Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
/*	$NetBSD: linux_fence.c,v 1.15 2019/04/16 10:00:04 mrg Exp $	*/

/*-
 * Copyright (c) 2018 The NetBSD Foundation, Inc.
 * All rights reserved.
 *
 * This code is derived from software contributed to The NetBSD Foundation
 * by Taylor R. Campbell.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: linux_fence.c,v 1.15 2019/04/16 10:00:04 mrg Exp $");

#include <sys/atomic.h>
#include <sys/condvar.h>
#include <sys/queue.h>

#include <linux/atomic.h>
#include <linux/errno.h>
#include <linux/kref.h>
#include <linux/fence.h>
#include <linux/sched.h>
#include <linux/spinlock.h>

/*
 * linux_fence_trace
 *
 *	True if we print FENCE_TRACE messages, false if not.  These are
 *	extremely noisy, too much even for AB_VERBOSE and AB_DEBUG in
 *	boothowto.
 */
int	linux_fence_trace = 0;

/*
 * fence_referenced_p(fence)
 *
 *	True if fence has a positive reference count.  True after
 *	fence_init; after the last fence_put, this becomes false.
 */
static inline bool __diagused
fence_referenced_p(struct fence *fence)
{

	return kref_referenced_p(&fence->refcount);
}

/*
 * fence_init(fence, ops, lock, context, seqno)
 *
 *	Initialize fence.  Caller should call fence_destroy when done,
 *	after all references have been released.
 */
void
fence_init(struct fence *fence, const struct fence_ops *ops, spinlock_t *lock,
    unsigned context, unsigned seqno)
{

	kref_init(&fence->refcount);
	fence->lock = lock;
	fence->flags = 0;
	fence->context = context;
	fence->seqno = seqno;
	fence->ops = ops;
	TAILQ_INIT(&fence->f_callbacks);
	cv_init(&fence->f_cv, "fence");
}

/*
 * fence_destroy(fence)
 *
 *	Clean up memory initialized with fence_init.  This is meant to
 *	be used after a fence release callback.
 */
void
fence_destroy(struct fence *fence)
{

	KASSERT(!fence_referenced_p(fence));

	KASSERT(TAILQ_EMPTY(&fence->f_callbacks));
	cv_destroy(&fence->f_cv);
}

static void
fence_free_cb(struct rcu_head *rcu)
{
	struct fence *fence = container_of(rcu, struct fence, f_rcu);

	KASSERT(!fence_referenced_p(fence));

	fence_destroy(fence);
	kfree(fence);
}

/*
 * fence_free(fence)
 *
 *	Schedule fence to be destroyed and then freed with kfree after
 *	any pending RCU read sections on all CPUs have completed.
 *	Caller must guarantee all references have been released.  This
 *	is meant to be used after a fence release callback.
 *
 *	NOTE: Callers assume kfree will be used.  We don't even use
 *	kmalloc to allocate these -- caller is expected to allocate
 *	memory with kmalloc to be initialized with fence_init.
 */
void
fence_free(struct fence *fence)
{

	KASSERT(!fence_referenced_p(fence));

	call_rcu(&fence->f_rcu, &fence_free_cb);
}

/*
 * fence_context_alloc(n)
 *
 *	Return the first of a contiguous sequence of unique
 *	identifiers, at least until the system wraps around.
 */
unsigned
fence_context_alloc(unsigned n)
{
	static volatile unsigned next_context = 0;

	return atomic_add_int_nv(&next_context, n) - n;
}

/*
 * fence_is_later(a, b)
 *
 *	True if the sequence number of fence a is later than the
 *	sequence number of fence b.  Since sequence numbers wrap
 *	around, we define this to mean that the sequence number of
 *	fence a is no more than INT_MAX past the sequence number of
 *	fence b.
 *
 *	The two fences must have the same context.
 */
bool
fence_is_later(struct fence *a, struct fence *b)
{

