m;
q->q_dst_map = q->q_src_map;
} else {
int totlen, len;
struct mbuf *m, *top, **mp;
ubsecstats.hst_unaligned++;
totlen = q->q_src_map->dm_mapsize;
if (q->q_src_m->m_flags & M_PKTHDR) {
len = MHLEN;
MGETHDR(m, M_DONTWAIT, MT_DATA);
/*XXX FIXME: m_dup_pkthdr */
if (m && 1 /*!m_dup_pkthdr(m, q->q_src_m, M_DONTWAIT)*/) {
m_free(m);
m = NULL;
}
} else {
len = MLEN;
MGET(m, M_DONTWAIT, MT_DATA);
}
if (m == NULL) {
ubsecstats.hst_nombuf++;
err = sc->sc_nqueue ? ERESTART : ENOMEM;
goto errout;
}
if (len == MHLEN)
/*XXX was M_DUP_PKTHDR*/
m_copy_pkthdr(m, q->q_src_m);
if (totlen >= MINCLSIZE) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_free(m);
ubsecstats.hst_nomcl++;
err = sc->sc_nqueue
? ERESTART : ENOMEM;
goto errout;
}
len = MCLBYTES;
}
m->m_len = len;
top = NULL;
mp = ⊤
while (totlen > 0) {
if (top) {
MGET(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
m_freem(top);
ubsecstats.hst_nombuf++;
err = sc->sc_nqueue ? ERESTART : ENOMEM;
goto errout;
}
len = MLEN;
}
if (top && totlen >= MINCLSIZE) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
*mp = m;
m_freem(top);
ubsecstats.hst_nomcl++;
err = sc->sc_nqueue ? ERESTART : ENOMEM;
goto errout;
}
len = MCLBYTES;
}
m->m_len = len = uimin(totlen, len);
totlen -= len;
*mp = m;
mp = &m->m_next;
}
q->q_dst_m = top;
ubsec_mcopy(q->q_src_m, q->q_dst_m,
cpskip, cpoffset);
if (q->q_dst_map == NULL) {
if (q->q_cached_dst_map == NULL) {
/* XXX again, what the heck is that 0xfff0? */
if (bus_dmamap_create(sc->sc_dmat, 0xfff0,
UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT,
&q->q_cached_dst_map) != 0) {
ubsecstats.hst_nomap++;
err = ENOMEM;
goto errout;
}
}
q->q_dst_map = q->q_cached_dst_map;
}
if (bus_dmamap_load_mbuf(sc->sc_dmat,
q->q_dst_map, q->q_dst_m,
BUS_DMA_NOWAIT) != 0) {
ubsecstats.hst_noload++;
err = ENOMEM;
goto errout;
}
}
} else {
ubsecstats.hst_badflags++;
err = EINVAL;
goto errout;
}
#ifdef UBSEC_DEBUG
if (ubsec_debug)
printf("dst skip: %d\n", dskip);
#endif
for (i = j = 0; i < q->q_dst_map->dm_nsegs; i++) {
struct ubsec_pktbuf *pb;
bus_size_t packl = q->q_dst_map->dm_segs[i].ds_len;
bus_addr_t packp = q->q_dst_map->dm_segs[i].ds_addr;
if (dskip >= packl) {
dskip -= packl;
continue;
}
packl -= dskip;
packp += dskip;
dskip = 0;
if (packl > 0xfffc) {
err = EIO;
goto errout;
}
if (j == 0)
pb = &dmap->d_dma->d_mcr.mcr_opktbuf;
else
pb = &dmap->d_dma->d_dbuf[j - 1];
pb->pb_addr = htole32(packp);
if (dtheend) {
if (packl > dtheend) {
pb->pb_len = htole32(dtheend);
dtheend = 0;
} else {
pb->pb_len = htole32(packl);
dtheend -= packl;
}
} else
pb->pb_len = htole32(packl);
if ((i + 1) == q->q_dst_map->dm_nsegs) {
if (maccrd)
pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
offsetof(struct ubsec_dmachunk, d_macbuf[0]));
else
pb->pb_next = 0;
} else
pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
offsetof(struct ubsec_dmachunk, d_dbuf[j]));
j++;
}
}
dmap->d_dma->d_mcr.mcr_cmdctxp = htole32(dmap->d_alloc.dma_paddr +
offsetof(struct ubsec_dmachunk, d_ctx));
if (enccrd && enccrd->crd_alg == CRYPTO_AES_CBC) {
struct ubsec_pktctx_aes128 *aes128;
struct ubsec_pktctx_aes192 *aes192;
struct ubsec_pktctx_aes256 *aes256;
struct ubsec_pktctx_hdr *ph;
u_int8_t *ctx;
ctx = (u_int8_t *)(dmap->d_alloc.dma_vaddr) +
offsetof(struct ubsec_dmachunk, d_ctx);
ph = (struct ubsec_pktctx_hdr *)ctx;
ph->ph_type = htole16(UBS_PKTCTX_TYPE_IPSEC_AES);
ph->ph_flags = flags;
ph->ph_offset = htole16(coffset >> 2);
switch (enccrd->crd_klen) {
case 128:
aes128 = (struct ubsec_pktctx_aes128 *)ctx;
ph->ph_len = htole16(sizeof(*aes128));
ph->ph_flags |= htole16(UBS_PKTCTX_KEYSIZE_128);
for (i = 0; i < 4; i++)
aes128->pc_aeskey[i] = key.ses_key[i];
for (i = 0; i < 5; i++)
aes128->pc_hminner[i] = key.ses_hminner[i];
for (i = 0; i < 5; i++)
aes128->pc_hmouter[i] = key.ses_hmouter[i];
for (i = 0; i < 4; i++)
aes128->pc_iv[i] = key.ses_iv[i];
break;
case 192:
aes192 = (struct ubsec_pktctx_aes192 *)ctx;
ph->ph_len = htole16(sizeof(*aes192));
ph->ph_flags |= htole16(UBS_PKTCTX_KEYSIZE_192);
for (i = 0; i < 6; i++)
aes192->pc_aeskey[i] = key.ses_key[i];
for (i = 0; i < 5; i++)
aes192->pc_hminner[i] = key.ses_hminner[i];
for (i = 0; i < 5; i++)
aes192->pc_hmouter[i] = key.ses_hmouter[i];
for (i = 0; i < 4; i++)
aes192->pc_iv[i] = key.ses_iv[i];
break;
case 256:
aes256 = (struct ubsec_pktctx_aes256 *)ctx;
ph->ph_len = htole16(sizeof(*aes256));
ph->ph_flags |= htole16(UBS_PKTCTX_KEYSIZE_256);
for (i = 0; i < 8; i++)
aes256->pc_aeskey[i] = key.ses_key[i];
for (i = 0; i < 5; i++)
aes256->pc_hminner[i] = key.ses_hminner[i];
