Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License, Version 1.0 only
 * (the "License").  You may not use this file except in compliance
 * with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */
/*
 * Copyright (c) 2013 by Delphix. All rights reserved.
 * Copyright (c) 2013 Joyent, Inc. All rights reserved.
 */

#include <sys/types.h>
#include <strings.h>
#include <stdlib.h>
#include <assert.h>

#include <dt_impl.h>
#include <dt_parser.h>
#include <dt_as.h>

void
dt_irlist_create(dt_irlist_t *dlp)
{
	bzero(dlp, sizeof (dt_irlist_t));
	dlp->dl_label = 1;
}

void
dt_irlist_destroy(dt_irlist_t *dlp)
{
	dt_irnode_t *dip, *nip;

	for (dip = dlp->dl_list; dip != NULL; dip = nip) {
		nip = dip->di_next;
		free(dip);
	}
}

void
dt_irlist_append(dt_irlist_t *dlp, dt_irnode_t *dip)
{
	if (dlp->dl_last != NULL)
		dlp->dl_last->di_next = dip;
	else
		dlp->dl_list = dip;

	dlp->dl_last = dip;

	if (dip->di_label == DT_LBL_NONE || dip->di_instr != DIF_INSTR_NOP)
		dlp->dl_len++; /* don't count forward refs in instr count */
}

uint_t
dt_irlist_label(dt_irlist_t *dlp)
{
	return (dlp->dl_label++);
}

/*ARGSUSED*/
static int
dt_countvar(dt_idhash_t *dhp, dt_ident_t *idp, void *data)
{
	size_t *np = data;

	if (idp->di_flags & (DT_IDFLG_DIFR | DT_IDFLG_DIFW))
		(*np)++; /* include variable in vartab */

	return (0);
}

/*ARGSUSED*/
static int
dt_copyvar(dt_idhash_t *dhp, dt_ident_t *idp, void *data)
{
	dt_pcb_t *pcb = data;
	dtrace_difv_t *dvp;
	ssize_t stroff;
	dt_node_t dn;

	if (!(idp->di_flags & (DT_IDFLG_DIFR | DT_IDFLG_DIFW)))
		return (0); /* omit variable from vartab */

	dvp = &pcb->pcb_difo->dtdo_vartab[pcb->pcb_asvidx++];
	stroff = dt_strtab_insert(pcb->pcb_strtab, idp->di_name);

	if (stroff == -1L)
		longjmp(pcb->pcb_jmpbuf, EDT_NOMEM);
	if (stroff > DIF_STROFF_MAX)
		longjmp(pcb->pcb_jmpbuf, EDT_STR2BIG);

	dvp->dtdv_name = (uint_t)stroff;
	dvp->dtdv_id = idp->di_id;
	dvp->dtdv_flags = 0;

	dvp->dtdv_kind = (idp->di_kind == DT_IDENT_ARRAY) ?
	    DIFV_KIND_ARRAY : DIFV_KIND_SCALAR;

	if (idp->di_flags & DT_IDFLG_LOCAL)
		dvp->dtdv_scope = DIFV_SCOPE_LOCAL;
	else if (idp->di_flags & DT_IDFLG_TLS)
		dvp->dtdv_scope = DIFV_SCOPE_THREAD;
	else
		dvp->dtdv_scope = DIFV_SCOPE_GLOBAL;

	if (idp->di_flags & DT_IDFLG_DIFR)
		dvp->dtdv_flags |= DIFV_F_REF;
	if (idp->di_flags & DT_IDFLG_DIFW)
		dvp->dtdv_flags |= DIFV_F_MOD;

	bzero(&dn, sizeof (dn));
	dt_node_type_assign(&dn, idp->di_ctfp, idp->di_type, B_FALSE);
	dt_node_diftype(pcb->pcb_hdl, &dn, &dvp->dtdv_type);

	idp->di_flags &= ~(DT_IDFLG_DIFR | DT_IDFLG_DIFW);
	return (0);
}

static ssize_t
dt_copystr(const char *s, size_t n, size_t off, dt_pcb_t *pcb)
{
	bcopy(s, pcb->pcb_difo->dtdo_strtab + off, n);
	return (n);
}

