Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131
 3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143
 3144
 3145
 3146
 3147
 3148
 3149
 3150
 3151
 3152
 3153
 3154
 3155
 3156
 3157
 3158
 3159
 3160
 3161
 3162
 3163
 3164
 3165
 3166
 3167
 3168
 3169
 3170
 3171
 3172
 3173
 3174
 3175
 3176
 3177
 3178
 3179
 3180
 3181
 3182
 3183
 3184
 3185
 3186
 3187
 3188
 3189
 3190
 3191
 3192
 3193
 3194
 3195
 3196
 3197
 3198
 3199
 3200
 3201
 3202
 3203
 3204
 3205
 3206
 3207
 3208
 3209
 3210
 3211
 3212
 3213
 3214
 3215
 3216
 3217
 3218
 3219
 3220
 3221
 3222
 3223
 3224
 3225
 3226
 3227
 3228
 3229
 3230
 3231
 3232
 3233
 3234
 3235
 3236
 3237
 3238
 3239
 3240
 3241
 3242
 3243
 3244
 3245
 3246
 3247
 3248
 3249
 3250
 3251
 3252
 3253
 3254
 3255
 3256
 3257
 3258
 3259
 3260
 3261
 3262
 3263
 3264
 3265
 3266
 3267
 3268
 3269
 3270
 3271
 3272
 3273
 3274
 3275
 3276
 3277
 3278
 3279
 3280
 3281
 3282
 3283
 3284
 3285
 3286
 3287
 3288
 3289
 3290
 3291
 3292
 3293
 3294
 3295
 3296
 3297
 3298
 3299
 3300
 3301
 3302
 3303
 3304
 3305
 3306
 3307
 3308
 3309
 3310
 3311
 3312
 3313
 3314
 3315
 3316
 3317
 3318
 3319
 3320
 3321
 3322
 3323
 3324
 3325
 3326
 3327
 3328
 3329
 3330
 3331
 3332
 3333
 3334
 3335
 3336
 3337
 3338
 3339
 3340
 3341
 3342
 3343
 3344
 3345
 3346
 3347
 3348
 3349
 3350
 3351
 3352
 3353
 3354
 3355
 3356
 3357
 3358
 3359
 3360
 3361
 3362
 3363
 3364
 3365
 3366
 3367
 3368
 3369
 3370
 3371
 3372
 3373
 3374
 3375
 3376
 3377
 3378
 3379
 3380
 3381
 3382
 3383
 3384
 3385
 3386
 3387
 3388
 3389
 3390
 3391
 3392
 3393
 3394
 3395
 3396
 3397
 3398
 3399
 3400
 3401
 3402
 3403
 3404
 3405
 3406
 3407
 3408
 3409
 3410
 3411
 3412
 3413
 3414
 3415
 3416
 3417
 3418
 3419
 3420
 3421
 3422
 3423
 3424
 3425
 3426
 3427
 3428
 3429
 3430
 3431
 3432
 3433
 3434
 3435
 3436
 3437
 3438
 3439
 3440
 3441
 3442
 3443
 3444
 3445
 3446
 3447
 3448
 3449
 3450
 3451
 3452
 3453
 3454
 3455
 3456
 3457
 3458
 3459
 3460
 3461
 3462
 3463
 3464
 3465
 3466
 3467
 3468
 3469
 3470
 3471
 3472
 3473
 3474
 3475
 3476
 3477
 3478
 3479
 3480
 3481
 3482
 3483
 3484
 3485
 3486
 3487
 3488
 3489
 3490
 3491
 3492
 3493
 3494
 3495
 3496
 3497
 3498
 3499
 3500
 3501
 3502
 3503
 3504
 3505
 3506
 3507
 3508
 3509
 3510
 3511
 3512
 3513
 3514
 3515
 3516
 3517
 3518
 3519
 3520
 3521
 3522
 3523
 3524
 3525
 3526
 3527
 3528
 3529
 3530
 3531
 3532
 3533
 3534
 3535
 3536
 3537
 3538
 3539
 3540
 3541
 3542
 3543
 3544
 3545
 3546
 3547
 3548
 3549
 3550
 3551
 3552
 3553
 3554
 3555
 3556
 3557
 3558
 3559
 3560
 3561
 3562
 3563
 3564
 3565
 3566
 3567
 3568
 3569
 3570
 3571
 3572
 3573
 3574
 3575
 3576
 3577
 3578
 3579
 3580
 3581
 3582
 3583
 3584
 3585
 3586
 3587
 3588
 3589
 3590
 3591
 3592
 3593
 3594
 3595
 3596
 3597
 3598
 3599
 3600
 3601
 3602
 3603
 3604
 3605
 3606
 3607
 3608
 3609
 3610
 3611
 3612
 3613
 3614
 3615
 3616
 3617
 3618
 3619
 3620
 3621
 3622
 3623
 3624
 3625
 3626
 3627
 3628
 3629
 3630
 3631
 3632
 3633
 3634
 3635
 3636
 3637
 3638
 3639
 3640
 3641
 3642
 3643
 3644
 3645
 3646
 3647
 3648
 3649
 3650
 3651
 3652
 3653
 3654
 3655
 3656
 3657
 3658
 3659
 3660
 3661
 3662
 3663
 3664
 3665
 3666
 3667
 3668
 3669
 3670
 3671
 3672
 3673
 3674
 3675
 3676
 3677
 3678
 3679
 3680
 3681
 3682
 3683
 3684
 3685
 3686
 3687
 3688
 3689
 3690
 3691
 3692
 3693
 3694
 3695
 3696
 3697
 3698
 3699
 3700
 3701
 3702
 3703
 3704
 3705
 3706
 3707
 3708
 3709
 3710
 3711
 3712
 3713
 3714
 3715
 3716
 3717
 3718
 3719
 3720
 3721
 3722
 3723
 3724