	KASSERTMSG(a->context == b->context, "incommensurate fences"
	    ": %u @ %p =/= %u @ %p", a->context, a, b->context, b);

	return a->seqno - b->seqno < INT_MAX;
}

/*
 * fence_get(fence)
 *
 *	Acquire a reference to fence.  The fence must not be being
 *	destroyed.  Return the fence.
 */
struct fence *
fence_get(struct fence *fence)
{

	if (fence)
		kref_get(&fence->refcount);
	return fence;
}

/*
 * fence_get_rcu(fence)
 *
 *	Attempt to acquire a reference to a fence that may be about to
 *	be destroyed, during a read section.  Return the fence on
 *	success, or NULL on failure.
 */
struct fence *
fence_get_rcu(struct fence *fence)
{

	if (!kref_get_unless_zero(&fence->refcount))
		return NULL;
	return fence;
}

static void
fence_release(struct kref *refcount)
{
	struct fence *fence = container_of(refcount, struct fence, refcount);

	KASSERT(!fence_referenced_p(fence));

	if (fence->ops->release)
		(*fence->ops->release)(fence);
	else
		fence_free(fence);
}

/*
 * fence_put(fence)
 *
 *	Release a reference to fence.  If this was the last one, call
 *	the fence's release callback.
 */
void
fence_put(struct fence *fence)
{

	if (fence == NULL)
		return;
	KASSERT(fence_referenced_p(fence));
	kref_put(&fence->refcount, &fence_release);
}

/*
 * fence_ensure_signal_enabled(fence)
 *
 *	Internal subroutine.  If the fence was already signalled,
 *	return -ENOENT.  Otherwise, if the enable signalling callback
 *	has not been called yet, call it.  If fails, signal the fence
 *	and return -ENOENT.  If it succeeds, or if it had already been
 *	called, return zero to indicate success.
 *
 *	Caller must hold the fence's lock.
 */
static int
fence_ensure_signal_enabled(struct fence *fence)
{

	KASSERT(fence_referenced_p(fence));
	KASSERT(spin_is_locked(fence->lock));

	/* If the fence was already signalled, fail with -ENOENT.  */
	if (fence->flags & (1u << FENCE_FLAG_SIGNALED_BIT))
		return -ENOENT;

	/*
	 * If the enable signaling callback has been called, success.
	 * Otherwise, set the bit indicating it.
	 */
	if (test_and_set_bit(FENCE_FLAG_ENABLE_SIGNAL_BIT, &fence->flags))
		return 0;

	/* Otherwise, note that we've called it and call it.  */
	if (!(*fence->ops->enable_signaling)(fence)) {
		/* If it failed, signal and return -ENOENT.  */
		fence_signal_locked(fence);
		return -ENOENT;
	}

	/* Success!  */
	return 0;
}

/*
 * fence_add_callback(fence, fcb, fn)
 *
 *	If fence has been signalled, return -ENOENT.  If the enable
 *	signalling callback hasn't been called yet, call it; if it
 *	fails, return -ENOENT.  Otherwise, arrange to call fn(fence,
 *	fcb) when it is signalled, and return 0.
 *
 *	The fence uses memory allocated by the caller in fcb from the
 *	time of fence_add_callback either to the time of
 *	fence_remove_callback, or just before calling fn.
 */
int
fence_add_callback(struct fence *fence, struct fence_cb *fcb, fence_func_t fn)
{
	int ret;

	KASSERT(fence_referenced_p(fence));

	/* Optimistically try to skip the lock if it's already signalled.  */
	if (fence->flags & (1u << FENCE_FLAG_SIGNALED_BIT)) {
		ret = -ENOENT;
		goto out0;
	}

	/* Acquire the lock.  */
	spin_lock(fence->lock);

	/* Ensure signalling is enabled, or fail if we can't.  */
	ret = fence_ensure_signal_enabled(fence);
	if (ret)
		goto out1;

	/* Insert the callback.  */
	fcb->fcb_func = fn;
	TAILQ_INSERT_TAIL(&fence->f_callbacks, fcb, fcb_entry);
	fcb->fcb_onqueue = true;

	/* Release the lock and we're done.  */
out1:	spin_unlock(fence->lock);
out0:	return ret;
}

/*
 * fence_remove_callback(fence, fcb)
 *
 *	Remove the callback fcb from fence.  Return true if it was
 *	removed from the list, or false if it had already run and so
 *	was no longer queued anyway.  Caller must have already called
 *	fence_add_callback(fence, fcb).
 */
bool
fence_remove_callback(struct fence *fence, struct fence_cb *fcb)
{
	bool onqueue;