for (i = 0; i < 5; i++)
aes256->pc_hmouter[i] = key.ses_hmouter[i];
for (i = 0; i < 4; i++)
aes256->pc_iv[i] = key.ses_iv[i];
break;
}
} else if (sc->sc_flags & UBS_FLAGS_LONGCTX) {
struct ubsec_pktctx_3des *ctx;
struct ubsec_pktctx_hdr *ph;
ctx = (struct ubsec_pktctx_3des *)
((u_int8_t *)(dmap->d_alloc.dma_vaddr) +
offsetof(struct ubsec_dmachunk, d_ctx));
ph = (struct ubsec_pktctx_hdr *)ctx;
ph->ph_len = htole16(sizeof(*ctx));
ph->ph_type = htole16(UBS_PKTCTX_TYPE_IPSEC_3DES);
ph->ph_flags = flags;
ph->ph_offset = htole16(coffset >> 2);
for (i = 0; i < 6; i++)
ctx->pc_deskey[i] = key.ses_key[i];
for (i = 0; i < 5; i++)
ctx->pc_hminner[i] = key.ses_hminner[i];
for (i = 0; i < 5; i++)
ctx->pc_hmouter[i] = key.ses_hmouter[i];
for (i = 0; i < 2; i++)
ctx->pc_iv[i] = key.ses_iv[i];
} else {
struct ubsec_pktctx *ctx = (struct ubsec_pktctx *)
((u_int8_t *)dmap->d_alloc.dma_vaddr +
offsetof(struct ubsec_dmachunk, d_ctx));
ctx->pc_flags = flags;
ctx->pc_offset = htole16(coffset >> 2);
for (i = 0; i < 6; i++)
ctx->pc_deskey[i] = key.ses_key[i];
for (i = 0; i < 5; i++)
ctx->pc_hminner[i] = key.ses_hminner[i];
for (i = 0; i < 5; i++)
ctx->pc_hmouter[i] = key.ses_hmouter[i];
for (i = 0; i < 2; i++)
ctx->pc_iv[i] = key.ses_iv[i];
}
mutex_spin_enter(&sc->sc_mtx);
SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next);
sc->sc_nqueue++;
ubsecstats.hst_ipackets++;
ubsecstats.hst_ibytes += dmap->d_alloc.dma_map->dm_mapsize;
if ((hint & CRYPTO_HINT_MORE) == 0 || sc->sc_nqueue >= ubsec_maxbatch)
ubsec_feed(sc);
mutex_spin_exit(&sc->sc_mtx);
return (0);
errout:
if (q != NULL) {
if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
m_freem(q->q_dst_m);
if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
}
if (q->q_src_map != NULL) {
bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
}
mutex_spin_enter(&sc->sc_mtx);
SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
mutex_spin_exit(&sc->sc_mtx);
}
#if 0 /* jonathan says: this openbsd code seems to be subsumed elsewhere */
if (err == EINVAL)
ubsecstats.hst_invalid++;
else
ubsecstats.hst_nomem++;
#endif
if (err != ERESTART) {
crp->crp_etype = err;
crypto_done(crp);
} else {
sc->sc_needwakeup |= CRYPTO_SYMQ;
}
return (err);
}
static void
ubsec_callback(struct ubsec_softc *sc, struct ubsec_q *q)
{
struct cryptop *crp = (struct cryptop *)q->q_crp;
struct cryptodesc *crd;
struct ubsec_dma *dmap = q->q_dma;
ubsecstats.hst_opackets++;
ubsecstats.hst_obytes += dmap->d_alloc.dma_size;
bus_dmamap_sync(sc->sc_dmat, dmap->d_alloc.dma_map, 0,
dmap->d_alloc.dma_map->dm_mapsize,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
}
bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
0, q->q_src_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
if ((crp->crp_flags & CRYPTO_F_IMBUF) && (q->q_src_m != q->q_dst_m)) {
m_freem(q->q_src_m);
crp->crp_buf = (void *)q->q_dst_m;
}
/* copy out IV for future use */
if (q->q_flags & UBSEC_QFLAGS_COPYOUTIV) {
for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
if (crd->crd_alg != CRYPTO_DES_CBC &&
crd->crd_alg != CRYPTO_3DES_CBC &&
crd->crd_alg != CRYPTO_AES_CBC)
continue;
if (crp->crp_flags & CRYPTO_F_IMBUF)
m_copydata((struct mbuf *)crp->crp_buf,
crd->crd_skip + crd->crd_len - 8, 8,
(void *)sc->sc_sessions[q->q_sesn].ses_iv);
else if (crp->crp_flags & CRYPTO_F_IOV) {
cuio_copydata((struct uio *)crp->crp_buf,
crd->crd_skip + crd->crd_len - 8, 8,
(void *)sc->sc_sessions[q->q_sesn].ses_iv);
}
break;
}
}
for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
if (crd->crd_alg != CRYPTO_MD5_HMAC_96 &&
crd->crd_alg != CRYPTO_SHA1_HMAC_96)
continue;
if (crp->crp_flags & CRYPTO_F_IMBUF)
m_copyback((struct mbuf *)crp->crp_buf,
crd->crd_inject, 12,
(void *)dmap->d_dma->d_macbuf);
else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac)
bcopy((void *)dmap->d_dma->d_macbuf,
crp->crp_mac, 12);
break;
}
SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
crypto_done(crp);
}
static void
ubsec_mcopy(struct mbuf *srcm, struct mbuf *dstm, int hoffset, int toffset)
{
int i, j, dlen, slen;
char *dptr, *sptr;
j = 0;
sptr = srcm->m_data;
slen = srcm->m_len;
dptr = dstm->m_data;
dlen = dstm->m_len;
while (1) {
for (i = 0; i < uimin(slen, dlen); i++) {
if (j < hoffset || j >= toffset)
*dptr++ = *sptr++;
slen--;
dlen--;
j++;
}
if (slen == 0) {
srcm = srcm->m_next;
if (srcm == NULL)
return;
sptr = srcm->m_data;
slen = srcm->m_len;
}
if (dlen == 0) {
dstm = dstm->m_next;
if (dstm == NULL)
return;
dptr = dstm->m_data;
dlen = dstm->m_len;
}
}
}
/*
* feed the key generator, must be called at splnet() or higher.