 3725
 3726
 3727
 3728
 3729
 3730
 3731
 3732
 3733
 3734
 3735
 3736
 3737
 3738
 3739
 3740
 3741
 3742
 3743
 3744
 3745
 3746
 3747
 3748
 3749
 3750
 3751
 3752
 3753
 3754
 3755
 3756
 3757
 3758
 3759
 3760
 3761
 3762
 3763
 3764
 3765
 3766
 3767
 3768
 3769
 3770
 3771
 3772
 3773
 3774
 3775
 3776
 3777
 3778
 3779
 3780
 3781
 3782
 3783
 3784
 3785
 3786
 3787
 3788
 3789
 3790
 3791
 3792
 3793
 3794
 3795
 3796
 3797
 3798
 3799
 3800
 3801
 3802
 3803
 3804
 3805
 3806
 3807
 3808
 3809
 3810
 3811
 3812
 3813
 3814
 3815
 3816
 3817
 3818
 3819
 3820
 3821
 3822
 3823
 3824
 3825
 3826
 3827
 3828
 3829
 3830
 3831
 3832
 3833
 3834
 3835
 3836
 3837
 3838
 3839
 3840
 3841
 3842
 3843
 3844
 3845
 3846
 3847
 3848
 3849
 3850
 3851
 3852
 3853
 3854
 3855
 3856
 3857
 3858
 3859
 3860
 3861
 3862
 3863
 3864
 3865
 3866
 3867
 3868
 3869
 3870
 3871
 3872
 3873
 3874
 3875
 3876
 3877
 3878
 3879
 3880
 3881
 3882
 3883
 3884
 3885
 3886
 3887
 3888
 3889
 3890
 3891
 3892
 3893
 3894
 3895
 3896
 3897
 3898
 3899
 3900
 3901
 3902
 3903
 3904
 3905
 3906
 3907
 3908
 3909
 3910
 3911
 3912
 3913
 3914
 3915
 3916
 3917
 3918
 3919
 3920
 3921
 3922
 3923
 3924
 3925
 3926
 3927
 3928
 3929
 3930
 3931
 3932
 3933
 3934
 3935
 3936
 3937
 3938
 3939
 3940
 3941
 3942
 3943
 3944
 3945
 3946
 3947
 3948
 3949
 3950
 3951
 3952
 3953
 3954
 3955
 3956
 3957
 3958
 3959
 3960
 3961
 3962
 3963
 3964
 3965
 3966
 3967
 3968
 3969
 3970
 3971
 3972
 3973
 3974
 3975
 3976
 3977
 3978
 3979
 3980
 3981
 3982
 3983
 3984
 3985
 3986
 3987
 3988
 3989
 3990
 3991
 3992
 3993
 3994
 3995
 3996
 3997
 3998
 3999
 4000
 4001
 4002
 4003
 4004
 4005
 4006
 4007
 4008
 4009
 4010
 4011
 4012
 4013
 4014
 4015
 4016
 4017
 4018
 4019
 4020
 4021
 4022
 4023
 4024
 4025
 4026
 4027
 4028
 4029
 4030
 4031
 4032
 4033
 4034
 4035
 4036
 4037
 4038
 4039
 4040
 4041
 4042
 4043
 4044
 4045
 4046
 4047
 4048
 4049
 4050
 4051
 4052
 4053
 4054
 4055
 4056
 4057
 4058
 4059
 4060
 4061
 4062
 4063
 4064
 4065
 4066
 4067
 4068
 4069
 4070
 4071
 4072
 4073
 4074
 4075
 4076
 4077
 4078
 4079
 4080
 4081
 4082
 4083
 4084
 4085
 4086
 4087
 4088
 4089
 4090
 4091
 4092
 4093
 4094
 4095
 4096
 4097
 4098
 4099
 4100
 4101
 4102
 4103
 4104
 4105
 4106
 4107
 4108
 4109
 4110
 4111
 4112
 4113
 4114
 4115
 4116
 4117
 4118
 4119
 4120
 4121
 4122
 4123
 4124
 4125
 4126
 4127
 4128
 4129
 4130
 4131
 4132
 4133
 4134
 4135
 4136
 4137
 4138
 4139
 4140
 4141
 4142
 4143
 4144
 4145
 4146
 4147
 4148
 4149
 4150
 4151
 4152
 4153
 4154
 4155
 4156
 4157
 4158
 4159
 4160
 4161
 4162
 4163
 4164
 4165
 4166
 4167
 4168
 4169
 4170
 4171
 4172
 4173
 4174
 4175
 4176
 4177
 4178
 4179
 4180
 4181
 4182
 4183
 4184
 4185
 4186
 4187
 4188
 4189
 4190
 4191
 4192
 4193
 4194
 4195
 4196
 4197
 4198
 4199
 4200
 4201
 4202
 4203
 4204
 4205
 4206
 4207
 4208
 4209
 4210
 4211
 4212
 4213
 4214
 4215
 4216
 4217
 4218
 4219
 4220
 4221
 4222
 4223
 4224
 4225
 4226
 4227
 4228
 4229
 4230
 4231
 4232
 4233
 4234
 4235
 4236
 4237
 4238
 4239
 4240
 4241
 4242
 4243
 4244
 4245
 4246
 4247
 4248
 4249
 4250
 4251
 4252
 4253
 4254
 4255
 4256
 4257
 4258
 4259
 4260
 4261
 4262
 4263
 4264
 4265
 4266
 4267
 4268
 4269
 4270
 4271
 4272
 4273
 4274
 4275
 4276
 4277
 4278
 4279
 4280
 4281
 4282
 4283
 4284
 4285
 4286
 4287
 4288
 4289
 4290
 4291
 4292
 4293
 4294
 4295
 4296
 4297
 4298
 4299
 4300
 4301
 4302
 4303
 4304
 4305
 4306
 4307
 4308
 4309
 4310
 4311
 4312
 4313
 4314
 4315
 4316
 4317
 4318
 4319
 4320
 4321
 4322
 4323
 4324
