Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
//===-- interception_linux.cc -----------------------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of AddressSanitizer, an address sanity checker.
//
// Windows-specific interception methods.
//
// This file is implementing several hooking techniques to intercept calls
// to functions. The hooks are dynamically installed by modifying the assembly
// code.
//
// The hooking techniques are making assumptions on the way the code is
// generated and are safe under these assumptions.
//
// On 64-bit architecture, there is no direct 64-bit jump instruction. To allow
// arbitrary branching on the whole memory space, the notion of trampoline
// region is used. A trampoline region is a memory space withing 2G boundary
// where it is safe to add custom assembly code to build 64-bit jumps.
//
// Hooking techniques
// ==================
//
// 1) Detour
//
//    The Detour hooking technique is assuming the presence of an header with
//    padding and an overridable 2-bytes nop instruction (mov edi, edi). The
//    nop instruction can safely be replaced by a 2-bytes jump without any need
//    to save the instruction. A jump to the target is encoded in the function
//    header and the nop instruction is replaced by a short jump to the header.
//
//        head:  5 x nop                 head:  jmp <hook>
//        func:  mov edi, edi    -->     func:  jmp short <head>
//               [...]                   real:  [...]
//
//    This technique is only implemented on 32-bit architecture.
//    Most of the time, Windows API are hookable with the detour technique.
//
// 2) Redirect Jump
//
//    The redirect jump is applicable when the first instruction is a direct
//    jump. The instruction is replaced by jump to the hook.
//
//        func:  jmp <label>     -->     func:  jmp <hook>
//
//    On an 64-bit architecture, a trampoline is inserted.
//
//        func:  jmp <label>     -->     func:  jmp <tramp>
//                                              [...]
//
//                                   [trampoline]
//                                      tramp:  jmp QWORD [addr]
//                                       addr:  .bytes <hook>
//
//    Note: <real> is equilavent to <label>.
//
// 3) HotPatch
//
//    The HotPatch hooking is assuming the presence of an header with padding
//    and a first instruction with at least 2-bytes.
//
//    The reason to enforce the 2-bytes limitation is to provide the minimal
//    space to encode a short jump. HotPatch technique is only rewriting one
//    instruction to avoid breaking a sequence of instructions containing a
//    branching target.
//
//    Assumptions are enforced by MSVC compiler by using the /HOTPATCH flag.
//      see: https://msdn.microsoft.com/en-us/library/ms173507.aspx
//    Default padding length is 5 bytes in 32-bits and 6 bytes in 64-bits.
//
//        head:   5 x nop                head:  jmp <hook>
//        func:   <instr>        -->     func:  jmp short <head>
//                [...]                  body:  [...]
//
//                                   [trampoline]
//                                       real:  <instr>
//                                              jmp <body>
//
//    On an 64-bit architecture:
//
//        head:   6 x nop                head:  jmp QWORD [addr1]
//        func:   <instr>        -->     func:  jmp short <head>
//                [...]                  body:  [...]
//
//                                   [trampoline]
//                                      addr1:  .bytes <hook>
//                                       real:  <instr>
//                                              jmp QWORD [addr2]
//                                      addr2:  .bytes <body>
//
// 4) Trampoline
//
//    The Trampoline hooking technique is the most aggressive one. It is
//    assuming that there is a sequence of instructions that can be safely
//    replaced by a jump (enough room and no incoming branches).
//
//    Unfortunately, these assumptions can't be safely presumed and code may
//    be broken after hooking.
//
//        func:   <instr>        -->     func:  jmp <hook>
//                <instr>
//                [...]                  body:  [...]
//
//                                   [trampoline]
//                                       real:  <instr>
//                                              <instr>
//                                              jmp <body>
//
//    On an 64-bit architecture:
//
//        func:   <instr>        -->     func:  jmp QWORD [addr1]
//                <instr>
//                [...]                  body:  [...]
//
//                                   [trampoline]
//                                      addr1:  .bytes <hook>
//                                       real:  <instr>
//                                              <instr>
//                                              jmp QWORD [addr2]
//                                      addr2:  .bytes <body>
//===----------------------------------------------------------------------===//

#include "interception.h"

