Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
/*
 * File:	ConversionController.cpp
 *
 * Copyright (c) Freescale Semiconductor, Inc. All rights reserved.
 * See included license file for license details.
 */

#include "ConversionController.h"
#include <stdexcept>
#include "EvalContext.h"
#include "ElftosbErrors.h"
#include "GlobMatcher.h"
#include "ExcludesListMatcher.h"
#include "BootImageGenerator.h"
#include "EncoreBootImageGenerator.h"
#include "Logging.h"
#include "OptionDictionary.h"
#include "format_string.h"
#include "SearchPath.h"
#include "DataSourceImager.h"
#include "IVTDataSource.h"
#include <algorithm>

//! Set to 1 to cause the ConversionController to print information about
//! the values that it processes (options, constants, etc.).
#define PRINT_VALUES 1

using namespace elftosb;

// Define the parser function prototype;
extern int yyparse(ElftosbLexer * lexer, CommandFileASTNode ** resultAST);

bool elftosb::g_enableHABSupport = false;

ConversionController::ConversionController()
:	OptionDictionary(),
	m_commandFilePath(),
	m_ast(),
	m_defaultSource(0)
{
	m_context.setSourceFileManager(this);
}

ConversionController::~ConversionController()
{
	// clean up sources
	source_map_t::iterator it = m_sources.begin();
	for (; it != m_sources.end(); ++it)
	{
		if (it->second)
		{
			delete it->second;
		}
	}
}

void ConversionController::setCommandFilePath(const std::string & path)
{
	m_commandFilePath = new std::string(path);
}

//! The paths provided to this method are added to an array and accessed with the
//! "extern(N)" notation in the command file. So the path provided in the third
//! call to addExternalFilePath() will be found with N=2 in the source definition.
void ConversionController::addExternalFilePath(const std::string & path)
{
	m_externPaths.push_back(path);
}

bool ConversionController::hasSourceFile(const std::string & name)
{
	return m_sources.find(name) != m_sources.end();
}

SourceFile * ConversionController::getSourceFile(const std::string & name)
{
	if (!hasSourceFile(name))
	{
		return NULL;
	}
	
	return m_sources[name];
}

SourceFile * ConversionController::getDefaultSourceFile()
{
	return m_defaultSource;
}

//! These steps are executed while running this method:
//!		- The command file is parsed into an abstract syntax tree.
//!		- The list of options is extracted.
//!		- Constant expressions are evaluated.
//!		- The list of source files is extracted and source file objects created.
//!		- Section definitions are extracted.
//!
//! This method does not produce any output. It processes the input files and
//! builds a representation of the output in memory. Use the generateOutput() method
//! to produce a BootImage object after this method returns.
//!
//! \note This method is \e not reentrant. And in fact, the whole class is not designed
//!		to be reentrant.
//!
//! \exception std::runtime_error Any number of problems will cause this exception to
//!		be thrown.
//!
//! \see parseCommandFile()
//! \see processOptions()
//! \see processConstants()
//! \see processSources()
//! \see processSections()
void ConversionController::run()
{
#if PRINT_VALUES
	Log::SetOutputLevel debugLevel(Logger::DEBUG2);
#endif

	parseCommandFile();
	assert(m_ast);
	
	ListASTNode * blocks = m_ast->getBlocks();
	if (!blocks)
	{
		throw std::runtime_error("command file has no blocks");
	}
	
	ListASTNode::iterator it = blocks->begin();
	for (; it != blocks->end(); ++it)
	{
		ASTNode * node = *it;
		
		// Handle an options block.
		OptionsBlockASTNode * options = dynamic_cast<OptionsBlockASTNode *>(node);
		if (options)
		{
			processOptions(options->getOptions());
			continue;
		}
		
		// Handle a constants block.
		ConstantsBlockASTNode * constants = dynamic_cast<ConstantsBlockASTNode *>(node);
		if (constants)
		{
			processConstants(constants->getConstants());
			continue;
		}
		
		// Handle a sources block.
		SourcesBlockASTNode * sources = dynamic_cast<SourcesBlockASTNode *>(node);
		if (sources)
		{
			processSources(sources->getSources());
		}
	}
	
	processSections(m_ast->getSections());
}

//! Opens the command file and runs it through the lexer and parser. The resulting
//! abstract syntax tree is held in the m_ast member variable. After parsing, the
//! command file is closed.
//!
//! \exception std::runtime_error Several problems will cause this exception to be
//!		raised, including an unspecified command file path or an error opening the
//!		file.
void ConversionController::parseCommandFile()
{
	if (!m_commandFilePath)
	{
		throw std::runtime_error("no command file path was provided");
	}
	
	// Search for command file
	std::string actualPath;
	bool found = PathSearcher::getGlobalSearcher().search(*m_commandFilePath, PathSearcher::kFindFile, true, actualPath);
	if (!found)
	{
		throw runtime_error(format_string("unable to find command file %s\n", m_commandFilePath->c_str()));
	}

	// open command file
	std::ifstream commandFile(actualPath.c_str(), ios_base::in | ios_base::binary);
	if (!commandFile.is_open())
	{
		throw std::runtime_error("could not open command file");
	}
	
	try
	{
		// create lexer instance
		ElftosbLexer lexer(commandFile);
//		testLexer(lexer);
		
		CommandFileASTNode * ast = NULL;
		int result = yyparse(&lexer, &ast);
		m_ast = ast;
		
		// check results
		if (result || !m_ast)
		{
			throw std::runtime_error("failed to parse command file");
		}
		
		// dump AST
//		m_ast->printTree(0);
		