 4325
 4326
 4327
 4328
 4329
 4330
 4331
 4332
 4333
 4334
 4335
 4336
 4337
 4338
 4339
 4340
 4341
 4342
 4343
 4344
 4345
 4346
 4347
 4348
 4349
 4350
 4351
 4352
 4353
 4354
 4355
 4356
 4357
 4358
 4359
 4360
 4361
 4362
 4363
 4364
 4365
 4366
 4367
 4368
 4369
 4370
 4371
 4372
 4373
 4374
 4375
 4376
 4377
 4378
 4379
 4380
 4381
 4382
 4383
 4384
 4385
 4386
 4387
 4388
 4389
 4390
 4391
 4392
 4393
 4394
 4395
 4396
 4397
 4398
 4399
 4400
 4401
 4402
 4403
 4404
 4405
 4406
 4407
 4408
 4409
 4410
 4411
 4412
 4413
 4414
 4415
 4416
 4417
 4418
 4419
 4420
 4421
 4422
 4423
 4424
 4425
 4426
 4427
 4428
 4429
 4430
 4431
 4432
 4433
 4434
 4435
 4436
 4437
 4438
 4439
 4440
 4441
 4442
 4443
 4444
 4445
 4446
 4447
 4448
 4449
 4450
 4451
 4452
 4453
 4454
 4455
 4456
 4457
 4458
 4459
 4460
 4461
 4462
 4463
 4464
 4465
 4466
 4467
 4468
 4469
 4470
 4471
 4472
 4473
 4474
 4475
 4476
 4477
 4478
 4479
 4480
 4481
 4482
 4483
 4484
 4485
 4486
 4487
 4488
 4489
 4490
 4491
 4492
 4493
 4494
 4495
 4496
 4497
 4498
 4499
 4500
 4501
 4502
 4503
 4504
 4505
 4506
 4507
 4508
 4509
 4510
 4511
 4512
 4513
 4514
 4515
 4516
 4517
 4518
 4519
 4520
 4521
 4522
 4523
 4524
 4525
 4526
 4527
 4528
 4529
 4530
 4531
 4532
 4533
 4534
 4535
 4536
 4537
 4538
 4539
 4540
 4541
 4542
 4543
 4544
 4545
 4546
 4547
 4548
 4549
 4550
 4551
 4552
 4553
 4554
 4555
 4556
 4557
 4558
 4559
 4560
 4561
 4562
 4563
 4564
 4565
 4566
 4567
 4568
 4569
 4570
 4571
 4572
 4573
 4574
 4575
 4576
 4577
 4578
 4579
 4580
 4581
 4582
 4583
 4584
 4585
 4586
 4587
 4588
 4589
 4590
 4591
 4592
 4593
 4594
 4595
 4596
 4597
 4598
 4599
 4600
 4601
 4602
 4603
 4604
 4605
 4606
 4607
 4608
 4609
 4610
 4611
 4612
 4613
 4614
 4615
 4616
 4617
 4618
 4619
 4620
 4621
 4622
 4623
 4624
 4625
 4626
 4627
 4628
 4629
 4630
 4631
 4632
 4633
 4634
 4635
 4636
 4637
 4638
 4639
 4640
 4641
 4642
 4643
 4644
 4645
 4646
 4647
 4648
 4649
 4650
 4651
 4652
 4653
 4654
 4655
 4656
 4657
 4658
 4659
 4660
 4661
 4662
 4663
 4664
 4665
 4666
 4667
 4668
 4669
 4670
 4671
 4672
 4673
 4674
 4675
 4676
 4677
 4678
 4679
 4680
 4681
 4682
 4683
 4684
 4685
 4686
 4687
 4688
 4689
 4690
 4691
 4692
 4693
 4694
 4695
 4696
 4697
 4698
 4699
 4700
 4701
 4702
 4703
 4704
 4705
 4706
 4707
 4708
 4709
 4710
 4711
 4712
 4713
 4714
 4715
 4716
 4717
 4718
 4719
 4720
 4721
 4722
 4723
 4724
 4725
 4726
 4727
 4728
 4729
 4730
 4731
 4732
 4733
 4734
 4735
 4736
 4737
 4738
 4739
 4740
 4741
 4742
 4743
 4744
 4745
 4746
 4747
 4748
 4749
 4750
 4751
 4752
 4753
 4754
 4755
 4756
 4757
 4758
 4759
 4760
 4761
 4762
 4763
 4764
 4765
 4766
 4767
 4768
 4769
 4770
 4771
 4772
 4773
 4774
 4775
 4776
 4777
 4778
 4779
 4780
 4781
 4782
 4783
 4784
 4785
 4786
 4787
 4788
 4789
 4790
 4791
 4792
 4793
 4794
 4795
 4796
 4797
 4798
 4799
 4800
 4801
 4802
 4803
 4804
 4805
 4806
 4807
 4808
 4809
 4810
 4811
 4812
 4813
 4814
 4815
 4816
 4817
 4818
 4819
 4820
 4821
 4822
 4823
 4824
 4825
 4826
 4827
 4828
 4829
 4830
 4831
 4832
 4833
 4834
 4835
 4836
 4837
 4838
 4839
 4840
 4841
 4842
 4843
 4844
 4845
 4846
 4847
 4848
 4849
 4850
 4851
 4852
 4853
 4854
 4855
 4856
 4857
 4858
 4859
 4860
 4861
 4862
 4863
 4864
 4865
 4866
 4867
 4868
 4869
 4870
 4871
 4872
 4873
 4874
 4875
 4876
 4877
 4878
 4879
 4880
 4881
 4882
 4883
 4884
 4885
 4886
 4887
 4888
 4889
 4890
 4891
 4892
 4893
 4894
 4895
 4896
 4897
 4898
 4899
 4900
 4901
 4902
 4903
 4904
 4905
 4906
 4907
 4908
 4909
 4910
 4911
 4912
 4913
 4914
 4915
 4916
 4917
 4918
 4919
 4920
 4921
 4922
 4923
 4924