	KASSERT(fence_referenced_p(fence));

	spin_lock(fence->lock);
	onqueue = fcb->fcb_onqueue;
	if (onqueue) {
		TAILQ_REMOVE(&fence->f_callbacks, fcb, fcb_entry);
		fcb->fcb_onqueue = false;
	}
	spin_unlock(fence->lock);

	return onqueue;
}

/*
 * fence_enable_sw_signaling(fence)
 *
 *	If it hasn't been called yet and the fence hasn't been
 *	signalled yet, call the fence's enable_sw_signaling callback.
 *	If when that happens, the callback indicates failure by
 *	returning false, signal the fence.
 */
void
fence_enable_sw_signaling(struct fence *fence)
{

	KASSERT(fence_referenced_p(fence));

	spin_lock(fence->lock);
	(void)fence_ensure_signal_enabled(fence);
	spin_unlock(fence->lock);
}

/*
 * fence_is_signaled(fence)
 *
 *	Test whether the fence has been signalled.  If it has been
 *	signalled by fence_signal(_locked), return true.  If the
 *	signalled callback returns true indicating that some implicit
 *	external condition has changed, call the callbacks as if with
 *	fence_signal.
 */
bool
fence_is_signaled(struct fence *fence)
{
	bool signaled;

	KASSERT(fence_referenced_p(fence));

	spin_lock(fence->lock);
	signaled = fence_is_signaled_locked(fence);
	spin_unlock(fence->lock);

	return signaled;
}

/*
 * fence_is_signaled_locked(fence)
 *
 *	Test whether the fence has been signalled.  Like
 *	fence_is_signaleed, but caller already holds the fence's lock.
 */
bool
fence_is_signaled_locked(struct fence *fence)
{

	KASSERT(fence_referenced_p(fence));
	KASSERT(spin_is_locked(fence->lock));

	/* Check whether we already set the signalled bit.  */
	if (fence->flags & (1u << FENCE_FLAG_SIGNALED_BIT))
		return true;

	/* If there's a signalled callback, test it.  */
	if (fence->ops->signaled) {
		if ((*fence->ops->signaled)(fence)) {
			/*
			 * It's been signalled implicitly by some
			 * external phenomonen.  Act as though someone
			 * has called fence_signal.
			 */
			fence_signal_locked(fence);
			return true;
		}
	}

	return false;
}

/*
 * fence_signal(fence)
 *
 *	Signal the fence.  If it has already been signalled, return
 *	-EINVAL.  If it has not been signalled, call the enable
 *	signalling callback if it hasn't been called yet, and remove
 *	each registered callback from the queue and call it; then
 *	return 0.
 */
int
fence_signal(struct fence *fence)
{
	int ret;

	KASSERT(fence_referenced_p(fence));

	spin_lock(fence->lock);
	ret = fence_signal_locked(fence);
	spin_unlock(fence->lock);

	return ret;
}

/*
 * fence_signal_locked(fence)
 *
 *	Signal the fence.  Like fence_signal, but caller already holds
 *	the fence's lock.
 */
int
fence_signal_locked(struct fence *fence)
{
	struct fence_cb *fcb, *next;

	KASSERT(fence_referenced_p(fence));
	KASSERT(spin_is_locked(fence->lock));

	/* If it's been signalled, fail; otherwise set the signalled bit.  */
	if (test_and_set_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return -EINVAL;

	/* Wake waiters.  */
	cv_broadcast(&fence->f_cv);

	/* Remove and call the callbacks.  */
	TAILQ_FOREACH_SAFE(fcb, &fence->f_callbacks, fcb_entry, next) {
		TAILQ_REMOVE(&fence->f_callbacks, fcb, fcb_entry);
		fcb->fcb_onqueue = false;
		(*fcb->fcb_func)(fence, fcb);
	}

	/* Success! */
	return 0;
}

struct wait_any {
	struct fence_cb	fcb;
	struct wait_any1 {
		kmutex_t	lock;
		kcondvar_t	cv;
		bool		done;
	}		*common;
};

static void
wait_any_cb(struct fence *fence, struct fence_cb *fcb)
{
	struct wait_any *cb = container_of(fcb, struct wait_any, fcb);

	KASSERT(fence_referenced_p(fence));

	mutex_enter(&cb->common->lock);
	cb->common->done = true;
	cv_broadcast(&cb->common->cv);
	mutex_exit(&cb->common->lock);
}