		// close command file
		commandFile.close();
	}
	catch (...)
	{
		// close command file
		commandFile.close();
		
		// rethrow exception
		throw;
	}
}

//! Iterates over the option definition AST nodes. elftosb::Value objects are created for
//! each option value and added to the option dictionary.
//!
//! \exception std::runtime_error Various errors will cause this exception to be thrown. These
//!		include AST nodes being an unexpected type or expression not evaluating to integers.
void ConversionController::processOptions(ListASTNode * options)
{
	if (!options)
	{
		return;
	}
	
	ListASTNode::iterator it = options->begin();
	for (; it != options->end(); ++it)
	{
		std::string ident;
		Value * value = convertAssignmentNodeToValue(*it, ident);
		
		// check if this option has already been set
		if (hasOption(ident))
		{
			throw semantic_error(format_string("line %d: option already set", (*it)->getFirstLine()));
		}
		
		// now save the option value in our map
		if (value)
		{
			setOption(ident, value);
		}
	}
}

//! Scans the constant definition AST nodes, evaluates expression nodes by calling their
//! elftosb::ExprASTNode::reduce() method, and updates the evaluation context member so
//! those constant values can be used in other expressions.
//!
//! \exception std::runtime_error Various errors will cause this exception to be thrown. These
//!		include AST nodes being an unexpected type or expression not evaluating to integers.
void ConversionController::processConstants(ListASTNode * constants)
{
	if (!constants)
	{
		return;
	}
	
	ListASTNode::iterator it = constants->begin();
	for (; it != constants->end(); ++it)
	{
		std::string ident;
		Value * value = convertAssignmentNodeToValue(*it, ident);
		
		SizedIntegerValue * intValue = dynamic_cast<SizedIntegerValue*>(value);
		if (!intValue)
		{
			throw semantic_error(format_string("line %d: constant value is an invalid type", (*it)->getFirstLine()));
		}
				
//#if PRINT_VALUES
//		Log::log("constant ");
//		printIntConstExpr(ident, intValue);
//#endif
		
		// record this constant's value in the evaluation context
		m_context.setVariable(ident, intValue->getValue(), intValue->getWordSize());
	}
}

//! \exception std::runtime_error Various errors will cause this exception to be thrown. These
//!		include AST nodes being an unexpected type or expression not evaluating to integers.
//!
//! \todo Handle freeing of dict if an exception occurs.
void ConversionController::processSources(ListASTNode * sources)
{
	if (!sources)
	{
		return;
	}
	
	ListASTNode::iterator it = sources->begin();
	for (; it != sources->end(); ++it)
	{
		SourceDefASTNode * node = dynamic_cast<SourceDefASTNode*>(*it);
		if (!node)
		{
			throw semantic_error(format_string("line %d: source definition node is an unexpected type", node->getFirstLine()));
		}
		
		// get source name and check if it has already been defined
		std::string * name = node->getName();
		if (m_sources.find(*name) != m_sources.end())
		{
			// can't define a source multiple times
			throw semantic_error(format_string("line %d: source already defined", node->getFirstLine()));
		}
		
		// convert attributes into an option dict
		OptionDictionary * dict = new OptionDictionary(this);
		ListASTNode * attrsNode = node->getAttributes();
		if (attrsNode)
		{
			ListASTNode::iterator attrIt = attrsNode->begin();
			for (; attrIt != attrsNode->end(); ++attrIt)
			{
				std::string ident;
				Value * value = convertAssignmentNodeToValue(*attrIt, ident);
				dict->setOption(ident, value);
			}
		}
		
		// figure out which type of source definition this is
		PathSourceDefASTNode * pathNode = dynamic_cast<PathSourceDefASTNode*>(node);
		ExternSourceDefASTNode * externNode = dynamic_cast<ExternSourceDefASTNode*>(node);
		SourceFile * file = NULL;
		
		if (pathNode)
		{
			// explicit path
			std::string * path = pathNode->getPath();
			
#if PRINT_VALUES
			Log::log("source %s => path(%s)\n", name->c_str(), path->c_str());
#endif
			
			try
			{
				file = SourceFile::openFile(*path);
			}
			catch (...)
			{
				// file doesn't exist
				Log::log(Logger::INFO2, "failed to open source file: %s (ignoring for now)\n", path->c_str());
				m_failedSources.push_back(*name);
			}
		}
		else if (externNode)
		{
			// externally provided path
			ExprASTNode * expr = externNode->getSourceNumberExpr()->reduce(m_context);
			IntConstExprASTNode * intConst = dynamic_cast<IntConstExprASTNode*>(expr);
			if (!intConst)
			{
				throw semantic_error(format_string("line %d: expression didn't evaluate to an integer", expr->getFirstLine()));
			}
			
			uint32_t externalFileNumber = static_cast<uint32_t>(intConst->getValue());
			
			// make sure the extern number is valid
			if (externalFileNumber >= 0 && externalFileNumber < m_externPaths.size())
			{
			
#if PRINT_VALUES
			Log::log("source %s => extern(%d=%s)\n", name->c_str(), externalFileNumber, m_externPaths[externalFileNumber].c_str());
#endif
			
				try
				{
					file = SourceFile::openFile(m_externPaths[externalFileNumber]);
				}
				catch (...)
				{
					Log::log(Logger::INFO2, "failed to open source file: %s (ignoring for now)\n", m_externPaths[externalFileNumber].c_str());
					m_failedSources.push_back(*name);
				}
			}
		}
		else
		{
			throw semantic_error(format_string("line %d: unexpected source definition node type", node->getFirstLine()));
		}
		
		if (file)
		{
			// set options
			file->setOptions(dict);
			