*/
static void
ubsec_feed2(struct ubsec_softc *sc)
{
struct ubsec_q2 *q;
while (!SIMPLEQ_EMPTY(&sc->sc_queue2)) {
if (READ_REG(sc, BS_STAT) & BS_STAT_MCR2_FULL)
break;
q = SIMPLEQ_FIRST(&sc->sc_queue2);
bus_dmamap_sync(sc->sc_dmat, q->q_mcr.dma_map, 0,
q->q_mcr.dma_map->dm_mapsize,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
q->q_ctx.dma_map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
WRITE_REG(sc, BS_MCR2, q->q_mcr.dma_paddr);
q = SIMPLEQ_FIRST(&sc->sc_queue2);
SIMPLEQ_REMOVE_HEAD(&sc->sc_queue2, /*q,*/ q_next);
--sc->sc_nqueue2;
SIMPLEQ_INSERT_TAIL(&sc->sc_qchip2, q, q_next);
}
}
/*
* feed the RNG (used instead of ubsec_feed2() on 5827+ devices)
*/
void
ubsec_feed4(struct ubsec_softc *sc)
{
struct ubsec_q2 *q;
while (!SIMPLEQ_EMPTY(&sc->sc_queue4)) {
if (READ_REG(sc, BS_STAT) & BS_STAT_MCR4_FULL)
break;
q = SIMPLEQ_FIRST(&sc->sc_queue4);
bus_dmamap_sync(sc->sc_dmat, q->q_mcr.dma_map, 0,
q->q_mcr.dma_map->dm_mapsize,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
q->q_ctx.dma_map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
WRITE_REG(sc, BS_MCR4, q->q_mcr.dma_paddr);
SIMPLEQ_REMOVE_HEAD(&sc->sc_queue4, q_next);
--sc->sc_nqueue4;
SIMPLEQ_INSERT_TAIL(&sc->sc_qchip4, q, q_next);
}
}
/*
* Callback for handling random numbers
*/
static void
ubsec_callback2(struct ubsec_softc *sc, struct ubsec_q2 *q)
{
struct cryptkop *krp;
struct ubsec_ctx_keyop *ctx;
ctx = (struct ubsec_ctx_keyop *)q->q_ctx.dma_vaddr;
bus_dmamap_sync(sc->sc_dmat, q->q_ctx.dma_map, 0,
q->q_ctx.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
switch (q->q_type) {
#ifndef UBSEC_NO_RNG
case UBS_CTXOP_RNGSHA1:
case UBS_CTXOP_RNGBYPASS: {
struct ubsec_q2_rng *rng = (struct ubsec_q2_rng *)q;
u_int32_t *p;
int i;
bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0,
rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
p = (u_int32_t *)rng->rng_buf.dma_vaddr;
#ifndef __NetBSD__
for (i = 0; i < UBSEC_RNG_BUFSIZ; p++, i++)
add_true_randomness(letoh32(*p));
#else
i = UBSEC_RNG_BUFSIZ * sizeof(u_int32_t);
rnd_add_data(&sc->sc_rnd_source, (char *)p, i, i * NBBY);
sc->sc_rng_need -= i;
#endif
rng->rng_used = 0;
#ifdef __OpenBSD__
timeout_add(&sc->sc_rngto, sc->sc_rnghz);
#else
if (sc->sc_rng_need > 0) {
callout_schedule(&sc->sc_rngto, sc->sc_rnghz);
}
#endif
break;
}
#endif
case UBS_CTXOP_MODEXP: {
struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
u_int rlen, clen;
krp = me->me_krp;
rlen = (me->me_modbits + 7) / 8;
clen = (krp->krp_param[krp->krp_iparams].crp_nbits + 7) / 8;
bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
if (clen < rlen)
krp->krp_status = E2BIG;
else {
if (sc->sc_flags & UBS_FLAGS_HWNORM) {
memset(krp->krp_param[krp->krp_iparams].crp_p, 0,
(krp->krp_param[krp->krp_iparams].crp_nbits
+ 7) / 8);
bcopy(me->me_C.dma_vaddr,
krp->krp_param[krp->krp_iparams].crp_p,
(me->me_modbits + 7) / 8);
} else
ubsec_kshift_l(me->me_shiftbits,
me->me_C.dma_vaddr, me->me_normbits,
krp->krp_param[krp->krp_iparams].crp_p,
krp->krp_param[krp->krp_iparams].crp_nbits);
}
crypto_kdone(krp);
/* bzero all potentially sensitive data */
memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
memset(me->me_q.q_ctx.dma_vaddr, 0, me->me_q.q_ctx.dma_size);
/* Can't free here, so put us on the free list. */
SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &me->me_q, q_next);
break;
}
case UBS_CTXOP_RSAPRIV: {
struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
u_int len;
krp = rp->rpr_krp;
bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map, 0,
rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map, 0,
rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
len = (krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_nbits + 7)
/ 8;
bcopy(rp->rpr_msgout.dma_vaddr,
krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_p, len);
crypto_kdone(krp);
memset(rp->rpr_msgin.dma_vaddr, 0, rp->rpr_msgin.dma_size);
memset(rp->rpr_msgout.dma_vaddr, 0, rp->rpr_msgout.dma_size);
memset(rp->rpr_q.q_ctx.dma_vaddr, 0, rp->rpr_q.q_ctx.dma_size);
/* Can't free here, so put us on the free list. */
SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &rp->rpr_q, q_next);
break;
}
default:
printf("%s: unknown ctx op: %x\n", device_xname(sc->sc_dev),
letoh16(ctx->ctx_op));
break;
}
}
#ifndef UBSEC_NO_RNG
static void
ubsec_rng_get(size_t bytes, void *vsc)
{
struct ubsec_softc *sc = vsc;
mutex_spin_enter(&sc->sc_mtx);
sc->sc_rng_need = bytes;
ubsec_rng_locked(sc);
mutex_spin_exit(&sc->sc_mtx);
}
static void
ubsec_rng(void *vsc)
{
struct ubsec_softc *sc = vsc;
mutex_spin_enter(&sc->sc_mtx);
ubsec_rng_locked(sc);
mutex_spin_exit(&sc->sc_mtx);
}
static void
ubsec_rng_locked(void *vsc)
{
struct ubsec_softc *sc = vsc;