/*
 * Rewrite the xlate/xlarg instruction at dtdo_buf[i] so that the instruction's
 * xltab index reflects the offset 'xi' of the assigned dtdo_xlmtab[] location.
 * We track the cumulative references to translators and members in the pcb's
 * pcb_asxrefs[] array, a two-dimensional array of bitmaps indexed by the
 * global translator id and then by the corresponding translator member id.
 */
static void
dt_as_xlate(dt_pcb_t *pcb, dtrace_difo_t *dp,
    uint_t i, uint_t xi, dt_node_t *dnp)
{
	dtrace_hdl_t *dtp = pcb->pcb_hdl;
	dt_xlator_t *dxp = dnp->dn_membexpr->dn_xlator;

	assert(i < dp->dtdo_len);
	assert(xi < dp->dtdo_xlmlen);

	assert(dnp->dn_kind == DT_NODE_MEMBER);
	assert(dnp->dn_membexpr->dn_kind == DT_NODE_XLATOR);

	assert(dxp->dx_id < dtp->dt_xlatorid);
	assert(dnp->dn_membid < dxp->dx_nmembers);

	if (pcb->pcb_asxrefs == NULL) {
		pcb->pcb_asxreflen = dtp->dt_xlatorid;
		pcb->pcb_asxrefs =
		    dt_zalloc(dtp, sizeof (ulong_t *) * pcb->pcb_asxreflen);
		if (pcb->pcb_asxrefs == NULL)
			longjmp(pcb->pcb_jmpbuf, EDT_NOMEM);
	}

	if (pcb->pcb_asxrefs[dxp->dx_id] == NULL) {
		pcb->pcb_asxrefs[dxp->dx_id] =
		    dt_zalloc(dtp, BT_SIZEOFMAP(dxp->dx_nmembers));
		if (pcb->pcb_asxrefs[dxp->dx_id] == NULL)
			longjmp(pcb->pcb_jmpbuf, EDT_NOMEM);
	}

	dp->dtdo_buf[i] = DIF_INSTR_XLATE(
	    DIF_INSTR_OP(dp->dtdo_buf[i]), xi, DIF_INSTR_RD(dp->dtdo_buf[i]));

	BT_SET(pcb->pcb_asxrefs[dxp->dx_id], dnp->dn_membid);
	dp->dtdo_xlmtab[xi] = dnp;
}

static void
dt_as_undef(const dt_ident_t *idp, uint_t offset)
{
	const char *kind, *mark = (idp->di_flags & DT_IDFLG_USER) ? "``" : "`";
	const dtrace_syminfo_t *dts = idp->di_data;

	if (idp->di_flags & DT_IDFLG_USER)
		kind = "user";
	else if (idp->di_flags & DT_IDFLG_PRIM)
		kind = "primary kernel";
	else
		kind = "loadable kernel";

	yylineno = idp->di_lineno;

	xyerror(D_ASRELO, "relocation remains against %s symbol %s%s%s (offset "
	    "0x%x)\n", kind, dts->dts_object, mark, dts->dts_name, offset);
}

dtrace_difo_t *
dt_as(dt_pcb_t *pcb)
{
	dtrace_hdl_t *dtp = pcb->pcb_hdl;
	dt_irlist_t *dlp = &pcb->pcb_ir;
	uint_t *labels = NULL;
	dt_irnode_t *dip;
	dtrace_difo_t *dp;
	dt_ident_t *idp;

	size_t n = 0;
	uint_t i;

	uint_t kmask, kbits, umask, ubits;
	uint_t krel = 0, urel = 0, xlrefs = 0;