			// stick the file object in the source map
			m_sources[*name] = file;
		}
	}
}

void ConversionController::processSections(ListASTNode * sections)
{
	if (!sections)
	{
		Log::log(Logger::WARNING, "warning: no sections were defined in command file");
		return;
	}
	
	ListASTNode::iterator it = sections->begin();
	for (; it != sections->end(); ++it)
	{
		SectionContentsASTNode * node = dynamic_cast<SectionContentsASTNode*>(*it);
		if (!node)
		{
			throw semantic_error(format_string("line %d: section definition is unexpected type", node->getFirstLine()));
		}
		
		// evaluate section number
		ExprASTNode * idExpr = node->getSectionNumberExpr()->reduce(m_context);
		IntConstExprASTNode * idConst = dynamic_cast<IntConstExprASTNode*>(idExpr);
		if (!idConst)
		{
			throw semantic_error(format_string("line %d: section number did not evaluate to an integer", idExpr->getFirstLine()));
		}
		uint32_t sectionID = idConst->getValue();
		
		// Create options context for this section. The options context has the
		// conversion controller as its parent context so it will inherit global options.
		// The context will be set in the section after the section is created below.
		OptionDictionary * optionsDict = new OptionDictionary(this);
		ListASTNode * attrsNode = node->getOptions();
		if (attrsNode)
		{
			ListASTNode::iterator attrIt = attrsNode->begin();
			for (; attrIt != attrsNode->end(); ++attrIt)
			{
				std::string ident;
				Value * value = convertAssignmentNodeToValue(*attrIt, ident);
				optionsDict->setOption(ident, value);
			}
		}
		
		// Now create the actual section object based on its type.
		OutputSection * outputSection = NULL;
		BootableSectionContentsASTNode * bootableSection;
		DataSectionContentsASTNode * dataSection;
		if (bootableSection = dynamic_cast<BootableSectionContentsASTNode*>(node))
		{		
			// process statements into a sequence of operations
			ListASTNode * statements = bootableSection->getStatements();
			OperationSequence * sequence = convertStatementList(statements);

#if 0
			Log::log("section ID = %d\n", sectionID);
			statements->printTree(0);
			
			Log::log("sequence has %d operations\n", sequence->getCount());
			OperationSequence::iterator_t it = sequence->begin();
			for (; it != sequence->end(); ++it)
			{
				Operation * op = *it;
				Log::log("op = %p\n", op);
			}
#endif
			
			// create the output section and add it to the list
			OperationSequenceSection * opSection = new OperationSequenceSection(sectionID);
			opSection->setOptions(optionsDict);
			opSection->getSequence() += sequence;
			outputSection = opSection;
		}
		else if (dataSection = dynamic_cast<DataSectionContentsASTNode*>(node))
		{
			outputSection = convertDataSection(dataSection, sectionID, optionsDict);
		}
		else
		{
			throw semantic_error(format_string("line %d: unexpected section contents type", node->getFirstLine()));
		}
		
		if (outputSection)
		{
			m_outputSections.push_back(outputSection);
		}
	}
}

//! Creates an instance of BinaryDataSection from the AST node passed in the
//! \a dataSection parameter. The section-specific options for this node will
//! have already been converted into an OptionDictionary, the one passed in
//! the \a optionsDict parameter.
//!
//! The \a dataSection node will have as its contents one of the AST node
//! classes that represents a source of data. The member function
//! createSourceFromNode() is used to convert this AST node into an
//! instance of a DataSource subclass. Then the method imageDataSource()
//! converts the segments of the DataSource into a raw binary buffer that
//! becomes the contents of the BinaryDataSection this is returned.
//!
//! \param dataSection The AST node for the data section.
//! \param sectionID Unique tag value the user has assigned to this section.
//! \param optionsDict Options that apply only to this section. This dictionary
//!		will be assigned as the options dictionary for the resulting section
//!		object. Its parent is the conversion controller itself.
//! \return An instance of BinaryDataSection. Its contents are a contiguous
//!		binary representation of the contents of \a dataSection.
OutputSection * ConversionController::convertDataSection(DataSectionContentsASTNode * dataSection, uint32_t sectionID, OptionDictionary * optionsDict)
{
	// Create a data source from the section contents AST node.
	ASTNode * contents = dataSection->getContents();
	DataSource * dataSource = createSourceFromNode(contents);
	
	// Convert the data source to a raw buffer.
	DataSourceImager imager;
	imager.addDataSource(dataSource);
	
	// Then make a data section from the buffer.
	BinaryDataSection * resultSection = new BinaryDataSection(sectionID);
	resultSection->setOptions(optionsDict);
	if (imager.getLength())
	{
		resultSection->setData(imager.getData(), imager.getLength());
	}
	
	return resultSection;
}

//! @param node The AST node instance for the assignment expression.
//! @param[out] ident Upon exit this string will be set the the left hand side of the
//!		assignment expression, the identifier name.
//!
//! @return An object that is a subclass of Value is returned. The specific subclass will
//!		depend on the type of the right hand side of the assignment expression whose AST
//!		node was provided in the @a node argument.
//!
//! @exception semantic_error Thrown for any error where an AST node is an unexpected type.
//!		This may be the @a node argument itself, if it is not an AssignmentASTNode. Or it
//!		may be an unexpected type for either the right or left hand side of the assignment.
//!		The message for the exception will contain a description of the error.
Value * ConversionController::convertAssignmentNodeToValue(ASTNode * node, std::string & ident)
{
	Value * resultValue = NULL;
	