#if SANITIZER_WINDOWS
#include "sanitizer_common/sanitizer_platform.h"
#define WIN32_LEAN_AND_MEAN
#include <windows.h>

namespace __interception {

static const int kAddressLength = FIRST_32_SECOND_64(4, 8);
static const int kJumpInstructionLength = 5;
static const int kShortJumpInstructionLength = 2;
static const int kIndirectJumpInstructionLength = 6;
static const int kBranchLength =
    FIRST_32_SECOND_64(kJumpInstructionLength, kIndirectJumpInstructionLength);
static const int kDirectBranchLength = kBranchLength + kAddressLength;

static void InterceptionFailed() {
  // Do we have a good way to abort with an error message here?
  __debugbreak();
}

static bool DistanceIsWithin2Gig(uptr from, uptr target) {
#if SANITIZER_WINDOWS64
  if (from < target)
    return target - from <= (uptr)0x7FFFFFFFU;
  else
    return from - target <= (uptr)0x80000000U;
#else
  // In a 32-bit address space, the address calculation will wrap, so this check
  // is unnecessary.
  return true;
#endif
}

static uptr GetMmapGranularity() {
  SYSTEM_INFO si;
  GetSystemInfo(&si);
  return si.dwAllocationGranularity;
}

static uptr RoundUpTo(uptr size, uptr boundary) {
  return (size + boundary - 1) & ~(boundary - 1);
}

// FIXME: internal_str* and internal_mem* functions should be moved from the
// ASan sources into interception/.

static size_t _strlen(const char *str) {
  const char* p = str;
  while (*p != '\0') ++p;
  return p - str;
}

static char* _strchr(char* str, char c) {
  while (*str) {
    if (*str == c)
      return str;
    ++str;
  }
  return nullptr;
}

static void _memset(void *p, int value, size_t sz) {
  for (size_t i = 0; i < sz; ++i)
    ((char*)p)[i] = (char)value;
}

static void _memcpy(void *dst, void *src, size_t sz) {
  char *dst_c = (char*)dst,
       *src_c = (char*)src;
  for (size_t i = 0; i < sz; ++i)
    dst_c[i] = src_c[i];
}

static bool ChangeMemoryProtection(
    uptr address, uptr size, DWORD *old_protection) {
  return ::VirtualProtect((void*)address, size,
                          PAGE_EXECUTE_READWRITE,
                          old_protection) != FALSE;
}

static bool RestoreMemoryProtection(
    uptr address, uptr size, DWORD old_protection) {
  DWORD unused;
  return ::VirtualProtect((void*)address, size,
                          old_protection,
                          &unused) != FALSE;
}

static bool IsMemoryPadding(uptr address, uptr size) {
  u8* function = (u8*)address;
  for (size_t i = 0; i < size; ++i)
    if (function[i] != 0x90 && function[i] != 0xCC)
      return false;
  return true;
}

static const u8 kHintNop8Bytes[] = {
  0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00
};

template<class T>
static bool FunctionHasPrefix(uptr address, const T &pattern) {
  u8* function = (u8*)address - sizeof(pattern);
  for (size_t i = 0; i < sizeof(pattern); ++i)
    if (function[i] != pattern[i])
      return false;
  return true;
}

static bool FunctionHasPadding(uptr address, uptr size) {
  if (IsMemoryPadding(address - size, size))
    return true;
  if (size <= sizeof(kHintNop8Bytes) &&
      FunctionHasPrefix(address, kHintNop8Bytes))
    return true;
  return false;
}

static void WritePadding(uptr from, uptr size) {
  _memset((void*)from, 0xCC, (size_t)size);
}

static void WriteJumpInstruction(uptr from, uptr target) {
  if (!DistanceIsWithin2Gig(from + kJumpInstructionLength, target))
    InterceptionFailed();
  ptrdiff_t offset = target - from - kJumpInstructionLength;
  *(u8*)from = 0xE9;
  *(u32*)(from + 1) = offset;
}

static void WriteShortJumpInstruction(uptr from, uptr target) {
  sptr offset = target - from - kShortJumpInstructionLength;
  if (offset < -128 || offset > 127)
    InterceptionFailed();
  *(u8*)from = 0xEB;
  *(u8*)(from + 1) = (u8)offset;
}

#if SANITIZER_WINDOWS64
static void WriteIndirectJumpInstruction(uptr from, uptr indirect_target) {
  // jmp [rip + <offset>] = FF 25 <offset> where <offset> is a relative
  // offset.
  // The offset is the distance from then end of the jump instruction to the
  // memory location containing the targeted address. The displacement is still
  // 32-bit in x64, so indirect_target must be located within +/- 2GB range.
  int offset = indirect_target - from - kIndirectJumpInstructionLength;
  if (!DistanceIsWithin2Gig(from + kIndirectJumpInstructionLength,
                            indirect_target)) {
    InterceptionFailed();
  }
  *(u16*)from = 0x25FF;
  *(u32*)(from + 2) = offset;
}
#endif

static void WriteBranch(
    uptr from, uptr indirect_target, uptr target) {
#if SANITIZER_WINDOWS64
  WriteIndirectJumpInstruction(from, indirect_target);
  *(u64*)indirect_target = target;
#else
  (void)indirect_target;
  WriteJumpInstruction(from, target);
#endif
}