	/*
	 * Select bitmasks based upon the desired symbol linking policy.  We
	 * test (di_extern->di_flags & xmask) == xbits to determine if the
	 * symbol should have a relocation entry generated in the loop below.
	 *
	 * DT_LINK_KERNEL = kernel symbols static, user symbols dynamic
	 * DT_LINK_PRIMARY = primary kernel symbols static, others dynamic
	 * DT_LINK_DYNAMIC = all symbols dynamic
	 * DT_LINK_STATIC = all symbols static
	 *
	 * By 'static' we mean that we use the symbol's value at compile-time
	 * in the final DIF.  By 'dynamic' we mean that we create a relocation
	 * table entry for the symbol's value so it can be relocated later.
	 */
	switch (dtp->dt_linkmode) {
	case DT_LINK_KERNEL:
		kmask = 0;
		kbits = -1u;
		umask = DT_IDFLG_USER;
		ubits = DT_IDFLG_USER;
		break;
	case DT_LINK_PRIMARY:
		kmask = DT_IDFLG_USER | DT_IDFLG_PRIM;
		kbits = 0;
		umask = DT_IDFLG_USER;
		ubits = DT_IDFLG_USER;
		break;
	case DT_LINK_DYNAMIC:
		kmask = DT_IDFLG_USER;
		kbits = 0;
		umask = DT_IDFLG_USER;
		ubits = DT_IDFLG_USER;
		break;
	case DT_LINK_STATIC:
		kmask = umask = 0;
		kbits = ubits = -1u;
		break;
	default:
		kmask = umask = 0;
		kbits = ubits = -1u;
		xyerror(D_UNKNOWN, "internal error -- invalid link mode %u\n",
		    dtp->dt_linkmode);
	}

	assert(pcb->pcb_difo == NULL);
	pcb->pcb_difo = dt_zalloc(dtp, sizeof (dtrace_difo_t));

	if ((dp = pcb->pcb_difo) == NULL)
		longjmp(pcb->pcb_jmpbuf, EDT_NOMEM);

	dp->dtdo_buf = dt_alloc(dtp, sizeof (dif_instr_t) * dlp->dl_len);

	if (dp->dtdo_buf == NULL)
		longjmp(pcb->pcb_jmpbuf, EDT_NOMEM);

	if ((labels = dt_alloc(dtp, sizeof (uint_t) * dlp->dl_label)) == NULL)
		longjmp(pcb->pcb_jmpbuf, EDT_NOMEM);

	/*
	 * Make an initial pass through the instruction list, filling in the
	 * instruction buffer with valid instructions and skipping labeled nops.
	 * While doing this, we also fill in our labels[] translation table
	 * and we count up the number of relocation table entries we will need.
	 */
	for (i = 0, dip = dlp->dl_list; dip != NULL; dip = dip->di_next) {
		if (dip->di_label != DT_LBL_NONE)
			labels[dip->di_label] = i;

		if (dip->di_label == DT_LBL_NONE ||
		    dip->di_instr != DIF_INSTR_NOP)
			dp->dtdo_buf[i++] = dip->di_instr;

		if (dip->di_extern == NULL)
			continue; /* no external references needed */

		switch (DIF_INSTR_OP(dip->di_instr)) {
		case DIF_OP_SETX:
			idp = dip->di_extern;
			if ((idp->di_flags & kmask) == kbits)
				krel++;
			else if ((idp->di_flags & umask) == ubits)
				urel++;
			break;
		case DIF_OP_XLATE:
		case DIF_OP_XLARG:
			xlrefs++;
			break;
		default:
			xyerror(D_UNKNOWN, "unexpected assembler relocation "
			    "for opcode 0x%x\n", DIF_INSTR_OP(dip->di_instr));
		}
	}

	assert(i == dlp->dl_len);
	dp->dtdo_len = dlp->dl_len;