	// each item of the options list should be an assignment node
	AssignmentASTNode * assignmentNode = dynamic_cast<AssignmentASTNode*>(node);
	if (!node)
	{
		throw semantic_error(format_string("line %d: node is wrong type", assignmentNode->getFirstLine()));
	}
	
	// save the left hand side (the identifier) into ident
	ident = *assignmentNode->getIdent();
	
	// get the right hand side and convert it to a Value instance
	ASTNode * valueNode = assignmentNode->getValue();
	StringConstASTNode * str;
	ExprASTNode * expr;
	if (str = dynamic_cast<StringConstASTNode*>(valueNode))
	{
		// the option value is a string constant
		resultValue = new StringValue(str->getString());

//#if PRINT_VALUES
//		Log::log("option %s => \'%s\'\n", ident->c_str(), str->getString()->c_str());
//#endif
	}
	else if (expr = dynamic_cast<ExprASTNode*>(valueNode))
	{
		ExprASTNode * reducedExpr = expr->reduce(m_context);
		IntConstExprASTNode * intConst = dynamic_cast<IntConstExprASTNode*>(reducedExpr);
		if (!intConst)
		{
			throw semantic_error(format_string("line %d: expression didn't evaluate to an integer", expr->getFirstLine()));
		}
		
//#if PRINT_VALUES
//		Log::log("option ");
//		printIntConstExpr(*ident, intConst);
//#endif
		
		resultValue = new SizedIntegerValue(intConst->getValue(), intConst->getSize());
	}
	else
	{
		throw semantic_error(format_string("line %d: right hand side node is an unexpected type", valueNode->getFirstLine()));
	}
	
	return resultValue;
}

//! Builds up a sequence of Operation objects that are equivalent to the
//! statements in the \a statements list. The statement list is simply iterated
//! over and the results of convertOneStatement() are used to build up
//! the final result sequence.
//!
//! \see convertOneStatement()
OperationSequence * ConversionController::convertStatementList(ListASTNode * statements)
{
	OperationSequence * resultSequence = new OperationSequence();
	ListASTNode::iterator it = statements->begin();
	for (; it != statements->end(); ++it)
	{
		StatementASTNode * statement = dynamic_cast<StatementASTNode*>(*it);
		if (!statement)
		{
			throw semantic_error(format_string("line %d: statement node is unexpected type", (*it)->getFirstLine()));
		}
		
		// convert this statement and append it to the result
		OperationSequence * sequence = convertOneStatement(statement);
		if (sequence)
		{
			*resultSequence += sequence;
		}
	}
	
	return resultSequence;
}

//! Uses C++ RTTI to identify the particular subclass of StatementASTNode that
//! the \a statement argument matches. Then the appropriate conversion method
//! is called.
//!
//! \see convertLoadStatement()
//! \see convertCallStatement()
//! \see convertFromStatement()
OperationSequence * ConversionController::convertOneStatement(StatementASTNode * statement)
{
	// see if it's a load statement
	LoadStatementASTNode * load = dynamic_cast<LoadStatementASTNode*>(statement);
	if (load)
	{
		return convertLoadStatement(load);
	}
	
	// see if it's a call statement
	CallStatementASTNode * call = dynamic_cast<CallStatementASTNode*>(statement);
	if (call)
	{
		return convertCallStatement(call);
	}
	
	// see if it's a from statement
	FromStatementASTNode * from = dynamic_cast<FromStatementASTNode*>(statement);
	if (from)
	{
		return convertFromStatement(from);
	}
	
	// see if it's a mode statement
	ModeStatementASTNode * mode = dynamic_cast<ModeStatementASTNode*>(statement);
	if (mode)
	{
		return convertModeStatement(mode);
	}
	
	// see if it's an if statement
	IfStatementASTNode * ifStmt = dynamic_cast<IfStatementASTNode*>(statement);
	if (ifStmt)
	{
		return convertIfStatement(ifStmt);
	}
	
	// see if it's a message statement
	MessageStatementASTNode * messageStmt = dynamic_cast<MessageStatementASTNode*>(statement);
	if (messageStmt)
	{
		// Message statements don't produce operation sequences.
		handleMessageStatement(messageStmt);
		return NULL;
	}
	
	// didn't match any of the expected statement types
	throw semantic_error(format_string("line %d: unexpected statement type", statement->getFirstLine()));
	return NULL;
}

//! Possible load data node types:
//! - StringConstASTNode
//! - ExprASTNode
//! - SourceASTNode
//! - SectionMatchListASTNode
//!
//! Possible load target node types:
//! - SymbolASTNode
//! - NaturalLocationASTNode
//! - AddressRangeASTNode
OperationSequence * ConversionController::convertLoadStatement(LoadStatementASTNode * statement)
{
	LoadOperation * op = NULL;
	
	try
	{
		// build load operation from source and target
		op = new LoadOperation();
		op->setSource(createSourceFromNode(statement->getData()));
		op->setTarget(createTargetFromNode(statement->getTarget()));
		op->setDCDLoad(statement->isDCDLoad());
		
		return new OperationSequence(op);
	}
	catch (...)
	{
		if (op)
		{
			delete op;
		}
		throw;
	}
}

//! Possible call target node types:
//! - SymbolASTNode
//! - ExprASTNode
//!
//! Possible call argument node types:
//! - ExprASTNode
//! - NULL
OperationSequence * ConversionController::convertCallStatement(CallStatementASTNode * statement)
{
	ExecuteOperation * op = NULL;
	
	try
	{
		// create operation from AST nodes
		op = new ExecuteOperation();
		
		bool isHAB = statement->isHAB();
		
		op->setTarget(createTargetFromNode(statement->getTarget()));
		