 4925
 4926
 4927
 4928
 4929
 4930
 4931
 4932
 4933
 4934
 4935
 4936
 4937
 4938
 4939
 4940
 4941
 4942
 4943
 4944
 4945
 4946
 4947
 4948
 4949
 4950
 4951
 4952
 4953
 4954
 4955
 4956
 4957
 4958
 4959
 4960
 4961
 4962
 4963
 4964
 4965
 4966
 4967
 4968
 4969
 4970
 4971
 4972
 4973
 4974
 4975
 4976
 4977
 4978
 4979
 4980
 4981
 4982
 4983
 4984
 4985
 4986
 4987
 4988
 4989
 4990
 4991
 4992
 4993
 4994
 4995
 4996
 4997
 4998
 4999
 5000
 5001
 5002
 5003
 5004
 5005
 5006
 5007
 5008
 5009
 5010
 5011
 5012
 5013
 5014
 5015
 5016
 5017
 5018
 5019
 5020
 5021
 5022
 5023
 5024
 5025
 5026
 5027
 5028
 5029
 5030
 5031
 5032
 5033
 5034
 5035
 5036
 5037
 5038
 5039
 5040
 5041
 5042
 5043
 5044
 5045
 5046
 5047
 5048
 5049
 5050
 5051
 5052
 5053
 5054
 5055
 5056
 5057
 5058
 5059
 5060
 5061
 5062
 5063
 5064
 5065
 5066
 5067
 5068
 5069
 5070
 5071
 5072
 5073
 5074
 5075
 5076
 5077
 5078
 5079
 5080
 5081
 5082
 5083
 5084
 5085
 5086
 5087
 5088
 5089
 5090
 5091
 5092
 5093
 5094
 5095
 5096
 5097
 5098
 5099
 5100
 5101
 5102
 5103
 5104
 5105
 5106
 5107
 5108
 5109
 5110
 5111
 5112
 5113
 5114
 5115
 5116
 5117
 5118
 5119
 5120
 5121
 5122
 5123
 5124
 5125
 5126
 5127
 5128
 5129
 5130
 5131
 5132
 5133
 5134
 5135
 5136
 5137
 5138
 5139
 5140
 5141
 5142
 5143
 5144
 5145
 5146
 5147
 5148
 5149
 5150
 5151
 5152
 5153
 5154
 5155
 5156
 5157
 5158
 5159
 5160
 5161
 5162
 5163
 5164
 5165
 5166
 5167
 5168
 5169
 5170
 5171
 5172
 5173
 5174
 5175
 5176
 5177
 5178
 5179
 5180
 5181
 5182
 5183
 5184
 5185
 5186
 5187
 5188
 5189
 5190
 5191
 5192
 5193
 5194
 5195
 5196
 5197
 5198
 5199
 5200
 5201
 5202
 5203
 5204
 5205
 5206
 5207
 5208
 5209
 5210
 5211
 5212
 5213
 5214
 5215
 5216
 5217
 5218
 5219
 5220
 5221
 5222
 5223
 5224
 5225
 5226
 5227
 5228
 5229
 5230
 5231
 5232
 5233
 5234
 5235
 5236
 5237
 5238
 5239
 5240
 5241
 5242
 5243
 5244
 5245
 5246
 5247
 5248
 5249
 5250
 5251
 5252
 5253
 5254
 5255
 5256
 5257
 5258
 5259
 5260
 5261
 5262
 5263
 5264
 5265
 5266
 5267
 5268
 5269
 5270
 5271
 5272
 5273
 5274
 5275
 5276
 5277
 5278
 5279
 5280
 5281
 5282
 5283
 5284
 5285
 5286
 5287
 5288
 5289
 5290
 5291
 5292
 5293
 5294
 5295
 5296
 5297
 5298
 5299
 5300
 5301
 5302
 5303
 5304
 5305
 5306
 5307
 5308
 5309
 5310
 5311
 5312
 5313
 5314
 5315
 5316
 5317
 5318
 5319
 5320
 5321
 5322
 5323
 5324
 5325
 5326
 5327
 5328
 5329
 5330
 5331
 5332
 5333
 5334
 5335
 5336
 5337
 5338
 5339
 5340
 5341
 5342
 5343
 5344
 5345
 5346
 5347
 5348
 5349
 5350
 5351
 5352
 5353
 5354
 5355
 5356
 5357
 5358
 5359
 5360
 5361
 5362
 5363
 5364
 5365
 5366
 5367
 5368
 5369
 5370
 5371
 5372
 5373
 5374
 5375
 5376
 5377
 5378
 5379
 5380
 5381
 5382
 5383
 5384
 5385
 5386
 5387
 5388
 5389
 5390
 5391
 5392
 5393
 5394
 5395
 5396
 5397
 5398
 5399
 5400
 5401
 5402
 5403
 5404
 5405
 5406
 5407
 5408
 5409
 5410
 5411
 5412
 5413
 5414
 5415
 5416
 5417
 5418
 5419
 5420
 5421
 5422
 5423
 5424
 5425
 5426
 5427
 5428
 5429
 5430
 5431
 5432
 5433
 5434
 5435
 5436
 5437
 5438
 5439
 5440
 5441
 5442
 5443
 5444
 5445
 5446
 5447
 5448
 5449
 5450
 5451
 5452
 5453
 5454
 5455
 5456
 5457
 5458
 5459
 5460
 5461
 5462
 5463
 5464
 5465
 5466
 5467
 5468
 5469
 5470
 5471
 5472
 5473
 5474
 5475
 5476
 5477
 5478
 5479
 5480
 5481
 5482
 5483
 5484
 5485
 5486
 5487
 5488
 5489
 5490
 5491
 5492
 5493
 5494
 5495
 5496
 5497
 5498
 5499
 5500
 5501
 5502
 5503
 5504
 5505
 5506
 5507
 5508
 5509
 5510
 5511
 5512
 5513
 5514
 5515
 5516
 5517
 5518
 5519
 5520
 5521
 5522
 5523
 5524