/*
 * fence_wait_any_timeout(fence, nfences, intr, timeout)
 *
 *	Wait for any of fences[0], fences[1], fences[2], ...,
 *	fences[nfences-1] to be signaled.
 */
long
fence_wait_any_timeout(struct fence **fences, uint32_t nfences, bool intr,
    long timeout)
{
	struct wait_any1 common;
	struct wait_any *cb;
	uint32_t i, j;
	int start, end;
	long ret = 0;

	/* Allocate an array of callback records.  */
	cb = kcalloc(nfences, sizeof(cb[0]), GFP_KERNEL);
	if (cb == NULL) {
		ret = -ENOMEM;
		goto out0;
	}

	/* Initialize a mutex and condvar for the common wait.  */
	mutex_init(&common.lock, MUTEX_DEFAULT, IPL_VM);
	cv_init(&common.cv, "fence");
	common.done = false;

	/* Add a callback to each of the fences, or stop here if we can't.  */
	for (i = 0; i < nfences; i++) {
		cb[i].common = &common;
		KASSERT(fence_referenced_p(fences[i]));
		ret = fence_add_callback(fences[i], &cb[i].fcb, &wait_any_cb);
		if (ret)
			goto out1;
	}

	/*
	 * Test whether any of the fences has been signalled.  If they
	 * have, stop here.  If the haven't, we are guaranteed to be
	 * notified by one of the callbacks when they have.
	 */
	for (j = 0; j < nfences; j++) {
		if (test_bit(FENCE_FLAG_SIGNALED_BIT, &fences[j]->flags))
			goto out1;
	}

	/*
	 * None of them was ready immediately.  Wait for one of the
	 * callbacks to notify us when it is done.
	 */
	mutex_enter(&common.lock);
	while (timeout > 0 && !common.done) {
		start = hardclock_ticks;
		__insn_barrier();
		if (intr) {
			if (timeout != MAX_SCHEDULE_TIMEOUT) {
				ret = -cv_timedwait_sig(&common.cv,
				    &common.lock, MIN(timeout, /* paranoia */
					MAX_SCHEDULE_TIMEOUT));
			} else {
				ret = -cv_wait_sig(&common.cv, &common.lock);
			}
		} else {
			if (timeout != MAX_SCHEDULE_TIMEOUT) {
				ret = -cv_timedwait(&common.cv,
				    &common.lock, MIN(timeout, /* paranoia */
					MAX_SCHEDULE_TIMEOUT));
			} else {
				cv_wait(&common.cv, &common.lock);
				ret = 0;
			}
		}
		end = hardclock_ticks;
		__insn_barrier();
		if (ret) {
			if (ret == -ERESTART)
				ret = -ERESTARTSYS;
			break;
		}
		timeout -= MIN(timeout, (unsigned)end - (unsigned)start);
	}
	mutex_exit(&common.lock);

	/*
	 * Massage the return code: if we were interrupted, return
	 * ERESTARTSYS; if cv_timedwait timed out, return 0; otherwise
	 * return the remaining time.
	 */
	if (ret < 0) {
		if (ret == -EINTR || ret == -ERESTART)
			ret = -ERESTARTSYS;
		if (ret == -EWOULDBLOCK)
			ret = 0;
	} else {
		KASSERT(ret == 0);
		ret = timeout;
	}

out1:	while (i --> 0)
		(void)fence_remove_callback(fences[i], &cb[i].fcb);
	cv_destroy(&common.cv);
	mutex_destroy(&common.lock);
	kfree(cb);
out0:	return ret;
}

/*
 * fence_wait_timeout(fence, intr, timeout)
 *
 *	Wait until fence is signalled; or until interrupt, if intr is
 *	true; or until timeout, if positive.  Return -ERESTARTSYS if
 *	interrupted, negative error code on any other error, zero on
 *	timeout, or positive number of ticks remaining if the fence is
 *	signalled before the timeout.  Works by calling the fence wait
 *	callback.
 *
 *	The timeout must be nonnegative and less than
 *	MAX_SCHEDULE_TIMEOUT.
 */
long
fence_wait_timeout(struct fence *fence, bool intr, long timeout)
{

	KASSERT(fence_referenced_p(fence));
	KASSERT(timeout >= 0);
	KASSERT(timeout < MAX_SCHEDULE_TIMEOUT);

	return (*fence->ops->wait)(fence, intr, timeout);
}

/*
 * fence_wait(fence, intr)
 *
 *	Wait until fence is signalled; or until interrupt, if intr is
 *	true.  Return -ERESTARTSYS if interrupted, negative error code
 *	on any other error, zero on sucess.  Works by calling the fence
 *	wait callback with MAX_SCHEDULE_TIMEOUT.
 */
long
fence_wait(struct fence *fence, bool intr)
{
	long ret;