static void WriteDirectBranch(uptr from, uptr target) {
#if SANITIZER_WINDOWS64
  // Emit an indirect jump through immediately following bytes:
  //   jmp [rip + kBranchLength]
  //   .quad <target>
  WriteBranch(from, from + kBranchLength, target);
#else
  WriteJumpInstruction(from, target);
#endif
}

struct TrampolineMemoryRegion {
  uptr content;
  uptr allocated_size;
  uptr max_size;
};

static const uptr kTrampolineScanLimitRange = 1 << 31;  // 2 gig
static const int kMaxTrampolineRegion = 1024;
static TrampolineMemoryRegion TrampolineRegions[kMaxTrampolineRegion];

static void *AllocateTrampolineRegion(uptr image_address, size_t granularity) {
#if SANITIZER_WINDOWS64
  uptr address = image_address;
  uptr scanned = 0;
  while (scanned < kTrampolineScanLimitRange) {
    MEMORY_BASIC_INFORMATION info;
    if (!::VirtualQuery((void*)address, &info, sizeof(info)))
      return nullptr;

    // Check whether a region can be allocated at |address|.
    if (info.State == MEM_FREE && info.RegionSize >= granularity) {
      void *page = ::VirtualAlloc((void*)RoundUpTo(address, granularity),
                                  granularity,
                                  MEM_RESERVE | MEM_COMMIT,
                                  PAGE_EXECUTE_READWRITE);
      return page;
    }

    // Move to the next region.
    address = (uptr)info.BaseAddress + info.RegionSize;
    scanned += info.RegionSize;
  }
  return nullptr;
#else
  return ::VirtualAlloc(nullptr,
                        granularity,
                        MEM_RESERVE | MEM_COMMIT,
                        PAGE_EXECUTE_READWRITE);
#endif
}

// Used by unittests to release mapped memory space.
void TestOnlyReleaseTrampolineRegions() {
  for (size_t bucket = 0; bucket < kMaxTrampolineRegion; ++bucket) {
    TrampolineMemoryRegion *current = &TrampolineRegions[bucket];
    if (current->content == 0)
      return;
    ::VirtualFree((void*)current->content, 0, MEM_RELEASE);
    current->content = 0;
  }
}

static uptr AllocateMemoryForTrampoline(uptr image_address, size_t size) {
  // Find a region within 2G with enough space to allocate |size| bytes.
  TrampolineMemoryRegion *region = nullptr;
  for (size_t bucket = 0; bucket < kMaxTrampolineRegion; ++bucket) {
    TrampolineMemoryRegion* current = &TrampolineRegions[bucket];
    if (current->content == 0) {
      // No valid region found, allocate a new region.
      size_t bucket_size = GetMmapGranularity();
      void *content = AllocateTrampolineRegion(image_address, bucket_size);
      if (content == nullptr)
        return 0U;

      current->content = (uptr)content;
      current->allocated_size = 0;
      current->max_size = bucket_size;
      region = current;
      break;
    } else if (current->max_size - current->allocated_size > size) {
#if SANITIZER_WINDOWS64
        // In 64-bits, the memory space must be allocated within 2G boundary.
        uptr next_address = current->content + current->allocated_size;
        if (next_address < image_address ||
            next_address - image_address >= 0x7FFF0000)
          continue;
#endif
      // The space can be allocated in the current region.
      region = current;
      break;
    }
  }

  // Failed to find a region.
  if (region == nullptr)
    return 0U;

  // Allocate the space in the current region.
  uptr allocated_space = region->content + region->allocated_size;
  region->allocated_size += size;
  WritePadding(allocated_space, size);

  return allocated_space;
}

// Returns 0 on error.
static size_t GetInstructionSize(uptr address, size_t* rel_offset = nullptr) {
  switch (*(u64*)address) {
    case 0x90909090909006EB:  // stub: jmp over 6 x nop.
      return 8;
  }

  switch (*(u8*)address) {
    case 0x90:  // 90 : nop
      return 1;

    case 0x50:  // push eax / rax
    case 0x51:  // push ecx / rcx
    case 0x52:  // push edx / rdx
    case 0x53:  // push ebx / rbx
    case 0x54:  // push esp / rsp
    case 0x55:  // push ebp / rbp
    case 0x56:  // push esi / rsi
    case 0x57:  // push edi / rdi
    case 0x5D:  // pop ebp / rbp
      return 1;

    case 0x6A:  // 6A XX = push XX
      return 2;

    case 0xb8:  // b8 XX XX XX XX : mov eax, XX XX XX XX
    case 0xB9:  // b9 XX XX XX XX : mov ecx, XX XX XX XX
      return 5;