		// set argument value, which defaults to 0 if no expression was provided
		uint32_t arg = 0;
		ASTNode * argNode = statement->getArgument();
		if (argNode)
		{
			ExprASTNode * argExprNode = dynamic_cast<ExprASTNode*>(argNode);
			if (!argExprNode)
			{
				throw semantic_error(format_string("line %d: call argument is unexpected type", argNode->getFirstLine()));
			}
			argExprNode = argExprNode->reduce(m_context);
			IntConstExprASTNode * intNode = dynamic_cast<IntConstExprASTNode*>(argExprNode);
			if (!intNode)
			{
				throw semantic_error(format_string("line %d: call argument did not evaluate to an integer", argExprNode->getFirstLine()));
			}
			
			arg = intNode->getValue();
		}
		op->setArgument(arg);
		
		// set call type
		switch (statement->getCallType())
		{
			case CallStatementASTNode::kCallType:
				op->setExecuteType(ExecuteOperation::kCall);
				break;
			case CallStatementASTNode::kJumpType:
				op->setExecuteType(ExecuteOperation::kJump);
				break;
		}
		
		// Set the HAB mode flag.
		op->setIsHAB(isHAB);
		
		return new OperationSequence(op);
	}
	catch (...)
	{
		// delete op and rethrow exception
		if (op)
		{
			delete op;
		}
		throw;
	}
}

//! First this method sets the default source to the source identified in
//! the from statement. Then the statements within the from block are
//! processed recursively by calling convertStatementList(). The resulting
//! operation sequence is returned.
OperationSequence * ConversionController::convertFromStatement(FromStatementASTNode * statement)
{
	if (m_defaultSource)
	{
		throw semantic_error(format_string("line %d: from statements cannot be nested", statement->getFirstLine()));
	}
	
	// look up source file instance
	std::string * fromSourceName = statement->getSourceName();
	assert(fromSourceName);
	
	// make sure it's a valid source name
	source_map_t::iterator sourceIt = m_sources.find(*fromSourceName);
	if (sourceIt == m_sources.end())
	{
		throw semantic_error(format_string("line %d: bad source name", statement->getFirstLine()));
	}
	
	// set default source
	m_defaultSource = sourceIt->second;
	assert(m_defaultSource);
	
	// get statements inside the from block
	ListASTNode * fromStatements = statement->getStatements();
	assert(fromStatements);
	
	// produce resulting operation sequence
	OperationSequence * result = convertStatementList(fromStatements);
	
	// restore default source to NULL
	m_defaultSource = NULL;
	
	return result;
}

//! Evaluates the expression to get the new boot mode value. Then creates a
//! BootModeOperation object and returns an OperationSequence containing it.
//!
//! \exception elftosb::semantic_error Thrown if a semantic problem is found with
//!		the boot mode expression.
OperationSequence * ConversionController::convertModeStatement(ModeStatementASTNode * statement)
{
	BootModeOperation * op = NULL;
	
	try
	{
		op = new BootModeOperation();
		
		// evaluate the boot mode expression
		ExprASTNode * modeExprNode = statement->getModeExpr();
		if (!modeExprNode)
		{
			throw semantic_error(format_string("line %d: mode statement has invalid boot mode expression", statement->getFirstLine()));
		}
		modeExprNode = modeExprNode->reduce(m_context);
		IntConstExprASTNode * intNode = dynamic_cast<IntConstExprASTNode*>(modeExprNode);
		if (!intNode)
		{
			throw semantic_error(format_string("line %d: boot mode did not evaluate to an integer", statement->getFirstLine()));
		}
		
		op->setBootMode(intNode->getValue());
		
		return new OperationSequence(op);
	}
	catch (...)
	{
		if (op)
		{
			delete op;
		}
		
		// rethrow exception
		throw;
	}
}

//! Else branches, including else-if, are handled recursively, so there is a limit
//! on the number of them based on the stack size.
//!
//! \return Returns the operation sequence for the branch of the if statement that
//!		evaluated to true. If the statement did not have an else branch and the
//!		condition expression evaluated to false, then NULL will be returned.
//!
//! \todo Handle else branches without recursion.
OperationSequence * ConversionController::convertIfStatement(IfStatementASTNode * statement)
{
	// Get the if's conditional expression.
	ExprASTNode * conditionalExpr = statement->getConditionExpr();
	if (!conditionalExpr)
	{
		throw semantic_error(format_string("line %d: missing or invalid conditional expression", statement->getFirstLine()));
	}
	
	// Reduce the conditional to a single integer.
	conditionalExpr = conditionalExpr->reduce(m_context);
	IntConstExprASTNode * intNode = dynamic_cast<IntConstExprASTNode*>(conditionalExpr);
	if (!intNode)
	{
		throw semantic_error(format_string("line %d: if statement conditional expression did not evaluate to an integer", statement->getFirstLine()));
	}
	
	// Decide which statements to further process by the conditional's boolean value.
	if (intNode->getValue() && statement->getIfStatements())
	{
		return convertStatementList(statement->getIfStatements());
	}
	else if (statement->getElseStatements())
	{
		return convertStatementList(statement->getElseStatements());
	}
	else
	{
		// No else branch and the conditional was false, so there are no operations to return.
		return NULL;
	}
}