struct ubsec_q2_rng *rng = &sc->sc_rng;
struct ubsec_mcr *mcr;
struct ubsec_ctx_rngbypass *ctx;
int *nqueue;
/* Caller is responsible to lock and release sc_mtx. */
KASSERT(mutex_owned(&sc->sc_mtx));
if (rng->rng_used) {
return;
}
if (sc->sc_rng_need < 1) {
callout_stop(&sc->sc_rngto);
return;
}
if (sc->sc_flags & UBS_FLAGS_RNG4)
nqueue = &sc->sc_nqueue4;
else
nqueue = &sc->sc_nqueue2;
(*nqueue)++;
if (*nqueue >= UBS_MAX_NQUEUE)
goto out;
mcr = (struct ubsec_mcr *)rng->rng_q.q_mcr.dma_vaddr;
ctx = (struct ubsec_ctx_rngbypass *)rng->rng_q.q_ctx.dma_vaddr;
mcr->mcr_pkts = htole16(1);
mcr->mcr_flags = 0;
mcr->mcr_cmdctxp = htole32(rng->rng_q.q_ctx.dma_paddr);
mcr->mcr_ipktbuf.pb_addr = mcr->mcr_ipktbuf.pb_next = 0;
mcr->mcr_ipktbuf.pb_len = 0;
mcr->mcr_reserved = mcr->mcr_pktlen = 0;
mcr->mcr_opktbuf.pb_addr = htole32(rng->rng_buf.dma_paddr);
mcr->mcr_opktbuf.pb_len = htole32(((sizeof(u_int32_t) * UBSEC_RNG_BUFSIZ)) &
UBS_PKTBUF_LEN);
mcr->mcr_opktbuf.pb_next = 0;
ctx->rbp_len = htole16(sizeof(struct ubsec_ctx_rngbypass));
ctx->rbp_op = htole16(UBS_CTXOP_RNGSHA1);
rng->rng_q.q_type = UBS_CTXOP_RNGSHA1;
bus_dmamap_sync(sc->sc_dmat, rng->rng_buf.dma_map, 0,
rng->rng_buf.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
if (sc->sc_flags & UBS_FLAGS_RNG4) {
SIMPLEQ_INSERT_TAIL(&sc->sc_queue4, &rng->rng_q, q_next);
ubsec_feed4(sc);
} else {
SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rng->rng_q, q_next);
ubsec_feed2(sc);
}
rng->rng_used = 1;
ubsecstats.hst_rng++;
return;
out:
/*
* Something weird happened, generate our own call back.
*/
(*nqueue)--;
#ifdef __OpenBSD__
timeout_add(&sc->sc_rngto, sc->sc_rnghz);
#else
callout_schedule(&sc->sc_rngto, sc->sc_rnghz);
#endif
}
#endif /* UBSEC_NO_RNG */
static int
ubsec_dma_malloc(struct ubsec_softc *sc, bus_size_t size,
struct ubsec_dma_alloc *dma,int mapflags)
{
int r;
if ((r = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0,
&dma->dma_seg, 1, &dma->dma_nseg, BUS_DMA_NOWAIT)) != 0)
goto fail_0;
if ((r = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg,
size, &dma->dma_vaddr, mapflags | BUS_DMA_NOWAIT)) != 0)
goto fail_1;
if ((r = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
BUS_DMA_NOWAIT, &dma->dma_map)) != 0)
goto fail_2;
if ((r = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
size, NULL, BUS_DMA_NOWAIT)) != 0)
goto fail_3;
dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr;
dma->dma_size = size;
return (0);
fail_3:
bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
fail_2:
bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size);
fail_1:
bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
fail_0:
dma->dma_map = NULL;
return (r);
}
static void
ubsec_dma_free(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma)
{
bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size);
bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
}
/*
* Resets the board. Values in the regesters are left as is
* from the reset (i.e. initial values are assigned elsewhere).
*/
static void
ubsec_reset_board(struct ubsec_softc *sc)
{
volatile u_int32_t ctrl;
ctrl = READ_REG(sc, BS_CTRL);
ctrl |= BS_CTRL_RESET;
WRITE_REG(sc, BS_CTRL, ctrl);
/*
* Wait aprox. 30 PCI clocks = 900 ns = 0.9 us
*/
DELAY(10);
/* Enable RNG and interrupts on newer devices */
if (sc->sc_flags & UBS_FLAGS_MULTIMCR) {
#ifndef UBSEC_NO_RNG
WRITE_REG(sc, BS_CFG, BS_CFG_RNG);
#endif
WRITE_REG(sc, BS_INT, BS_INT_DMAINT);
}
}
/*
* Init Broadcom registers
*/
static void
ubsec_init_board(struct ubsec_softc *sc)
{
u_int32_t ctrl;
ctrl = READ_REG(sc, BS_CTRL);
ctrl &= ~(BS_CTRL_BE32 | BS_CTRL_BE64);
ctrl |= BS_CTRL_LITTLE_ENDIAN | BS_CTRL_MCR1INT;
/*
* XXX: Sam Leffler's code has (UBS_FLAGS_KEY|UBS_FLAGS_RNG)).
* anyone got hw docs?
*/
if (sc->sc_flags & UBS_FLAGS_KEY)
ctrl |= BS_CTRL_MCR2INT;
else
ctrl &= ~BS_CTRL_MCR2INT;
if (sc->sc_flags & UBS_FLAGS_HWNORM)
ctrl &= ~BS_CTRL_SWNORM;
if (sc->sc_flags & UBS_FLAGS_MULTIMCR) {
ctrl |= BS_CTRL_BSIZE240;
ctrl &= ~BS_CTRL_MCR3INT; /* MCR3 is reserved for SSL */
if (sc->sc_flags & UBS_FLAGS_RNG4)
ctrl |= BS_CTRL_MCR4INT;
else
ctrl &= ~BS_CTRL_MCR4INT;
}
WRITE_REG(sc, BS_CTRL, ctrl);
}
/*
* Init Broadcom PCI registers
*/
static void
ubsec_init_pciregs(struct pci_attach_args *pa)
{
pci_chipset_tag_t pc = pa->pa_pc;
u_int32_t misc;
/*
* This will set the cache line size to 1, this will
* force the BCM58xx chip just to do burst read/writes.
* Cache line read/writes are to slow
*/
misc = pci_conf_read(pc, pa->pa_tag, PCI_BHLC_REG);
misc = (misc & ~(PCI_CACHELINE_MASK << PCI_CACHELINE_SHIFT))
| ((UBS_DEF_CACHELINE & 0xff) << PCI_CACHELINE_SHIFT);
pci_conf_write(pc, pa->pa_tag, PCI_BHLC_REG, misc);
}
/*
* Clean up after a chip crash.