 5525
 5526
 5527
 5528
 5529
 5530
 5531
 5532
 5533
 5534
 5535
 5536
 5537
 5538
 5539
 5540
 5541
 5542
 5543
 5544
 5545
 5546
 5547
 5548
 5549
 5550
 5551
 5552
 5553
 5554
 5555
 5556
 5557
 5558
 5559
 5560
 5561
 5562
 5563
 5564
 5565
 5566
 5567
 5568
 5569
 5570
 5571
 5572
 5573
 5574
 5575
 5576
 5577
 5578
 5579
 5580
 5581
 5582
 5583
 5584
 5585
 5586
 5587
 5588
 5589
 5590
 5591
 5592
 5593
 5594
 5595
 5596
 5597
 5598
 5599
 5600
 5601
 5602
 5603
 5604
 5605
 5606
 5607
 5608
 5609
 5610
 5611
 5612
 5613
 5614
 5615
 5616
 5617
 5618
 5619
 5620
 5621
 5622
 5623
 5624
 5625
 5626
 5627
 5628
 5629
 5630
 5631
 5632
 5633
 5634
 5635
 5636
 5637
 5638
 5639
 5640
 5641
 5642
 5643
 5644
 5645
 5646
 5647
 5648
 5649
 5650
 5651
 5652
 5653
 5654
 5655
 5656
 5657
 5658
 5659
 5660
 5661
 5662
 5663
 5664
 5665
 5666
 5667
 5668
 5669
 5670
 5671
 5672
 5673
 5674
 5675
 5676
 5677
 5678
 5679
 5680
 5681
 5682
 5683
 5684
 5685
 5686
 5687
 5688
 5689
 5690
 5691
 5692
 5693
 5694
 5695
 5696
 5697
 5698
 5699
 5700
 5701
 5702
 5703
 5704
 5705
 5706
 5707
 5708
 5709
 5710
 5711
 5712
 5713
 5714
 5715
 5716
 5717
 5718
 5719
 5720
 5721
 5722
 5723
 5724
 5725
 5726
 5727
 5728
 5729
 5730
 5731
 5732
 5733
 5734
 5735
 5736
 5737
 5738
 5739
 5740
 5741
 5742
 5743
 5744
 5745
 5746
 5747
 5748
 5749
 5750
 5751
 5752
 5753
 5754
 5755
 5756
 5757
 5758
 5759
 5760
 5761
 5762
 5763
 5764
 5765
 5766
 5767
 5768
 5769
 5770
 5771
 5772
 5773
 5774
 5775
 5776
 5777
 5778
 5779
 5780
 5781
 5782
 5783
 5784
 5785
 5786
 5787
 5788
 5789
 5790
 5791
 5792
 5793
 5794
 5795
 5796
 5797
 5798
 5799
 5800
 5801
 5802
 5803
 5804
 5805
 5806
 5807
 5808
 5809
 5810
 5811
 5812
 5813
 5814
 5815
 5816
 5817
 5818
 5819
 5820
 5821
 5822
 5823
 5824
 5825
 5826
 5827
 5828
 5829
 5830
 5831
 5832
 5833
 5834
 5835
 5836
 5837
 5838
 5839
 5840
 5841
 5842
 5843
 5844
 5845
 5846
 5847
 5848
 5849
 5850
 5851
 5852
 5853
 5854
 5855
 5856
 5857
 5858
 5859
 5860
 5861
 5862
 5863
 5864
 5865
 5866
 5867
 5868
 5869
 5870
 5871
 5872
 5873
 5874
 5875
 5876
 5877
 5878
 5879
 5880
 5881
 5882
 5883
 5884
 5885
 5886
 5887
 5888
 5889
 5890
 5891
 5892
 5893
 5894
 5895
 5896
 5897
 5898
 5899
 5900
 5901
 5902
 5903
 5904
 5905
 5906
 5907
 5908
 5909
 5910
 5911
 5912
 5913
 5914
 5915
 5916
 5917
 5918
 5919
 5920
 5921
 5922
 5923
 5924
 5925
 5926
 5927
 5928
 5929
 5930
 5931
 5932
 5933
 5934
 5935
 5936
 5937
 5938
 5939
 5940
 5941
 5942
 5943
 5944
 5945
 5946
 5947
 5948
 5949
 5950
 5951
 5952
 5953
 5954
 5955
 5956
 5957
 5958
 5959
 5960
 5961
 5962
 5963
 5964
 5965
 5966
 5967
 5968
 5969
 5970
 5971
 5972
 5973
 5974
 5975
 5976
 5977
 5978
 5979
 5980
 5981
 5982
 5983
 5984
 5985
 5986
 5987
 5988
 5989
 5990
 5991
 5992
 5993
 5994
 5995
 5996
 5997
 5998
 5999
 6000
 6001
 6002
 6003
 6004
 6005
 6006
 6007
 6008
 6009
 6010
 6011
 6012
 6013
 6014
 6015
 6016
 6017
 6018
 6019
 6020
 6021
 6022
 6023
 6024
 6025
 6026
 6027
 6028
 6029
 6030
 6031
 6032
 6033
 6034
 6035
 6036
 6037
 6038
 6039
 6040
 6041
 6042
 6043
 6044
 6045
 6046
 6047
 6048
 6049
 6050
 6051
 6052
 6053
 6054
 6055
 6056
 6057
 6058
 6059
 6060
 6061
 6062
 6063
 6064
 6065
 6066
 6067
 6068
 6069
 6070
 6071
 6072
 6073
 6074
 6075
 6076
 6077
 6078
 6079
 6080
 6081
 6082
 6083
 6084
 6085
 6086
 6087
 6088
 6089
 6090
 6091
 6092
 6093
 6094
 6095
 6096
 6097
 6098
 6099
 6100
 6101
 6102
 6103
 6104
 6105
 6106
 6107
 6108
 6109
 6110
 6111
 6112
 6113
 6114
 6115
 6116
 6117
 6118
 6119
 6120
 6121
 6122
 6123
 6124