//! Message statements are executed immediately, by this method. They are
//! not converted into an abstract operation. All messages are passed through
//! substituteVariables() before being output.
//!
//! \param statement The message statement AST node object.
void ConversionController::handleMessageStatement(MessageStatementASTNode * statement)
{
	string * message = statement->getMessage();
	if (!message)
	{
		throw runtime_error("message statement had no message");
	}
	
	smart_ptr<string> finalMessage = substituteVariables(message);
	
	switch (statement->getType())
	{
		case MessageStatementASTNode::kInfo:
			Log::log(Logger::INFO, "%s\n", finalMessage->c_str());
			break;
		
		case MessageStatementASTNode::kWarning:
			Log::log(Logger::WARNING, "warning: %s\n", finalMessage->c_str());
			break;
		
		case MessageStatementASTNode::kError:
			throw runtime_error(*finalMessage);
			break;
	}
}

//! Performs shell-like variable substitution on the string passed into it.
//! Both sources and constants can be substituted. Sources will be replaced
//! with their path and constants with their integer value. The syntax allows
//! for some simple formatting for constants.
//!
//! The syntax is mostly standard. A substitution begins with a dollar-sign
//! and is followed by the source or constant name in parentheses. For instance,
//! "$(mysource)" or "$(myconst)". The parentheses are always required.
//!
//! Constant names can be prefixed by a single formatting character followed
//! by a colon. The only formatting characters currently supported are 'd' for
//! decimal and 'x' for hex. For example, "$(x:myconst)" will be replaced with
//! the value of the constant named "myconst" formatted as hexadecimal. The
//! default is decimal, so the 'd' formatting character isn't really ever
//! needed.
//!
//! \param message The string to perform substitution on.
//! \return Returns a newly allocated std::string object that has all
//!		substitutions replaced with the associated value. The caller is
//!		responsible for freeing the string object using the delete operator.
std::string * ConversionController::substituteVariables(const std::string * message)
{
	string * result = new string();
	int i;
	int state = 0;
	string name;
	
	for (i=0; i < message->size(); ++i)
	{
		char c = (*message)[i];
		switch (state)
		{
			case 0:
				if (c == '$')
				{
					state = 1;
				}
				else
				{
					(*result) += c;
				}
				break;
			
			case 1:
				if (c == '(')
				{
					state = 2;
				}
				else
				{
					// Wasn't a variable substitution, so revert to initial state after
					// inserting the original characters.
					(*result) += '$';
					(*result) += c;
					state = 0;
				}
				break;
			
			case 2:
				if (c == ')')
				{
					// Try the name as a source name first.
					if (m_sources.find(name) != m_sources.end())
					{
						(*result) += m_sources[name]->getPath();
					}
					// Otherwise try it as a variable.
					else
					{
						// Select format.
						const char * fmt = "%d";
						if (name[1] == ':' && (name[0] == 'd' || name[0] == 'x'))
						{
							if (name[0] == 'x')
							{
								fmt = "0x%x";
							}
							
							// Delete the format characters.
							name.erase(0, 2);
						}
						
						// Now insert the formatted variable if it exists.
						if (m_context.isVariableDefined(name))
						{
							(*result) += format_string(fmt, m_context.getVariableValue(name));
						}
					}
					
					// Switch back to initial state and clear name.
					state = 0;
					name.clear();
				}
				else
				{
					// Just keep building up the variable name.
					name += c;
				}
				break;
		}
	}
	
	return result;
}

//!
//! \param generator The generator to use.
BootImage * ConversionController::generateOutput(BootImageGenerator * generator)
{
	// set the generator's option context
	generator->setOptionContext(this);
	
	// add output sections to the generator in sequence
	section_vector_t::iterator it = m_outputSections.begin();
	for (; it != m_outputSections.end(); ++it)
	{
		generator->addOutputSection(*it);
	}
	
	// and produce the output
	BootImage * image = generator->generate();
//	Log::log("boot image = %p\n", image);
	return image;
}

//! Takes an AST node that is one of the following subclasses and creates the corresponding
//! type of DataSource object from it.
//! - StringConstASTNode
//! - ExprASTNode
//! - SourceASTNode
//! - SectionASTNode
//! - SectionMatchListASTNode
//! - BlobConstASTNode
//! - IVTConstASTNode
//!
//! \exception elftosb::semantic_error Thrown if a semantic problem is found with
//!		the data node.
//! \exception std::runtime_error Thrown if an error occurs that shouldn't be possible
//!		based on the grammar.
DataSource * ConversionController::createSourceFromNode(ASTNode * dataNode)
{
	assert(dataNode);
	
	DataSource * source = NULL;
	StringConstASTNode * stringNode;
	BlobConstASTNode * blobNode;
	ExprASTNode * exprNode;
	SourceASTNode * sourceNode;
	SectionASTNode * sectionNode;
	SectionMatchListASTNode * matchListNode;
    IVTConstASTNode * ivtNode;
	
	if (stringNode = dynamic_cast<StringConstASTNode*>(dataNode))
	{
		// create a data source with the string contents
		std::string * stringData = stringNode->getString();
		const uint8_t * stringContents = reinterpret_cast<const uint8_t *>(stringData->c_str());
		source = new UnmappedDataSource(stringContents, static_cast<unsigned>(stringData->size()));
	}
	else if (blobNode = dynamic_cast<BlobConstASTNode*>(dataNode))
	{
		// create a data source with the raw binary data
		Blob * blob = blobNode->getBlob();
		source = new UnmappedDataSource(blob->getData(), blob->getLength());
	}
	else if (exprNode = dynamic_cast<ExprASTNode*>(dataNode))
	{
		// reduce the expression first
		exprNode = exprNode->reduce(m_context);
		IntConstExprASTNode * intNode = dynamic_cast<IntConstExprASTNode*>(exprNode);
		if (!intNode)
		{
			throw semantic_error("load pattern expression did not evaluate to an integer");
		}
		