* It is assumed that the caller in splnet()
*/
static void
ubsec_cleanchip(struct ubsec_softc *sc)
{
struct ubsec_q *q;
while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
q = SIMPLEQ_FIRST(&sc->sc_qchip);
SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, /*q,*/ q_next);
ubsec_free_q(sc, q);
}
sc->sc_nqchip = 0;
}
/*
* free a ubsec_q
* It is assumed that the caller is within splnet()
*/
static int
ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q)
{
struct ubsec_q *q2;
struct cryptop *crp;
int npkts;
int i;
npkts = q->q_nstacked_mcrs;
for (i = 0; i < npkts; i++) {
if(q->q_stacked_mcr[i]) {
q2 = q->q_stacked_mcr[i];
if ((q2->q_dst_m != NULL)
&& (q2->q_src_m != q2->q_dst_m))
m_freem(q2->q_dst_m);
crp = (struct cryptop *)q2->q_crp;
SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q2, q_next);
crp->crp_etype = EFAULT;
crypto_done(crp);
} else {
break;
}
}
/*
* Free header MCR
*/
if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
m_freem(q->q_dst_m);
crp = (struct cryptop *)q->q_crp;
SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
crp->crp_etype = EFAULT;
crypto_done(crp);
return(0);
}
/*
* Routine to reset the chip and clean up.
* It is assumed that the caller is in splnet()
*/
static void
ubsec_totalreset(struct ubsec_softc *sc)
{
ubsec_reset_board(sc);
ubsec_init_board(sc);
ubsec_cleanchip(sc);
}
static int
ubsec_dmamap_aligned(bus_dmamap_t map)
{
int i;
for (i = 0; i < map->dm_nsegs; i++) {
if (map->dm_segs[i].ds_addr & 3)
return (0);
if ((i != (map->dm_nsegs - 1)) &&
(map->dm_segs[i].ds_len & 3))
return (0);
}
return (1);
}
#ifdef __OpenBSD__
struct ubsec_softc *
ubsec_kfind(struct cryptkop *krp)
{
struct ubsec_softc *sc;
int i;
for (i = 0; i < ubsec_cd.cd_ndevs; i++) {
sc = ubsec_cd.cd_devs[i];
if (sc == NULL)
continue;
if (sc->sc_cid == krp->krp_hid)
return (sc);
}
return (NULL);
}
#endif
static void
ubsec_kfree(struct ubsec_softc *sc, struct ubsec_q2 *q)
{
switch (q->q_type) {
case UBS_CTXOP_MODEXP: {
struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
ubsec_dma_free(sc, &me->me_q.q_mcr);
ubsec_dma_free(sc, &me->me_q.q_ctx);
ubsec_dma_free(sc, &me->me_M);
ubsec_dma_free(sc, &me->me_E);
ubsec_dma_free(sc, &me->me_C);
ubsec_dma_free(sc, &me->me_epb);
free(me, M_DEVBUF);
break;
}
case UBS_CTXOP_RSAPRIV: {
struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
ubsec_dma_free(sc, &rp->rpr_q.q_ctx);
ubsec_dma_free(sc, &rp->rpr_msgin);
ubsec_dma_free(sc, &rp->rpr_msgout);
free(rp, M_DEVBUF);
break;
}
default:
printf("%s: invalid kfree 0x%x\n", device_xname(sc->sc_dev),
q->q_type);
break;
}
}
static int
ubsec_kprocess(void *arg, struct cryptkop *krp, int hint)
{
struct ubsec_softc *sc;
int r;
if (krp == NULL || krp->krp_callback == NULL)
return (EINVAL);
#ifdef __OpenBSD__
if ((sc = ubsec_kfind(krp)) == NULL)
return (EINVAL);
#else
sc = arg;
KASSERT(sc != NULL /*, ("ubsec_kprocess: null softc")*/);
#endif
while (!SIMPLEQ_EMPTY(&sc->sc_q2free)) {
struct ubsec_q2 *q;
q = SIMPLEQ_FIRST(&sc->sc_q2free);
SIMPLEQ_REMOVE_HEAD(&sc->sc_q2free, /*q,*/ q_next);
ubsec_kfree(sc, q);
}
switch (krp->krp_op) {
case CRK_MOD_EXP:
if (sc->sc_flags & UBS_FLAGS_HWNORM)
r = ubsec_kprocess_modexp_hw(sc, krp, hint);
else
r = ubsec_kprocess_modexp_sw(sc, krp, hint);
break;
case CRK_MOD_EXP_CRT:
r = ubsec_kprocess_rsapriv(sc, krp, hint);
break;
default:
printf("%s: kprocess: invalid op 0x%x\n",
device_xname(sc->sc_dev), krp->krp_op);
krp->krp_status = EOPNOTSUPP;
crypto_kdone(krp);
r = 0;
}
return (r);
}
/*
* Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (sw normalization)
*/
static int
ubsec_kprocess_modexp_sw(struct ubsec_softc *sc, struct cryptkop *krp,
int hint)
{
struct ubsec_q2_modexp *me;
struct ubsec_mcr *mcr;
struct ubsec_ctx_modexp *ctx;
struct ubsec_pktbuf *epb;
int err = 0;
u_int nbits, normbits, mbits, shiftbits, ebits;
me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
if (me == NULL) {
err = ENOMEM;
goto errout;
}
memset(me, 0, sizeof *me);
me->me_krp = krp;
me->me_q.q_type = UBS_CTXOP_MODEXP;
nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
if (nbits <= 512)
normbits = 512;
else if (nbits <= 768)
normbits = 768;
else if (nbits <= 1024)
normbits = 1024;
else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
normbits = 1536;
else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
normbits = 2048;
else {
err = E2BIG;
goto errout;
}
shiftbits = normbits - nbits;
me->me_modbits = nbits;
me->me_shiftbits = shiftbits;
me->me_normbits = normbits;
/* Sanity check: result bits must be >= true modulus bits. */
if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
err = ERANGE;
goto errout;
}
if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
&me->me_q.q_mcr, 0)) {
err = ENOMEM;
goto errout;
}
mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
&me->me_q.q_ctx, 0)) {
err = ENOMEM;
goto errout;
}
mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
if (mbits > nbits) {
err = E2BIG;
goto errout;
}
if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
err = ENOMEM;
goto errout;
}
ubsec_kshift_r(shiftbits,
krp->krp_param[UBS_MODEXP_PAR_M].crp_p, mbits,
me->me_M.dma_vaddr, normbits);
if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
err = ENOMEM;
goto errout;
}
memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
if (ebits > nbits) {
err = E2BIG;
goto errout;
}
if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
err = ENOMEM;
goto errout;
}
ubsec_kshift_r(shiftbits,
krp->krp_param[UBS_MODEXP_PAR_E].crp_p, ebits,
me->me_E.dma_vaddr, normbits);
if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
&me->me_epb, 0)) {
err = ENOMEM;
goto errout;
}
epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
epb->pb_addr = htole32(me->me_E.dma_paddr);
epb->pb_next = 0;
epb->pb_len = htole32(normbits / 8);
#ifdef UBSEC_DEBUG
if (ubsec_debug) {
printf("Epb ");
ubsec_dump_pb(epb);
}
#endif