    // Cannot overwrite control-instruction. Return 0 to indicate failure.
    case 0xE9:  // E9 XX XX XX XX : jmp <label>
    case 0xE8:  // E8 XX XX XX XX : call <func>
    case 0xC3:  // C3 : ret
    case 0xEB:  // EB XX : jmp XX (short jump)
    case 0x70:  // 7Y YY : jy XX (short conditional jump)
    case 0x71:
    case 0x72:
    case 0x73:
    case 0x74:
    case 0x75:
    case 0x76:
    case 0x77:
    case 0x78:
    case 0x79:
    case 0x7A:
    case 0x7B:
    case 0x7C:
    case 0x7D:
    case 0x7E:
    case 0x7F:
      return 0;
  }

  switch (*(u16*)(address)) {
    case 0x018A:  // 8A 01 : mov al, byte ptr [ecx]
    case 0xFF8B:  // 8B FF : mov edi, edi
    case 0xEC8B:  // 8B EC : mov ebp, esp
    case 0xc889:  // 89 C8 : mov eax, ecx
    case 0xC18B:  // 8B C1 : mov eax, ecx
    case 0xC033:  // 33 C0 : xor eax, eax
    case 0xC933:  // 33 C9 : xor ecx, ecx
    case 0xD233:  // 33 D2 : xor edx, edx
      return 2;

    // Cannot overwrite control-instruction. Return 0 to indicate failure.
    case 0x25FF:  // FF 25 XX XX XX XX : jmp [XXXXXXXX]
      return 0;
  }

  switch (0x00FFFFFF & *(u32*)address) {
    case 0x24A48D:  // 8D A4 24 XX XX XX XX : lea esp, [esp + XX XX XX XX]
      return 7;
  }

#if SANITIZER_WINDOWS64
  switch (*(u8*)address) {
    case 0xA1:  // A1 XX XX XX XX XX XX XX XX :
                //   movabs eax, dword ptr ds:[XXXXXXXX]
      return 9;
  }

  switch (*(u16*)address) {
    case 0x5040:  // push rax
    case 0x5140:  // push rcx
    case 0x5240:  // push rdx
    case 0x5340:  // push rbx
    case 0x5440:  // push rsp
    case 0x5540:  // push rbp
    case 0x5640:  // push rsi
    case 0x5740:  // push rdi
    case 0x5441:  // push r12
    case 0x5541:  // push r13
    case 0x5641:  // push r14
    case 0x5741:  // push r15
    case 0x9066:  // Two-byte NOP
      return 2;

    case 0x058B:  // 8B 05 XX XX XX XX : mov eax, dword ptr [XX XX XX XX]
      if (rel_offset)
        *rel_offset = 2;
      return 6;
  }

  switch (0x00FFFFFF & *(u32*)address) {
    case 0xe58948:    // 48 8b c4 : mov rbp, rsp
    case 0xc18b48:    // 48 8b c1 : mov rax, rcx
    case 0xc48b48:    // 48 8b c4 : mov rax, rsp
    case 0xd9f748:    // 48 f7 d9 : neg rcx
    case 0xd12b48:    // 48 2b d1 : sub rdx, rcx
    case 0x07c1f6:    // f6 c1 07 : test cl, 0x7
    case 0xc98548:    // 48 85 C9 : test rcx, rcx
    case 0xc0854d:    // 4d 85 c0 : test r8, r8
    case 0xc2b60f:    // 0f b6 c2 : movzx eax, dl
    case 0xc03345:    // 45 33 c0 : xor r8d, r8d
    case 0xdb3345:    // 45 33 DB : xor r11d, r11d
    case 0xd98b4c:    // 4c 8b d9 : mov r11, rcx
    case 0xd28b4c:    // 4c 8b d2 : mov r10, rdx
    case 0xc98b4c:    // 4C 8B C9 : mov r9, rcx
    case 0xd2b60f:    // 0f b6 d2 : movzx edx, dl
    case 0xca2b48:    // 48 2b ca : sub rcx, rdx
    case 0x10b70f:    // 0f b7 10 : movzx edx, WORD PTR [rax]
    case 0xc00b4d:    // 3d 0b c0 : or r8, r8
    case 0xd18b48:    // 48 8b d1 : mov rdx, rcx
    case 0xdc8b4c:    // 4c 8b dc : mov r11, rsp
    case 0xd18b4c:    // 4c 8b d1 : mov r10, rcx
      return 3;

    case 0xec8348:    // 48 83 ec XX : sub rsp, XX
    case 0xf88349:    // 49 83 f8 XX : cmp r8, XX
    case 0x588948:    // 48 89 58 XX : mov QWORD PTR[rax + XX], rbx
      return 4;

    case 0xec8148:    // 48 81 EC XX XX XX XX : sub rsp, XXXXXXXX
      return 7;

    case 0x058b48:    // 48 8b 05 XX XX XX XX :
                      //   mov rax, QWORD PTR [rip + XXXXXXXX]
    case 0x25ff48:    // 48 ff 25 XX XX XX XX :
                      //   rex.W jmp QWORD PTR [rip + XXXXXXXX]