		SizedIntegerValue intValue(intNode->getValue(), intNode->getSize());
		source = new PatternSource(intValue);
	}
	else if (sourceNode = dynamic_cast<SourceASTNode*>(dataNode))
	{
		// load the entire source contents
		SourceFile * sourceFile = getSourceFromName(sourceNode->getSourceName(), sourceNode->getFirstLine());
		source = sourceFile->createDataSource();
	}
	else if (sectionNode = dynamic_cast<SectionASTNode*>(dataNode))
	{
		// load some subset of the source
		SourceFile * sourceFile = getSourceFromName(sectionNode->getSourceName(), sectionNode->getFirstLine());
		if (!sourceFile->supportsNamedSections())
		{
			throw semantic_error(format_string("line %d: source does not support sections", sectionNode->getFirstLine()));
		}
		
		// create data source from the section name
		std::string * sectionName = sectionNode->getSectionName();
		GlobMatcher globber(*sectionName);
		source = sourceFile->createDataSource(globber);
		if (!source)
		{
			throw semantic_error(format_string("line %d: no sections match the pattern", sectionNode->getFirstLine()));
		}
	}
	else if (matchListNode = dynamic_cast<SectionMatchListASTNode*>(dataNode))
	{
		SourceFile * sourceFile = getSourceFromName(matchListNode->getSourceName(), matchListNode->getFirstLine());
		if (!sourceFile->supportsNamedSections())
		{
			throw semantic_error(format_string("line %d: source type does not support sections", matchListNode->getFirstLine()));
		}
		
		// create string matcher
		ExcludesListMatcher matcher;
		
		// add each pattern to the matcher
		ListASTNode * matchList = matchListNode->getSections();
		ListASTNode::iterator it = matchList->begin();
		for (; it != matchList->end(); ++it)
		{
			ASTNode * node = *it;
			sectionNode = dynamic_cast<SectionASTNode*>(node);
			if (!sectionNode)
			{
				throw std::runtime_error(format_string("line %d: unexpected node type in section pattern list", (*it)->getFirstLine()));
			}
			bool isInclude = sectionNode->getAction() == SectionASTNode::kInclude;
			matcher.addPattern(isInclude, *(sectionNode->getSectionName()));
		}
		
		// create data source from the section match list
		source = sourceFile->createDataSource(matcher);
		if (!source)
		{
			throw semantic_error(format_string("line %d: no sections match the section pattern list", matchListNode->getFirstLine()));
		}
	}
    else if (ivtNode = dynamic_cast<IVTConstASTNode*>(dataNode))
    {
        source = createIVTDataSource(ivtNode);
    }
	else
	{
		throw semantic_error(format_string("line %d: unexpected load data node type", dataNode->getFirstLine()));
	}
	
	return source;
}

DataSource * ConversionController::createIVTDataSource(IVTConstASTNode * ivtNode)
{
    IVTDataSource * source = new IVTDataSource;
    
    // Iterate over the assignment statements in the IVT definition.
    ListASTNode * fieldList = ivtNode->getFieldAssignments();
    
    if (fieldList)
    {
        ListASTNode::iterator it = fieldList->begin();
        for (; it != fieldList->end(); ++it)
        {
            AssignmentASTNode * assignmentNode = dynamic_cast<AssignmentASTNode*>(*it);
            if (!assignmentNode)
            {
                throw std::runtime_error(format_string("line %d: unexpected node type in IVT definition", (*it)->getFirstLine()));
            }
            
            // Get the IVT field name.
            std::string * fieldName = assignmentNode->getIdent();
            
            // Reduce the field expression and get the integer result.
            ASTNode * valueNode = assignmentNode->getValue();
            ExprASTNode * valueExpr = dynamic_cast<ExprASTNode*>(valueNode);
            if (!valueExpr)
            {
                throw semantic_error("IVT field must have a valid expression");
            }
            IntConstExprASTNode * valueIntExpr = dynamic_cast<IntConstExprASTNode*>(valueExpr->reduce(m_context));
            if (!valueIntExpr)
            {
                throw semantic_error(format_string("line %d: IVT field '%s' does not evaluate to an integer", valueNode->getFirstLine(), fieldName->c_str()));
            }
            uint32_t value = static_cast<uint32_t>(valueIntExpr->getValue());
            
            // Set the field in the IVT data source.
            if (!source->setFieldByName(*fieldName, value))
            {
                throw semantic_error(format_string("line %d: unknown IVT field '%s'", assignmentNode->getFirstLine(), fieldName->c_str()));
            }
        }
    }
    
    return source;
}

//! Takes an AST node subclass and returns an appropriate DataTarget object that contains
//! the same information. Supported AST node types are:
//! - SymbolASTNode
//! - NaturalLocationASTNode
//! - AddressRangeASTNode
//!
//! \exception elftosb::semantic_error Thrown if a semantic problem is found with
//!		the target node.
DataTarget * ConversionController::createTargetFromNode(ASTNode * targetNode)
{
	assert(targetNode);
	
	DataTarget * target = NULL;
	SymbolASTNode * symbolNode;
	NaturalLocationASTNode * naturalNode;
	AddressRangeASTNode * addressNode;
	
	if (symbolNode = dynamic_cast<SymbolASTNode*>(targetNode))
	{
		SourceFile * sourceFile = getSourceFromName(symbolNode->getSource(), symbolNode->getFirstLine());
		std::string * symbolName = symbolNode->getSymbolName();
		