	/*
	 * Make a second pass through the instructions, relocating each branch
	 * label to the index of the final instruction in the buffer and noting
	 * any other instruction-specific DIFO flags such as dtdo_destructive.
	 */
	for (i = 0; i < dp->dtdo_len; i++) {
		dif_instr_t instr = dp->dtdo_buf[i];
		uint_t op = DIF_INSTR_OP(instr);

		if (op == DIF_OP_CALL) {
			if (DIF_INSTR_SUBR(instr) == DIF_SUBR_COPYOUT ||
			    DIF_INSTR_SUBR(instr) == DIF_SUBR_COPYOUTSTR)
				dp->dtdo_destructive = 1;
			continue;
		}

		if (op >= DIF_OP_BA && op <= DIF_OP_BLEU) {
			assert(DIF_INSTR_LABEL(instr) < dlp->dl_label);
			dp->dtdo_buf[i] = DIF_INSTR_BRANCH(op,
			    labels[DIF_INSTR_LABEL(instr)]);
		}
	}

	dt_free(dtp, labels);
	pcb->pcb_asvidx = 0;

	/*
	 * Allocate memory for the appropriate number of variable records and
	 * then fill in each variable record.  As we populate the variable
	 * table we insert the corresponding variable names into the strtab.
	 */
	(void) dt_idhash_iter(dtp->dt_tls, dt_countvar, &n);
	(void) dt_idhash_iter(dtp->dt_globals, dt_countvar, &n);
	(void) dt_idhash_iter(pcb->pcb_locals, dt_countvar, &n);

	if (n != 0) {
		dp->dtdo_vartab = dt_alloc(dtp, n * sizeof (dtrace_difv_t));
		dp->dtdo_varlen = (uint32_t)n;

		if (dp->dtdo_vartab == NULL)
			longjmp(pcb->pcb_jmpbuf, EDT_NOMEM);

		(void) dt_idhash_iter(dtp->dt_tls, dt_copyvar, pcb);
		(void) dt_idhash_iter(dtp->dt_globals, dt_copyvar, pcb);
		(void) dt_idhash_iter(pcb->pcb_locals, dt_copyvar, pcb);
	}

	/*
	 * Allocate memory for the appropriate number of relocation table
	 * entries based upon our kernel and user counts from the first pass.
	 */
	if (krel != 0) {
		dp->dtdo_kreltab = dt_alloc(dtp,
		    krel * sizeof (dof_relodesc_t));
		dp->dtdo_krelen = krel;

		if (dp->dtdo_kreltab == NULL)
			longjmp(pcb->pcb_jmpbuf, EDT_NOMEM);
	}

	if (urel != 0) {
		dp->dtdo_ureltab = dt_alloc(dtp,
		    urel * sizeof (dof_relodesc_t));
		dp->dtdo_urelen = urel;

		if (dp->dtdo_ureltab == NULL)
			longjmp(pcb->pcb_jmpbuf, EDT_NOMEM);
	}

	if (xlrefs != 0) {
		dp->dtdo_xlmtab = dt_zalloc(dtp, sizeof (dt_node_t *) * xlrefs);
		dp->dtdo_xlmlen = xlrefs;

		if (dp->dtdo_xlmtab == NULL)
			longjmp(pcb->pcb_jmpbuf, EDT_NOMEM);
	}

	/*
	 * If any relocations are needed, make another pass through the
	 * instruction list and fill in the relocation table entries.
	 */
	if (krel + urel + xlrefs != 0) {
		uint_t knodef = pcb->pcb_cflags & DTRACE_C_KNODEF;
		uint_t unodef = pcb->pcb_cflags & DTRACE_C_UNODEF;

		dof_relodesc_t *krp = dp->dtdo_kreltab;
		dof_relodesc_t *urp = dp->dtdo_ureltab;
		dt_node_t **xlp = dp->dtdo_xlmtab;