      // Instructions having offset relative to 'rip' need offset adjustment.
      if (rel_offset)
        *rel_offset = 3;
      return 7;

    case 0x2444c7:    // C7 44 24 XX YY YY YY YY
                      //   mov dword ptr [rsp + XX], YYYYYYYY
      return 8;
  }

  switch (*(u32*)(address)) {
    case 0x24448b48:  // 48 8b 44 24 XX : mov rax, QWORD ptr [rsp + XX]
    case 0x246c8948:  // 48 89 6C 24 XX : mov QWORD ptr [rsp + XX], rbp
    case 0x245c8948:  // 48 89 5c 24 XX : mov QWORD PTR [rsp + XX], rbx
    case 0x24748948:  // 48 89 74 24 XX : mov QWORD PTR [rsp + XX], rsi
    case 0x244C8948:  // 48 89 4C 24 XX : mov QWORD PTR [rsp + XX], rcx
      return 5;
    case 0x24648348:  // 48 83 64 24 XX : and QWORD PTR [rsp + XX], YY
      return 6;
  }

#else

  switch (*(u8*)address) {
    case 0xA1:  // A1 XX XX XX XX :  mov eax, dword ptr ds:[XXXXXXXX]
      return 5;
  }
  switch (*(u16*)address) {
    case 0x458B:  // 8B 45 XX : mov eax, dword ptr [ebp + XX]
    case 0x5D8B:  // 8B 5D XX : mov ebx, dword ptr [ebp + XX]
    case 0x7D8B:  // 8B 7D XX : mov edi, dword ptr [ebp + XX]
    case 0xEC83:  // 83 EC XX : sub esp, XX
    case 0x75FF:  // FF 75 XX : push dword ptr [ebp + XX]
      return 3;
    case 0xC1F7:  // F7 C1 XX YY ZZ WW : test ecx, WWZZYYXX
    case 0x25FF:  // FF 25 XX YY ZZ WW : jmp dword ptr ds:[WWZZYYXX]
      return 6;
    case 0x3D83:  // 83 3D XX YY ZZ WW TT : cmp TT, WWZZYYXX
      return 7;
    case 0x7D83:  // 83 7D XX YY : cmp dword ptr [ebp + XX], YY
      return 4;
  }

  switch (0x00FFFFFF & *(u32*)address) {
    case 0x24448A:  // 8A 44 24 XX : mov eal, dword ptr [esp + XX]
    case 0x24448B:  // 8B 44 24 XX : mov eax, dword ptr [esp + XX]
    case 0x244C8B:  // 8B 4C 24 XX : mov ecx, dword ptr [esp + XX]
    case 0x24548B:  // 8B 54 24 XX : mov edx, dword ptr [esp + XX]
    case 0x24748B:  // 8B 74 24 XX : mov esi, dword ptr [esp + XX]
    case 0x247C8B:  // 8B 7C 24 XX : mov edi, dword ptr [esp + XX]
      return 4;
  }

  switch (*(u32*)address) {
    case 0x2444B60F:  // 0F B6 44 24 XX : movzx eax, byte ptr [esp + XX]
      return 5;
  }
#endif

  // Unknown instruction!
  // FIXME: Unknown instruction failures might happen when we add a new
  // interceptor or a new compiler version. In either case, they should result
  // in visible and readable error messages. However, merely calling abort()
  // leads to an infinite recursion in CheckFailed.
  InterceptionFailed();
  return 0;
}

// Returns 0 on error.
static size_t RoundUpToInstrBoundary(size_t size, uptr address) {
  size_t cursor = 0;
  while (cursor < size) {
    size_t instruction_size = GetInstructionSize(address + cursor);
    if (!instruction_size)
      return 0;
    cursor += instruction_size;
  }
  return cursor;
}

static bool CopyInstructions(uptr to, uptr from, size_t size) {
  size_t cursor = 0;
  while (cursor != size) {
    size_t rel_offset = 0;
    size_t instruction_size = GetInstructionSize(from + cursor, &rel_offset);
    _memcpy((void*)(to + cursor), (void*)(from + cursor),
            (size_t)instruction_size);
    if (rel_offset) {
      uptr delta = to - from;
      uptr relocated_offset = *(u32*)(to + cursor + rel_offset) - delta;
#if SANITIZER_WINDOWS64
      if (relocated_offset + 0x80000000U >= 0xFFFFFFFFU)
        return false;
#endif
      *(u32*)(to + cursor + rel_offset) = relocated_offset;
    }
    cursor += instruction_size;
  }
  return true;
}