mcr->mcr_pkts = htole16(1);
mcr->mcr_flags = 0;
mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
mcr->mcr_reserved = 0;
mcr->mcr_pktlen = 0;
mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
mcr->mcr_opktbuf.pb_next = 0;
mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
#ifdef DIAGNOSTIC
/* Misaligned output buffer will hang the chip. */
if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
panic("%s: modexp invalid addr 0x%x", device_xname(sc->sc_dev),
letoh32(mcr->mcr_opktbuf.pb_addr));
if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
panic("%s: modexp invalid len 0x%x", device_xname(sc->sc_dev),
letoh32(mcr->mcr_opktbuf.pb_len));
#endif
ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
memset(ctx, 0, sizeof(*ctx));
ubsec_kshift_r(shiftbits,
krp->krp_param[UBS_MODEXP_PAR_N].crp_p, nbits,
ctx->me_N, normbits);
ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
ctx->me_op = htole16(UBS_CTXOP_MODEXP);
ctx->me_E_len = htole16(nbits);
ctx->me_N_len = htole16(nbits);
#ifdef UBSEC_DEBUG
if (ubsec_debug) {
ubsec_dump_mcr(mcr);
ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
}
#endif
/*
* ubsec_feed2 will sync mcr and ctx, we just need to sync
* everything else.
*/
bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
/* Enqueue and we're done... */
mutex_spin_enter(&sc->sc_mtx);
SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
ubsec_feed2(sc);
ubsecstats.hst_modexp++;
mutex_spin_exit(&sc->sc_mtx);
return (0);
errout:
if (me != NULL) {
if (me->me_q.q_mcr.dma_map != NULL)
ubsec_dma_free(sc, &me->me_q.q_mcr);
if (me->me_q.q_ctx.dma_map != NULL) {
memset(me->me_q.q_ctx.dma_vaddr, 0,
me->me_q.q_ctx.dma_size);
ubsec_dma_free(sc, &me->me_q.q_ctx);
}
if (me->me_M.dma_map != NULL) {
memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
ubsec_dma_free(sc, &me->me_M);
}
if (me->me_E.dma_map != NULL) {
memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
ubsec_dma_free(sc, &me->me_E);
}
if (me->me_C.dma_map != NULL) {
memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
ubsec_dma_free(sc, &me->me_C);
}
if (me->me_epb.dma_map != NULL)
ubsec_dma_free(sc, &me->me_epb);
free(me, M_DEVBUF);
}
krp->krp_status = err;
crypto_kdone(krp);
return (0);
}
/*
* Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (hw normalization)
*/
static int
ubsec_kprocess_modexp_hw(struct ubsec_softc *sc, struct cryptkop *krp,
int hint)
{
struct ubsec_q2_modexp *me;
struct ubsec_mcr *mcr;
struct ubsec_ctx_modexp *ctx;
struct ubsec_pktbuf *epb;
int err = 0;
u_int nbits, normbits, mbits, shiftbits, ebits;
me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
if (me == NULL) {
err = ENOMEM;
goto errout;
}
memset(me, 0, sizeof *me);
me->me_krp = krp;
me->me_q.q_type = UBS_CTXOP_MODEXP;
nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
if (nbits <= 512)
normbits = 512;
else if (nbits <= 768)
normbits = 768;
else if (nbits <= 1024)
normbits = 1024;
else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
normbits = 1536;
else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
normbits = 2048;
else {
err = E2BIG;
goto errout;
}
shiftbits = normbits - nbits;
/* XXX ??? */
me->me_modbits = nbits;
me->me_shiftbits = shiftbits;
me->me_normbits = normbits;
/* Sanity check: result bits must be >= true modulus bits. */
if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
err = ERANGE;
goto errout;
}
if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
&me->me_q.q_mcr, 0)) {
err = ENOMEM;
goto errout;
}
mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
&me->me_q.q_ctx, 0)) {
err = ENOMEM;
goto errout;
}
mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
if (mbits > nbits) {
err = E2BIG;
goto errout;
}
if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
err = ENOMEM;
goto errout;
}
memset(me->me_M.dma_vaddr, 0, normbits / 8);
bcopy(krp->krp_param[UBS_MODEXP_PAR_M].crp_p,
me->me_M.dma_vaddr, (mbits + 7) / 8);
if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
err = ENOMEM;
goto errout;
}
memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
if (ebits > nbits) {
err = E2BIG;
goto errout;
}
if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
err = ENOMEM;
goto errout;
}
memset(me->me_E.dma_vaddr, 0, normbits / 8);
bcopy(krp->krp_param[UBS_MODEXP_PAR_E].crp_p,
me->me_E.dma_vaddr, (ebits + 7) / 8);
if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
&me->me_epb, 0)) {
err = ENOMEM;
goto errout;
}
epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
epb->pb_addr = htole32(me->me_E.dma_paddr);
epb->pb_next = 0;
epb->pb_len = htole32((ebits + 7) / 8);
#ifdef UBSEC_DEBUG
if (ubsec_debug) {
printf("Epb ");
ubsec_dump_pb(epb);
}
#endif
mcr->mcr_pkts = htole16(1);
mcr->mcr_flags = 0;
mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
mcr->mcr_reserved = 0;
mcr->mcr_pktlen = 0;
mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
mcr->mcr_opktbuf.pb_next = 0;
mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
#ifdef DIAGNOSTIC
/* Misaligned output buffer will hang the chip. */
if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
panic("%s: modexp invalid addr 0x%x", device_xname(sc->sc_dev),
letoh32(mcr->mcr_opktbuf.pb_addr));
if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
panic("%s: modexp invalid len 0x%x", device_xname(sc->sc_dev),
letoh32(mcr->mcr_opktbuf.pb_len));
#endif
ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
memset(ctx, 0, sizeof(*ctx));
memcpy(ctx->me_N, krp->krp_param[UBS_MODEXP_PAR_N].crp_p,
(nbits + 7) / 8);
ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
ctx->me_op = htole16(UBS_CTXOP_MODEXP);
ctx->me_E_len = htole16(ebits);
ctx->me_N_len = htole16(nbits);
#ifdef UBSEC_DEBUG
if (ubsec_debug) {
ubsec_dump_mcr(mcr);
ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
}
#endif
/*
* ubsec_feed2 will sync mcr and ctx, we just need to sync
* everything else.