 6125
 6126
 6127
 6128
 6129
 6130
 6131
 6132
 6133
 6134
 6135
 6136
 6137
 6138
 6139
 6140
 6141
 6142
 6143
 6144
 6145
 6146
 6147
 6148
 6149
 6150
 6151
 6152
 6153
 6154
 6155
 6156
 6157
 6158
 6159
 6160
 6161
 6162
 6163
 6164
 6165
 6166
 6167
 6168
 6169
 6170
 6171
 6172
 6173
 6174
 6175
 6176
 6177
 6178
 6179
 6180
 6181
 6182
 6183
 6184
 6185
 6186
 6187
 6188
 6189
 6190
 6191
 6192
 6193
 6194
 6195
 6196
 6197
 6198
 6199
 6200
 6201
 6202
 6203
 6204
 6205
 6206
 6207
 6208
 6209
 6210
 6211
 6212
 6213
 6214
 6215
 6216
 6217
 6218
 6219
 6220
 6221
 6222
 6223
 6224
 6225
 6226
 6227
 6228
 6229
 6230
 6231
 6232
 6233
 6234
 6235
 6236
 6237
 6238
 6239
 6240
 6241
 6242
 6243
 6244
 6245
 6246
 6247
 6248
 6249
 6250
 6251
 6252
 6253
 6254
 6255
 6256
 6257
 6258
 6259
 6260
 6261
 6262
 6263
 6264
 6265
 6266
 6267
 6268
 6269
 6270
 6271
 6272
 6273
 6274
 6275
 6276
 6277
 6278
 6279
 6280
 6281
 6282
 6283
 6284
 6285
 6286
 6287
 6288
 6289
 6290
 6291
 6292
 6293
 6294
 6295
 6296
 6297
 6298
 6299
 6300
 6301
 6302
 6303
 6304
 6305
 6306
 6307
 6308
 6309
 6310
 6311
 6312
 6313
 6314
 6315
 6316
 6317
 6318
 6319
 6320
 6321
 6322
 6323
 6324
 6325
 6326
 6327
 6328
 6329
 6330
 6331
 6332
 6333
 6334
 6335
 6336
 6337
 6338
 6339
 6340
 6341
 6342
 6343
 6344
 6345
 6346
 6347
 6348
 6349
 6350
 6351
 6352
 6353
 6354
 6355
 6356
 6357
 6358
 6359
 6360
 6361
 6362
 6363
 6364
 6365
 6366
 6367
 6368
 6369
 6370
 6371
 6372
 6373
 6374
 6375
 6376
 6377
 6378
 6379
 6380
 6381
 6382
 6383
 6384
 6385
 6386
 6387
 6388
 6389
 6390
 6391
 6392
 6393
 6394
 6395
 6396
 6397
 6398
 6399
 6400
 6401
 6402
 6403
 6404
 6405
 6406
 6407
 6408
 6409
 6410
 6411
 6412
 6413
 6414
 6415
 6416
 6417
 6418
 6419
 6420
 6421
 6422
 6423
 6424
 6425
 6426
 6427
 6428
 6429
 6430
 6431
 6432
 6433
 6434
 6435
 6436
 6437
 6438
 6439
 6440
 6441
 6442
 6443
 6444
 6445
 6446
 6447
 6448
 6449
 6450
 6451
 6452
 6453
 6454
 6455
 6456
 6457
 6458
 6459
 6460
 6461
 6462
 6463
 6464
 6465
 6466
 6467
 6468
 6469
 6470
 6471
 6472
 6473
 6474
 6475
 6476
 6477
 6478
 6479
 6480
 6481
 6482
 6483
 6484
 6485
 6486
 6487
 6488
 6489
 6490
 6491
 6492
 6493
 6494
 6495
 6496
 6497
 6498
 6499
 6500
 6501
 6502
 6503
 6504
 6505
 6506
 6507
 6508
 6509
 6510
 6511
 6512
 6513
 6514
 6515
 6516
 6517
 6518
 6519
 6520
 6521
 6522
 6523
 6524
 6525
 6526
 6527
 6528
 6529
 6530
 6531
 6532
 6533
 6534
 6535
 6536
 6537
 6538
 6539
 6540
 6541
 6542
 6543
 6544
 6545
 6546
 6547
 6548
 6549
 6550
 6551
 6552
 6553
 6554
 6555
 6556
 6557
 6558
 6559
 6560
 6561
 6562
 6563
 6564
 6565
 6566
 6567
 6568
 6569
 6570
 6571
 6572
 6573
 6574
 6575
 6576
 6577
 6578
 6579
 6580
 6581
 6582
 6583
 6584
 6585
 6586
 6587
 6588
 6589
 6590
 6591
 6592
 6593
 6594
 6595
 6596
 6597
 6598
 6599
 6600
 6601
 6602
 6603
 6604
 6605
 6606
 6607
 6608
 6609
 6610
 6611
 6612
 6613
 6614
 6615
 6616
 6617
 6618
 6619
 6620
 6621
 6622
 6623
 6624
 6625
 6626
 6627
 6628
 6629
 6630
 6631
 6632
 6633
 6634
 6635
 6636
 6637
 6638
 6639
 6640
 6641
 6642
 6643
 6644
 6645
 6646
 6647
 6648
 6649
 6650
 6651
 6652
 6653
 6654
 6655
 6656
 6657
 6658
 6659
 6660
 6661
 6662
 6663
 6664
 6665
 6666
 6667
 6668
 6669
 6670
 6671
 6672
 6673
 6674
 6675
 6676
 6677
 6678
 6679
 6680
 6681
 6682
 6683
 6684
 6685
 6686
 6687
 6688
 6689
 6690
 6691
 6692
 6693
 6694
 6695
 6696
 6697
 6698
 6699
 6700
 6701
 6702
 6703
 6704
 6705
 6706
 6707
 6708
 6709
 6710
 6711
 6712
 6713
 6714
 6715
 6716
 6717
 6718
 6719
 6720
 6721
 6722
 6723
 6724