		// symbol name is optional
		if (symbolName)
		{
			if (!sourceFile->supportsNamedSymbols())
			{
				throw std::runtime_error(format_string("line %d: source does not support symbols", symbolNode->getFirstLine()));
			}
			
			target = sourceFile->createDataTargetForSymbol(*symbolName);
			if (!target)
			{
				throw std::runtime_error(format_string("line %d: source does not have a symbol with that name", symbolNode->getFirstLine()));
			}
		}
		else
		{
			// no symbol name was specified so use entry point
			target = sourceFile->createDataTargetForEntryPoint();
			if (!target)
			{
				throw std::runtime_error(format_string("line %d: source does not have an entry point", symbolNode->getFirstLine()));
			}
		}
	}
	else if (naturalNode = dynamic_cast<NaturalLocationASTNode*>(targetNode))
	{
		// the target is the source's natural location
		target = new NaturalDataTarget();
	}
	else if (addressNode = dynamic_cast<AddressRangeASTNode*>(targetNode))
	{
		// evaluate begin address
		ExprASTNode * beginExpr = dynamic_cast<ExprASTNode*>(addressNode->getBegin());
		if (!beginExpr)
		{
			throw semantic_error("address range must always have a beginning expression");
		}
		IntConstExprASTNode * beginIntExpr = dynamic_cast<IntConstExprASTNode*>(beginExpr->reduce(m_context));
		if (!beginIntExpr)
		{
			throw semantic_error("address range begin did not evaluate to an integer");
		}
		uint32_t beginAddress = static_cast<uint32_t>(beginIntExpr->getValue());
		
		// evaluate end address
		ExprASTNode * endExpr = dynamic_cast<ExprASTNode*>(addressNode->getEnd());
		uint32_t endAddress = 0;
		bool hasEndAddress = false;
		if (endExpr)
		{
			IntConstExprASTNode * endIntExpr = dynamic_cast<IntConstExprASTNode*>(endExpr->reduce(m_context));
			if (!endIntExpr)
			{
				throw semantic_error("address range end did not evaluate to an integer");
			}
			endAddress = static_cast<uint32_t>(endIntExpr->getValue());
			hasEndAddress = true;
		}
		
		// create target
		if (hasEndAddress)
		{
			target = new ConstantDataTarget(beginAddress, endAddress);
		}
		else
		{
			target = new ConstantDataTarget(beginAddress);
		}
	}
	else
	{
		throw semantic_error("unexpected load target node type");
	}
	
	return target;
}

//! \param sourceName Pointer to string containing the name of the source to look up.
//!		May be NULL, in which case the default source is used.
//! \param line The line number on which the source name was located.
//!
//! \result A source file object that was previously created in the processSources()
//!		stage.
//!
//! \exception std::runtime_error Thrown if the source name is invalid, or if it
//!		was NULL and there is no default source (i.e., we're not inside a from
//!		statement).
SourceFile * ConversionController::getSourceFromName(std::string * sourceName, int line)
{
	SourceFile * sourceFile = NULL;
	if (sourceName)
	{
		// look up source in map
		source_map_t::iterator it = m_sources.find(*sourceName);
		if (it == m_sources.end())
		{
			source_name_vector_t::const_iterator findIt = std::find<source_name_vector_t::const_iterator, std::string>(m_failedSources.begin(), m_failedSources.end(), *sourceName);
			if (findIt != m_failedSources.end())
			{
				throw semantic_error(format_string("line %d: error opening source '%s'", line, sourceName->c_str()));
			}
			else
			{
				throw semantic_error(format_string("line %d: invalid source name '%s'", line, sourceName->c_str()));
			}
		}
		sourceFile = it->second;
	}
	else
	{
		// no name provided - use default source
		sourceFile = m_defaultSource;
		if (!sourceFile)
		{
			throw semantic_error(format_string("line %d: source required but no default source is available", line));
		}
	}
	
	// open the file if it hasn't already been
	if (!sourceFile->isOpen())
	{
		sourceFile->open();
	}
	return sourceFile;
}

//! Exercises the lexer by printing out the value of every token produced by the
//! lexer. It is assumed that the lexer object has already be configured to read
//! from some input file. The method will return when the lexer has exhausted all
//! tokens, or an error occurs.
void ConversionController::testLexer(ElftosbLexer & lexer)
{
	// test lexer
	while (1)
	{
		YYSTYPE value;
		int lexresult = lexer.yylex();
		if (lexresult == 0)
			break;
		lexer.getSymbolValue(&value);
		Log::log("%d -> int:%d, ast:%p", lexresult, value.m_int, value.m_str, value.m_ast);
		if (lexresult == TOK_IDENT || lexresult == TOK_SOURCE_NAME || lexresult == TOK_STRING_LITERAL)
		{
			if (value.m_str)
			{
				Log::log(", str:%s\n", value.m_str->c_str());
			}
			else
			{
				Log::log("str:NULL\n");
			}
		}
		else
		{
			Log::log("\n");
		}
	}
}

//! Prints out the value of an integer constant expression AST node. Also prints
//! the name of the identifier associated with that node, as well as the integer
//! size.
void ConversionController::printIntConstExpr(const std::string & ident, IntConstExprASTNode * expr)
{
	// print constant value
	char sizeChar;
	switch (expr->getSize())
	{
		case kWordSize:
			sizeChar = 'w';
			break;
		case kHalfWordSize:
			sizeChar = 'h';
			break;
		case kByteSize:
			sizeChar = 'b';
			break;
	}
	Log::log("%s => %d:%c\n", ident.c_str(), expr->getValue(), sizeChar);
}