#if !SANITIZER_WINDOWS64
bool OverrideFunctionWithDetour(
    uptr old_func, uptr new_func, uptr *orig_old_func) {
  const int kDetourHeaderLen = 5;
  const u16 kDetourInstruction = 0xFF8B;

  uptr header = (uptr)old_func - kDetourHeaderLen;
  uptr patch_length = kDetourHeaderLen + kShortJumpInstructionLength;

  // Validate that the function is hookable.
  if (*(u16*)old_func != kDetourInstruction ||
      !IsMemoryPadding(header, kDetourHeaderLen))
    return false;

  // Change memory protection to writable.
  DWORD protection = 0;
  if (!ChangeMemoryProtection(header, patch_length, &protection))
    return false;

  // Write a relative jump to the redirected function.
  WriteJumpInstruction(header, new_func);

  // Write the short jump to the function prefix.
  WriteShortJumpInstruction(old_func, header);

  // Restore previous memory protection.
  if (!RestoreMemoryProtection(header, patch_length, protection))
    return false;

  if (orig_old_func)
    *orig_old_func = old_func + kShortJumpInstructionLength;

  return true;
}
#endif

bool OverrideFunctionWithRedirectJump(
    uptr old_func, uptr new_func, uptr *orig_old_func) {
  // Check whether the first instruction is a relative jump.
  if (*(u8*)old_func != 0xE9)
    return false;

  if (orig_old_func) {
    uptr relative_offset = *(u32*)(old_func + 1);
    uptr absolute_target = old_func + relative_offset + kJumpInstructionLength;
    *orig_old_func = absolute_target;
  }

#if SANITIZER_WINDOWS64
  // If needed, get memory space for a trampoline jump.
  uptr trampoline = AllocateMemoryForTrampoline(old_func, kDirectBranchLength);
  if (!trampoline)
    return false;
  WriteDirectBranch(trampoline, new_func);
#endif

  // Change memory protection to writable.
  DWORD protection = 0;
  if (!ChangeMemoryProtection(old_func, kJumpInstructionLength, &protection))
    return false;

  // Write a relative jump to the redirected function.
  WriteJumpInstruction(old_func, FIRST_32_SECOND_64(new_func, trampoline));

  // Restore previous memory protection.
  if (!RestoreMemoryProtection(old_func, kJumpInstructionLength, protection))
    return false;

  return true;
}

bool OverrideFunctionWithHotPatch(
    uptr old_func, uptr new_func, uptr *orig_old_func) {
  const int kHotPatchHeaderLen = kBranchLength;

  uptr header = (uptr)old_func - kHotPatchHeaderLen;
  uptr patch_length = kHotPatchHeaderLen + kShortJumpInstructionLength;

  // Validate that the function is hot patchable.
  size_t instruction_size = GetInstructionSize(old_func);
  if (instruction_size < kShortJumpInstructionLength ||
      !FunctionHasPadding(old_func, kHotPatchHeaderLen))
    return false;

  if (orig_old_func) {
    // Put the needed instructions into the trampoline bytes.
    uptr trampoline_length = instruction_size + kDirectBranchLength;
    uptr trampoline = AllocateMemoryForTrampoline(old_func, trampoline_length);
    if (!trampoline)
      return false;
    if (!CopyInstructions(trampoline, old_func, instruction_size))
      return false;
    WriteDirectBranch(trampoline + instruction_size,
                      old_func + instruction_size);
    *orig_old_func = trampoline;
  }

  // If needed, get memory space for indirect address.
  uptr indirect_address = 0;
#if SANITIZER_WINDOWS64
  indirect_address = AllocateMemoryForTrampoline(old_func, kAddressLength);
  if (!indirect_address)
    return false;
#endif

  // Change memory protection to writable.
  DWORD protection = 0;
  if (!ChangeMemoryProtection(header, patch_length, &protection))
    return false;

  // Write jumps to the redirected function.
  WriteBranch(header, indirect_address, new_func);
  WriteShortJumpInstruction(old_func, header);

  // Restore previous memory protection.
  if (!RestoreMemoryProtection(header, patch_length, protection))
    return false;

  return true;
}

bool OverrideFunctionWithTrampoline(
    uptr old_func, uptr new_func, uptr *orig_old_func) {

  size_t instructions_length = kBranchLength;
  size_t padding_length = 0;
  uptr indirect_address = 0;

  if (orig_old_func) {
    // Find out the number of bytes of the instructions we need to copy
    // to the trampoline.
    instructions_length = RoundUpToInstrBoundary(kBranchLength, old_func);
    if (!instructions_length)
      return false;