	KASSERT(fence_referenced_p(fence));

	ret = (*fence->ops->wait)(fence, intr, MAX_SCHEDULE_TIMEOUT);
	KASSERT(ret != 0);

	return (ret < 0 ? ret : 0);
}

/*
 * fence_default_wait(fence, intr, timeout)
 *
 *	Default implementation of fence wait callback using a condition
 *	variable.  If the fence is already signalled, return timeout,
 *	or 1 if no timeout.  If the enable signalling callback hasn't
 *	been called, call it, and if it fails, act as if the fence had
 *	been signalled.  Otherwise, wait on the internal condvar.  If
 *	timeout is MAX_SCHEDULE_TIMEOUT, treat it as no timeout.
 */
long
fence_default_wait(struct fence *fence, bool intr, long timeout)
{
	int starttime = 0, now = 0, deadline = 0; /* XXXGCC */
	kmutex_t *lock = &fence->lock->sl_lock;
	long ret = 0;

	KASSERT(fence_referenced_p(fence));
	KASSERTMSG(timeout >= 0, "timeout %ld", timeout);
	KASSERTMSG(timeout <= MAX_SCHEDULE_TIMEOUT, "timeout %ld", timeout);

	/* Optimistically try to skip the lock if it's already signalled.  */
	if (fence->flags & (1u << FENCE_FLAG_SIGNALED_BIT))
		return (timeout < MAX_SCHEDULE_TIMEOUT ? timeout : 1);

	/* Acquire the lock.  */
	spin_lock(fence->lock);

	/* Ensure signalling is enabled, or fail if we can't.  */
	ret = fence_ensure_signal_enabled(fence);
	if (ret)
		goto out;

	/* Find out what our deadline is so we can handle spurious wakeup.  */
	if (timeout < MAX_SCHEDULE_TIMEOUT) {
		now = hardclock_ticks;
		__insn_barrier();
		starttime = now;
		deadline = starttime + timeout;
	}

	/* Wait until the signalled bit is set.  */
	while (!(fence->flags & (1u << FENCE_FLAG_SIGNALED_BIT))) {
		/*
		 * If there's a timeout and we've passed the deadline,
		 * give up.
		 */
		if (timeout < MAX_SCHEDULE_TIMEOUT) {
			now = hardclock_ticks;
			__insn_barrier();
			if (deadline <= now)
				break;
		}
		if (intr) {
			if (timeout < MAX_SCHEDULE_TIMEOUT) {
				ret = -cv_timedwait_sig(&fence->f_cv, lock,
				    deadline - now);
			} else {
				ret = -cv_wait_sig(&fence->f_cv, lock);
			}
		} else {
			if (timeout < MAX_SCHEDULE_TIMEOUT) {
				ret = -cv_timedwait(&fence->f_cv, lock,
				    deadline - now);
			} else {
				cv_wait(&fence->f_cv, lock);
				ret = 0;
			}
		}
		/* If the wait failed, give up.  */
		if (ret) {
			if (ret == -ERESTART)
				ret = -ERESTARTSYS;
			break;
		}
	}

out:
	/* All done.  Release the lock.  */
	spin_unlock(fence->lock);

	/* If cv_timedwait gave up, return 0 meaning timeout.  */
	if (ret == -EWOULDBLOCK) {
		/* Only cv_timedwait and cv_timedwait_sig can return this.  */
		KASSERT(timeout < MAX_SCHEDULE_TIMEOUT);
		return 0;
	}

	/* If there was a timeout and the deadline passed, return 0.  */
	if (timeout < MAX_SCHEDULE_TIMEOUT) {
		if (deadline <= now)
			return 0;
	}

	/* If we were interrupted, return -ERESTARTSYS.  */
	if (ret == -EINTR || ret == -ERESTART)
		return -ERESTARTSYS;

	/* If there was any other kind of error, fail.  */
	if (ret)
		return ret;

	/*
	 * Success!  Return the number of ticks left, at least 1, or 1
	 * if no timeout.
	 */
	return (timeout < MAX_SCHEDULE_TIMEOUT ? MIN(deadline - now, 1) : 1);
}