		i = 0; /* dtdo_buf[] index */

		for (dip = dlp->dl_list; dip != NULL; dip = dip->di_next) {
			dof_relodesc_t *rp;
			ssize_t soff;
			uint_t nodef;

			if (dip->di_label != DT_LBL_NONE &&
			    dip->di_instr == DIF_INSTR_NOP)
				continue; /* skip label declarations */

			i++; /* advance dtdo_buf[] index */

			if (DIF_INSTR_OP(dip->di_instr) == DIF_OP_XLATE ||
			    DIF_INSTR_OP(dip->di_instr) == DIF_OP_XLARG) {
				assert(dp->dtdo_buf[i - 1] == dip->di_instr);
				dt_as_xlate(pcb, dp, i - 1, (uint_t)
				    (xlp++ - dp->dtdo_xlmtab), dip->di_extern);
				continue;
			}

			if ((idp = dip->di_extern) == NULL)
				continue; /* no relocation entry needed */

			if ((idp->di_flags & kmask) == kbits) {
				nodef = knodef;
				rp = krp++;
			} else if ((idp->di_flags & umask) == ubits) {
				nodef = unodef;
				rp = urp++;
			} else
				continue;

			if (!nodef)
				dt_as_undef(idp, i);

			assert(DIF_INSTR_OP(dip->di_instr) == DIF_OP_SETX);
			soff = dt_strtab_insert(pcb->pcb_strtab, idp->di_name);

			if (soff == -1L)
				longjmp(pcb->pcb_jmpbuf, EDT_NOMEM);
			if (soff > DIF_STROFF_MAX)
				longjmp(pcb->pcb_jmpbuf, EDT_STR2BIG);

			rp->dofr_name = (dof_stridx_t)soff;
			rp->dofr_type = DOF_RELO_SETX;
			rp->dofr_offset = DIF_INSTR_INTEGER(dip->di_instr) *
			    sizeof (uint64_t);
			rp->dofr_data = 0;
		}

		assert(krp == dp->dtdo_kreltab + dp->dtdo_krelen);
		assert(urp == dp->dtdo_ureltab + dp->dtdo_urelen);
		assert(xlp == dp->dtdo_xlmtab + dp->dtdo_xlmlen);
		assert(i == dp->dtdo_len);
	}

	/*
	 * Allocate memory for the compiled string table and then copy the
	 * chunks from the string table into the final string buffer.
	 */
	if ((n = dt_strtab_size(pcb->pcb_strtab)) != 0) {
		if ((dp->dtdo_strtab = dt_alloc(dtp, n)) == NULL)
			longjmp(pcb->pcb_jmpbuf, EDT_NOMEM);

		(void) dt_strtab_write(pcb->pcb_strtab,
		    (dt_strtab_write_f *)dt_copystr, pcb);
		dp->dtdo_strlen = (uint32_t)n;
	}

	/*
	 * Allocate memory for the compiled integer table and then copy the
	 * integer constants from the table into the final integer buffer.
	 */
	if ((n = dt_inttab_size(pcb->pcb_inttab)) != 0) {
		if ((dp->dtdo_inttab = dt_alloc(dtp,
		    n * sizeof (uint64_t))) == NULL)
			longjmp(pcb->pcb_jmpbuf, EDT_NOMEM);

		dt_inttab_write(pcb->pcb_inttab, dp->dtdo_inttab);
		dp->dtdo_intlen = (uint32_t)n;
	}

	/*
	 * Fill in the DIFO return type from the type associated with the
	 * node saved in pcb_dret, and then clear pcb_difo and pcb_dret
	 * now that the assembler has completed successfully.
	 */
	dt_node_diftype(dtp, pcb->pcb_dret, &dp->dtdo_rtype);
	pcb->pcb_difo = NULL;
	pcb->pcb_dret = NULL;

	if (pcb->pcb_cflags & DTRACE_C_DIFV)
		dt_dis(dp, stderr);

	return (dp);
}