    // Put the needed instructions into the trampoline bytes.
    uptr trampoline_length = instructions_length + kDirectBranchLength;
    uptr trampoline = AllocateMemoryForTrampoline(old_func, trampoline_length);
    if (!trampoline)
      return false;
    if (!CopyInstructions(trampoline, old_func, instructions_length))
      return false;
    WriteDirectBranch(trampoline + instructions_length,
                      old_func + instructions_length);
    *orig_old_func = trampoline;
  }

#if SANITIZER_WINDOWS64
  // Check if the targeted address can be encoded in the function padding.
  // Otherwise, allocate it in the trampoline region.
  if (IsMemoryPadding(old_func - kAddressLength, kAddressLength)) {
    indirect_address = old_func - kAddressLength;
    padding_length = kAddressLength;
  } else {
    indirect_address = AllocateMemoryForTrampoline(old_func, kAddressLength);
    if (!indirect_address)
      return false;
  }
#endif

  // Change memory protection to writable.
  uptr patch_address = old_func - padding_length;
  uptr patch_length = instructions_length + padding_length;
  DWORD protection = 0;
  if (!ChangeMemoryProtection(patch_address, patch_length, &protection))
    return false;

  // Patch the original function.
  WriteBranch(old_func, indirect_address, new_func);

  // Restore previous memory protection.
  if (!RestoreMemoryProtection(patch_address, patch_length, protection))
    return false;

  return true;
}

bool OverrideFunction(
    uptr old_func, uptr new_func, uptr *orig_old_func) {
#if !SANITIZER_WINDOWS64
  if (OverrideFunctionWithDetour(old_func, new_func, orig_old_func))
    return true;
#endif
  if (OverrideFunctionWithRedirectJump(old_func, new_func, orig_old_func))
    return true;
  if (OverrideFunctionWithHotPatch(old_func, new_func, orig_old_func))
    return true;
  if (OverrideFunctionWithTrampoline(old_func, new_func, orig_old_func))
    return true;
  return false;
}

static void **InterestingDLLsAvailable() {
  static const char *InterestingDLLs[] = {
      "kernel32.dll",
      "msvcr100.dll",      // VS2010
      "msvcr110.dll",      // VS2012
      "msvcr120.dll",      // VS2013
      "vcruntime140.dll",  // VS2015
      "ucrtbase.dll",      // Universal CRT
      // NTDLL should go last as it exports some functions that we should
      // override in the CRT [presumably only used internally].
      "ntdll.dll", NULL};
  static void *result[ARRAY_SIZE(InterestingDLLs)] = { 0 };
  if (!result[0]) {
    for (size_t i = 0, j = 0; InterestingDLLs[i]; ++i) {
      if (HMODULE h = GetModuleHandleA(InterestingDLLs[i]))
        result[j++] = (void *)h;
    }
  }
  return &result[0];
}

namespace {
// Utility for reading loaded PE images.
template <typename T> class RVAPtr {
 public:
  RVAPtr(void *module, uptr rva)
      : ptr_(reinterpret_cast<T *>(reinterpret_cast<char *>(module) + rva)) {}
  operator T *() { return ptr_; }
  T *operator->() { return ptr_; }
  T *operator++() { return ++ptr_; }

 private:
  T *ptr_;
};
} // namespace

// Internal implementation of GetProcAddress. At least since Windows 8,
// GetProcAddress appears to initialize DLLs before returning function pointers
// into them. This is problematic for the sanitizers, because they typically
// want to intercept malloc *before* MSVCRT initializes. Our internal
// implementation walks the export list manually without doing initialization.
uptr InternalGetProcAddress(void *module, const char *func_name) {
  // Check that the module header is full and present.
  RVAPtr<IMAGE_DOS_HEADER> dos_stub(module, 0);
  RVAPtr<IMAGE_NT_HEADERS> headers(module, dos_stub->e_lfanew);
  if (!module || dos_stub->e_magic != IMAGE_DOS_SIGNATURE || // "MZ"
      headers->Signature != IMAGE_NT_SIGNATURE ||           // "PE\0\0"
      headers->FileHeader.SizeOfOptionalHeader <
          sizeof(IMAGE_OPTIONAL_HEADER)) {
    return 0;
  }

  IMAGE_DATA_DIRECTORY *export_directory =
      &headers->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT];
  if (export_directory->Size == 0)
    return 0;
  RVAPtr<IMAGE_EXPORT_DIRECTORY> exports(module,
                                         export_directory->VirtualAddress);
  RVAPtr<DWORD> functions(module, exports->AddressOfFunctions);
  RVAPtr<DWORD> names(module, exports->AddressOfNames);
  RVAPtr<WORD> ordinals(module, exports->AddressOfNameOrdinals);

  for (DWORD i = 0; i < exports->NumberOfNames; i++) {
    RVAPtr<char> name(module, names[i]);
    if (!strcmp(func_name, name)) {
      DWORD index = ordinals[i];
      RVAPtr<char> func(module, functions[index]);