*/
bus_dmamap_sync(sc->sc_dmat, me->me_M.dma_map,
0, me->me_M.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sc_dmat, me->me_E.dma_map,
0, me->me_E.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sc_dmat, me->me_C.dma_map,
0, me->me_C.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
bus_dmamap_sync(sc->sc_dmat, me->me_epb.dma_map,
0, me->me_epb.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
/* Enqueue and we're done... */
mutex_spin_enter(&sc->sc_mtx);
SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
ubsec_feed2(sc);
mutex_spin_exit(&sc->sc_mtx);
return (0);
errout:
if (me != NULL) {
if (me->me_q.q_mcr.dma_map != NULL)
ubsec_dma_free(sc, &me->me_q.q_mcr);
if (me->me_q.q_ctx.dma_map != NULL) {
memset(me->me_q.q_ctx.dma_vaddr, 0,
me->me_q.q_ctx.dma_size);
ubsec_dma_free(sc, &me->me_q.q_ctx);
}
if (me->me_M.dma_map != NULL) {
memset(me->me_M.dma_vaddr, 0, me->me_M.dma_size);
ubsec_dma_free(sc, &me->me_M);
}
if (me->me_E.dma_map != NULL) {
memset(me->me_E.dma_vaddr, 0, me->me_E.dma_size);
ubsec_dma_free(sc, &me->me_E);
}
if (me->me_C.dma_map != NULL) {
memset(me->me_C.dma_vaddr, 0, me->me_C.dma_size);
ubsec_dma_free(sc, &me->me_C);
}
if (me->me_epb.dma_map != NULL)
ubsec_dma_free(sc, &me->me_epb);
free(me, M_DEVBUF);
}
krp->krp_status = err;
crypto_kdone(krp);
return (0);
}
static int
ubsec_kprocess_rsapriv(struct ubsec_softc *sc, struct cryptkop *krp,
int hint)
{
struct ubsec_q2_rsapriv *rp = NULL;
struct ubsec_mcr *mcr;
struct ubsec_ctx_rsapriv *ctx;
int err = 0;
u_int padlen, msglen;
msglen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_P]);
padlen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_Q]);
if (msglen > padlen)
padlen = msglen;
if (padlen <= 256)
padlen = 256;
else if (padlen <= 384)
padlen = 384;
else if (padlen <= 512)
padlen = 512;
else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 768)
padlen = 768;
else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 1024)
padlen = 1024;
else {
err = E2BIG;
goto errout;
}
if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DP]) > padlen) {
err = E2BIG;
goto errout;
}
if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DQ]) > padlen) {
err = E2BIG;
goto errout;
}
if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_PINV]) > padlen) {
err = E2BIG;
goto errout;
}
rp = malloc(sizeof *rp, M_DEVBUF, M_NOWAIT|M_ZERO);
if (rp == NULL)
return (ENOMEM);
rp->rpr_krp = krp;
rp->rpr_q.q_type = UBS_CTXOP_RSAPRIV;
if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
&rp->rpr_q.q_mcr, 0)) {
err = ENOMEM;
goto errout;
}
mcr = (struct ubsec_mcr *)rp->rpr_q.q_mcr.dma_vaddr;
if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rsapriv),
&rp->rpr_q.q_ctx, 0)) {
err = ENOMEM;
goto errout;
}
ctx = (struct ubsec_ctx_rsapriv *)rp->rpr_q.q_ctx.dma_vaddr;
memset(ctx, 0, sizeof *ctx);
/* Copy in p */
bcopy(krp->krp_param[UBS_RSAPRIV_PAR_P].crp_p,
&ctx->rpr_buf[0 * (padlen / 8)],
(krp->krp_param[UBS_RSAPRIV_PAR_P].crp_nbits + 7) / 8);
/* Copy in q */
bcopy(krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_p,
&ctx->rpr_buf[1 * (padlen / 8)],
(krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_nbits + 7) / 8);
/* Copy in dp */
bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_p,
&ctx->rpr_buf[2 * (padlen / 8)],
(krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_nbits + 7) / 8);
/* Copy in dq */
bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_p,
&ctx->rpr_buf[3 * (padlen / 8)],
(krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_nbits + 7) / 8);
/* Copy in pinv */
bcopy(krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_p,
&ctx->rpr_buf[4 * (padlen / 8)],
(krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_nbits + 7) / 8);
msglen = padlen * 2;
/* Copy in input message (aligned buffer/length). */
if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGIN]) > msglen) {
/* Is this likely? */
err = E2BIG;
goto errout;
}
if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgin, 0)) {
err = ENOMEM;
goto errout;
}
memset(rp->rpr_msgin.dma_vaddr, 0, (msglen + 7) / 8);
bcopy(krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_p,
rp->rpr_msgin.dma_vaddr,
(krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_nbits + 7) / 8);
/* Prepare space for output message (aligned buffer/length). */
if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT]) < msglen) {
/* Is this likely? */
err = E2BIG;
goto errout;
}
if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgout, 0)) {
err = ENOMEM;
goto errout;
}
memset(rp->rpr_msgout.dma_vaddr, 0, (msglen + 7) / 8);
mcr->mcr_pkts = htole16(1);
mcr->mcr_flags = 0;
mcr->mcr_cmdctxp = htole32(rp->rpr_q.q_ctx.dma_paddr);
mcr->mcr_ipktbuf.pb_addr = htole32(rp->rpr_msgin.dma_paddr);
mcr->mcr_ipktbuf.pb_next = 0;
mcr->mcr_ipktbuf.pb_len = htole32(rp->rpr_msgin.dma_size);
mcr->mcr_reserved = 0;
mcr->mcr_pktlen = htole16(msglen);
mcr->mcr_opktbuf.pb_addr = htole32(rp->rpr_msgout.dma_paddr);
mcr->mcr_opktbuf.pb_next = 0;
mcr->mcr_opktbuf.pb_len = htole32(rp->rpr_msgout.dma_size);
#ifdef DIAGNOSTIC
if (rp->rpr_msgin.dma_paddr & 3 || rp->rpr_msgin.dma_size & 3) {
panic("%s: rsapriv: invalid msgin 0x%lx(0x%lx)",
device_xname(sc->sc_dev), (u_long) rp->rpr_msgin.dma_paddr,
(u_long) rp->rpr_msgin.dma_size);
}
if (rp->rpr_msgout.dma_paddr & 3 || rp->rpr_msgout.dma_size & 3) {
panic("%s: rsapriv: invalid msgout 0x%lx(0x%lx)",
device_xname(sc->sc_dev), (u_long) rp->rpr_msgout.dma_paddr,
(u_long) rp->rpr_msgout.dma_size);
}
#endif
ctx->rpr_len = (sizeof(u_int16_t) * 4) + (5 * (padlen / 8));
ctx->rpr_op = htole16(UBS_CTXOP_RSAPRIV);
ctx->rpr_q_len = htole16(padlen);
ctx->rpr_p_len = htole16(padlen);
/*
* ubsec_feed2 will sync mcr and ctx, we just need to sync
* everything else.