 6725
 6726
 6727
 6728
 6729
 6730
 6731
 6732
 6733
 6734
 6735
 6736
 6737
 6738
 6739
 6740
 6741
 6742
 6743
 6744
 6745
 6746
 6747
 6748
 6749
 6750
 6751
 6752
 6753
 6754
 6755
 6756
 6757
 6758
 6759
 6760
 6761
 6762
 6763
 6764
 6765
 6766
 6767
 6768
 6769
 6770
 6771
 6772
 6773
 6774
 6775
 6776
 6777
 6778
 6779
 6780
 6781
 6782
 6783
 6784
 6785
 6786
 6787
 6788
 6789
 6790
 6791
 6792
 6793
 6794
 6795
 6796
 6797
 6798
 6799
 6800
 6801
 6802
 6803
 6804
 6805
 6806
 6807
 6808
 6809
 6810
 6811
 6812
 6813
 6814
 6815
 6816
 6817
 6818
 6819
 6820
 6821
 6822
 6823
 6824
 6825
 6826
 6827
 6828
 6829
 6830
 6831
 6832
 6833
 6834
 6835
 6836
 6837
 6838
 6839
 6840
 6841
 6842
 6843
 6844
 6845
 6846
 6847
 6848
 6849
 6850
 6851
 6852
 6853
 6854
 6855
 6856
 6857
 6858
 6859
 6860
 6861
 6862
 6863
 6864
 6865
 6866
 6867
 6868
 6869
 6870
 6871
 6872
 6873
 6874
 6875
 6876
 6877
 6878
 6879
 6880
 6881
 6882
 6883
 6884
 6885
 6886
 6887
 6888
 6889
 6890
 6891
 6892
 6893
 6894
 6895
 6896
 6897
 6898
 6899
 6900
 6901
 6902
 6903
 6904
 6905
 6906
 6907
 6908
 6909
 6910
 6911
 6912
 6913
 6914
 6915
 6916
 6917
 6918
 6919
 6920
 6921
 6922
 6923
 6924
 6925
 6926
 6927
 6928
 6929
 6930
 6931
 6932
 6933
 6934
 6935
 6936
 6937
 6938
 6939
 6940
 6941
 6942
 6943
 6944
 6945
 6946
 6947
 6948
 6949
 6950
 6951
 6952
 6953
 6954
 6955
 6956
 6957
 6958
 6959
 6960
 6961
 6962
 6963
 6964
 6965
 6966
 6967
 6968
 6969
 6970
 6971
 6972
 6973
 6974
 6975
 6976
 6977
 6978
 6979
 6980
 6981
 6982
 6983
 6984
 6985
 6986
 6987
 6988
 6989
 6990
 6991
 6992
 6993
 6994
 6995
 6996
 6997
 6998
 6999
 7000
 7001
 7002
 7003
 7004
 7005
 7006
 7007
 7008
 7009
 7010
 7011
 7012
 7013
 7014
 7015
 7016
 7017
 7018
 7019
 7020
 7021
 7022
 7023
 7024
 7025
 7026
 7027
 7028
 7029
 7030
 7031
 7032
 7033
 7034
 7035
 7036
 7037
 7038
 7039
 7040
 7041
 7042
 7043
 7044
 7045
 7046
 7047
 7048
 7049
 7050
 7051
 7052
 7053
 7054
 7055
 7056
 7057
 7058
 7059
 7060
 7061
 7062
 7063
 7064
 7065
 7066
 7067
 7068
 7069
 7070
 7071
 7072
 7073
 7074
 7075
 7076
 7077
 7078
 7079
 7080
 7081
 7082
 7083
 7084
 7085
 7086
 7087
 7088
 7089
 7090
 7091
 7092
 7093
 7094
 7095
 7096
 7097
 7098
 7099
 7100
 7101
 7102
 7103
 7104
 7105
 7106
 7107
 7108
 7109
 7110
 7111
 7112
 7113
 7114
 7115
 7116
 7117
 7118
 7119
 7120
 7121
 7122
 7123
 7124
 7125
 7126
 7127
 7128
 7129
 7130
 7131
 7132
 7133
 7134
 7135
 7136
 7137
 7138
 7139
 7140
 7141
 7142
 7143
 7144
 7145
 7146
 7147
 7148
 7149
 7150
 7151
 7152
 7153
 7154
 7155
 7156
 7157
 7158
 7159
 7160
 7161
 7162
 7163
 7164
 7165
 7166
 7167
 7168
 7169
 7170
 7171
 7172
 7173
 7174
 7175
 7176
 7177
 7178
 7179
 7180
 7181
 7182
 7183
 7184
 7185
 7186
 7187
 7188
 7189
 7190
 7191
 7192
 7193
 7194
 7195
 7196
 7197
 7198
 7199
 7200
 7201
 7202
 7203
 7204
 7205
 7206
 7207
 7208
 7209
 7210
 7211
 7212
 7213
 7214
 7215
 7216
 7217
 7218
 7219
 7220
 7221
 7222
 7223
 7224
 7225
 7226
 7227
 7228
 7229
 7230
 7231
 7232
 7233
 7234
 7235
 7236
 7237
 7238
 7239
 7240
 7241
 7242
 7243
 7244
 7245
 7246
 7247
 7248
 7249
 7250
 7251
 7252
 7253
 7254
 7255
 7256
 7257
 7258
 7259
 7260
 7261
 7262
 7263
 7264
 7265
 7266
 7267
 7268
 7269
 7270
 7271
 7272
 7273
 7274
 7275
 7276
 7277
 7278
 7279
 7280
 7281
 7282
 7283
 7284
 7285
 7286
 7287
 7288
 7289
 7290
 7291
 7292
 7293
 7294
 7295
 7296
 7297
 7298
 7299
 7300
 7301
 7302
 7303
 7304
 7305
 7306
 7307
 7308
 7309
 7310
 7311
 7312
 7313
 7314
 7315
 7316
 7317
 7318
 7319
 7320
 7321
 7322
 7323
 7324