      // Handle forwarded functions.
      DWORD offset = functions[index];
      if (offset >= export_directory->VirtualAddress &&
          offset < export_directory->VirtualAddress + export_directory->Size) {
        // An entry for a forwarded function is a string with the following
        // format: "<module> . <function_name>" that is stored into the
        // exported directory.
        char function_name[256];
        size_t funtion_name_length = _strlen(func);
        if (funtion_name_length >= sizeof(function_name) - 1)
          InterceptionFailed();

        _memcpy(function_name, func, funtion_name_length);
        function_name[funtion_name_length] = '\0';
        char* separator = _strchr(function_name, '.');
        if (!separator)
          InterceptionFailed();
        *separator = '\0';

        void* redirected_module = GetModuleHandleA(function_name);
        if (!redirected_module)
          InterceptionFailed();
        return InternalGetProcAddress(redirected_module, separator + 1);
      }

      return (uptr)(char *)func;
    }
  }

  return 0;
}

bool OverrideFunction(
    const char *func_name, uptr new_func, uptr *orig_old_func) {
  bool hooked = false;
  void **DLLs = InterestingDLLsAvailable();
  for (size_t i = 0; DLLs[i]; ++i) {
    uptr func_addr = InternalGetProcAddress(DLLs[i], func_name);
    if (func_addr &&
        OverrideFunction(func_addr, new_func, orig_old_func)) {
      hooked = true;
    }
  }
  return hooked;
}

bool OverrideImportedFunction(const char *module_to_patch,
                              const char *imported_module,
                              const char *function_name, uptr new_function,
                              uptr *orig_old_func) {
  HMODULE module = GetModuleHandleA(module_to_patch);
  if (!module)
    return false;

  // Check that the module header is full and present.
  RVAPtr<IMAGE_DOS_HEADER> dos_stub(module, 0);
  RVAPtr<IMAGE_NT_HEADERS> headers(module, dos_stub->e_lfanew);
  if (!module || dos_stub->e_magic != IMAGE_DOS_SIGNATURE || // "MZ"
      headers->Signature != IMAGE_NT_SIGNATURE ||            // "PE\0\0"
      headers->FileHeader.SizeOfOptionalHeader <
          sizeof(IMAGE_OPTIONAL_HEADER)) {
    return false;
  }

  IMAGE_DATA_DIRECTORY *import_directory =
      &headers->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT];

  // Iterate the list of imported DLLs. FirstThunk will be null for the last
  // entry.
  RVAPtr<IMAGE_IMPORT_DESCRIPTOR> imports(module,
                                          import_directory->VirtualAddress);
  for (; imports->FirstThunk != 0; ++imports) {
    RVAPtr<const char> modname(module, imports->Name);
    if (_stricmp(&*modname, imported_module) == 0)
      break;
  }
  if (imports->FirstThunk == 0)
    return false;

  // We have two parallel arrays: the import address table (IAT) and the table
  // of names. They start out containing the same data, but the loader rewrites
  // the IAT to hold imported addresses and leaves the name table in
  // OriginalFirstThunk alone.
  RVAPtr<IMAGE_THUNK_DATA> name_table(module, imports->OriginalFirstThunk);
  RVAPtr<IMAGE_THUNK_DATA> iat(module, imports->FirstThunk);
  for (; name_table->u1.Ordinal != 0; ++name_table, ++iat) {
    if (!IMAGE_SNAP_BY_ORDINAL(name_table->u1.Ordinal)) {
      RVAPtr<IMAGE_IMPORT_BY_NAME> import_by_name(
          module, name_table->u1.ForwarderString);
      const char *funcname = &import_by_name->Name[0];
      if (strcmp(funcname, function_name) == 0)
        break;
    }
  }
  if (name_table->u1.Ordinal == 0)
    return false;

  // Now we have the correct IAT entry. Do the swap. We have to make the page
  // read/write first.
  if (orig_old_func)
    *orig_old_func = iat->u1.AddressOfData;
  DWORD old_prot, unused_prot;
  if (!VirtualProtect(&iat->u1.AddressOfData, 4, PAGE_EXECUTE_READWRITE,
                      &old_prot))
    return false;
  iat->u1.AddressOfData = new_function;
  if (!VirtualProtect(&iat->u1.AddressOfData, 4, old_prot, &unused_prot))
    return false;  // Not clear if this failure bothers us.
  return true;
}

}  // namespace __interception

#endif  // SANITIZER_MAC