*/
bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgin.dma_map,
0, rp->rpr_msgin.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sc_dmat, rp->rpr_msgout.dma_map,
0, rp->rpr_msgout.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
/* Enqueue and we're done... */
mutex_spin_enter(&sc->sc_mtx);
SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rp->rpr_q, q_next);
ubsec_feed2(sc);
ubsecstats.hst_modexpcrt++;
mutex_spin_exit(&sc->sc_mtx);
return (0);
errout:
if (rp != NULL) {
if (rp->rpr_q.q_mcr.dma_map != NULL)
ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
if (rp->rpr_msgin.dma_map != NULL) {
memset(rp->rpr_msgin.dma_vaddr, 0,
rp->rpr_msgin.dma_size);
ubsec_dma_free(sc, &rp->rpr_msgin);
}
if (rp->rpr_msgout.dma_map != NULL) {
memset(rp->rpr_msgout.dma_vaddr, 0,
rp->rpr_msgout.dma_size);
ubsec_dma_free(sc, &rp->rpr_msgout);
}
free(rp, M_DEVBUF);
}
krp->krp_status = err;
crypto_kdone(krp);
return (0);
}
#ifdef UBSEC_DEBUG
static void
ubsec_dump_pb(volatile struct ubsec_pktbuf *pb)
{
printf("addr 0x%x (0x%x) next 0x%x\n",
pb->pb_addr, pb->pb_len, pb->pb_next);
}
static void
ubsec_dump_ctx2(volatile struct ubsec_ctx_keyop *c)
{
printf("CTX (0x%x):\n", c->ctx_len);
switch (letoh16(c->ctx_op)) {
case UBS_CTXOP_RNGBYPASS:
case UBS_CTXOP_RNGSHA1:
break;
case UBS_CTXOP_MODEXP:
{
struct ubsec_ctx_modexp *cx = (void *)c;
int i, len;
printf(" Elen %u, Nlen %u\n",
letoh16(cx->me_E_len), letoh16(cx->me_N_len));
len = (cx->me_N_len + 7)/8;
for (i = 0; i < len; i++)
printf("%s%02x", (i == 0) ? " N: " : ":", cx->me_N[i]);
printf("\n");
break;
}
default:
printf("unknown context: %x\n", c->ctx_op);
}
printf("END CTX\n");
}
static void
ubsec_dump_mcr(struct ubsec_mcr *mcr)
{
volatile struct ubsec_mcr_add *ma;
int i;
printf("MCR:\n");
printf(" pkts: %u, flags 0x%x\n",
letoh16(mcr->mcr_pkts), letoh16(mcr->mcr_flags));
ma = (volatile struct ubsec_mcr_add *)&mcr->mcr_cmdctxp;
for (i = 0; i < letoh16(mcr->mcr_pkts); i++) {
printf(" %d: ctx 0x%x len 0x%x rsvd 0x%x\n", i,
letoh32(ma->mcr_cmdctxp), letoh16(ma->mcr_pktlen),
letoh16(ma->mcr_reserved));
printf(" %d: ipkt ", i);
ubsec_dump_pb(&ma->mcr_ipktbuf);
printf(" %d: opkt ", i);
ubsec_dump_pb(&ma->mcr_opktbuf);
ma++;
}
printf("END MCR\n");
}
#endif /* UBSEC_DEBUG */
/*
* Return the number of significant bits of a big number.
*/
static int
ubsec_ksigbits(struct crparam *cr)
{
u_int plen = (cr->crp_nbits + 7) / 8;
int i, sig = plen * 8;
u_int8_t c, *p = cr->crp_p;
for (i = plen - 1; i >= 0; i--) {
c = p[i];
if (c != 0) {
while ((c & 0x80) == 0) {
sig--;
c <<= 1;
}
break;
}
sig -= 8;
}
return (sig);
}
static void
ubsec_kshift_r(u_int shiftbits, u_int8_t *src, u_int srcbits,
u_int8_t *dst, u_int dstbits)
{
u_int slen, dlen;
int i, si, di, n;
slen = (srcbits + 7) / 8;
dlen = (dstbits + 7) / 8;
for (i = 0; i < slen; i++)
dst[i] = src[i];
for (i = 0; i < dlen - slen; i++)
dst[slen + i] = 0;
n = shiftbits / 8;
if (n != 0) {
si = dlen - n - 1;
di = dlen - 1;
while (si >= 0)
dst[di--] = dst[si--];
while (di >= 0)
dst[di--] = 0;
}
n = shiftbits % 8;
if (n != 0) {
for (i = dlen - 1; i > 0; i--)
dst[i] = (dst[i] << n) |
(dst[i - 1] >> (8 - n));
dst[0] = dst[0] << n;
}
}
static void
ubsec_kshift_l(u_int shiftbits, u_int8_t *src, u_int srcbits,
u_int8_t *dst, u_int dstbits)
{
int slen, dlen, i, n;
slen = (srcbits + 7) / 8;
dlen = (dstbits + 7) / 8;
n = shiftbits / 8;
for (i = 0; i < slen; i++)
dst[i] = src[i + n];
for (i = 0; i < dlen - slen; i++)
dst[slen + i] = 0;
n = shiftbits % 8;
if (n != 0) {
for (i = 0; i < (dlen - 1); i++)
dst[i] = (dst[i] >> n) | (dst[i + 1] << (8 - n));
dst[dlen - 1] = dst[dlen - 1] >> n;
}
}