 7325
 7326
 7327
 7328
 7329
 7330
 7331
 7332
 7333
 7334
 7335
 7336
 7337
 7338
 7339
 7340
 7341
 7342
 7343
 7344
 7345
 7346
 7347
 7348
 7349
 7350
 7351
 7352
 7353
 7354
 7355
 7356
 7357
 7358
 7359
 7360
 7361
 7362
 7363
 7364
 7365
 7366
 7367
 7368
 7369
 7370
 7371
 7372
 7373
 7374
 7375
 7376
 7377
 7378
 7379
 7380
 7381
 7382
 7383
 7384
 7385
 7386
 7387
 7388
 7389
 7390
 7391
 7392
 7393
 7394
 7395
 7396
 7397
 7398
 7399
 7400
 7401
 7402
 7403
 7404
 7405
 7406
 7407
 7408
 7409
 7410
 7411
 7412
 7413
 7414
 7415
 7416
 7417
 7418
 7419
 7420
 7421
 7422
 7423
 7424
 7425
 7426
 7427
 7428
 7429
 7430
 7431
 7432
 7433
 7434
 7435
 7436
 7437
 7438
 7439
 7440
 7441
 7442
 7443
 7444
 7445
 7446
 7447
 7448
 7449
 7450
 7451
 7452
 7453
 7454
 7455
 7456
 7457
 7458
 7459
 7460
 7461
 7462
 7463
 7464
 7465
 7466
 7467
 7468
 7469
 7470
 7471
 7472
 7473
 7474
 7475
 7476
 7477
 7478
 7479
 7480
 7481
 7482
 7483
 7484
 7485
 7486
 7487
 7488
 7489
 7490
 7491
 7492
 7493
 7494
 7495
 7496
 7497
 7498
 7499
 7500
 7501
 7502
 7503
 7504
 7505
 7506
 7507
 7508
 7509
 7510
 7511
 7512
 7513
 7514
 7515
 7516
 7517
 7518
 7519
 7520
 7521
 7522
 7523
 7524
 7525
 7526
 7527
 7528
 7529
 7530
 7531
 7532
 7533
 7534
 7535
 7536
 7537
 7538
 7539
 7540
 7541
 7542
 7543
 7544
 7545
 7546
 7547
 7548
 7549
 7550
 7551
 7552
 7553
 7554
 7555
 7556
 7557
 7558
 7559
 7560
 7561
 7562
 7563
 7564
 7565
 7566
 7567
 7568
 7569
 7570
 7571
 7572
 7573
 7574
 7575
 7576
 7577
 7578
 7579
 7580
 7581
 7582
 7583
 7584
 7585
 7586
 7587
 7588
 7589
 7590
 7591
 7592
 7593
 7594
 7595
 7596
 7597
 7598
 7599
 7600
 7601
 7602
 7603
 7604
 7605
 7606
 7607
 7608
 7609
 7610
 7611
 7612
 7613
 7614
 7615
 7616
 7617
 7618
 7619
 7620
 7621
 7622
 7623
 7624
 7625
 7626
 7627
 7628
 7629
 7630
 7631
 7632
 7633
 7634
 7635
 7636
 7637
 7638
 7639
 7640
 7641
 7642
 7643
 7644
 7645
 7646
 7647
 7648
 7649
 7650
 7651
 7652
 7653
 7654
 7655
 7656
 7657
 7658
 7659
 7660
 7661
 7662
 7663
 7664
 7665
 7666
 7667
 7668
 7669
 7670
 7671
 7672
 7673
 7674
 7675
 7676
 7677
 7678
 7679
 7680
 7681
 7682
 7683
 7684
 7685
 7686
 7687
 7688
 7689
 7690
 7691
 7692
 7693
 7694
 7695
 7696
 7697
 7698
 7699
 7700
 7701
 7702
 7703
 7704
 7705
 7706
 7707
 7708
 7709
 7710
 7711
 7712
 7713
 7714
 7715
 7716
 7717
 7718
 7719
 7720
 7721
 7722
 7723
 7724
 7725
 7726
 7727
 7728
 7729
 7730
 7731
 7732
 7733
 7734
 7735
 7736
 7737
 7738
 7739
 7740
 7741
 7742
 7743
 7744
 7745
 7746
 7747
 7748
 7749
 7750
 7751
 7752
 7753
 7754
 7755
 7756
 7757
 7758
 7759
 7760
 7761
 7762
 7763
 7764
 7765
 7766
 7767
 7768
 7769
 7770
 7771
 7772
 7773
 7774
 7775
 7776
 7777
 7778
 7779
 7780
 7781
 7782
 7783
 7784
 7785
 7786
 7787
 7788
 7789
 7790
 7791
 7792
 7793
 7794
 7795
 7796
 7797
 7798
 7799
 7800
 7801
 7802
 7803
 7804
 7805
 7806
 7807
 7808
 7809
 7810
 7811
 7812
 7813
 7814
 7815
 7816
 7817
 7818
 7819
 7820
 7821
 7822
 7823
 7824
 7825
 7826
 7827
 7828
 7829
 7830
 7831
 7832
 7833
 7834
 7835
 7836
 7837
 7838
 7839
 7840
 7841
 7842
 7843
 7844
 7845
 7846
 7847
 7848
 7849
 7850
 7851
 7852
 7853
 7854
 7855
 7856
 7857
 7858
 7859
 7860
 7861
 7862
 7863
 7864
 7865
 7866
 7867
 7868
 7869
 7870
 7871
 7872
 7873
 7874
 7875
 7876
 7877
 7878
 7879
 7880
 7881
 7882
 7883
 7884
 7885
 7886
 7887
 7888
 7889
 7890
 7891
 7892
 7893
 7894
 7895
 7896
 7897
 7898
 7899
 7900
 7901
 7902
 7903
 7904
 7905
 7906
 7907
 7908
 7909
 7910
 7911
 7912
 7913
 7914
 7915
 7916
 7917
 7918
 7919
 7920
 7921
 7922
 7923
 7924
 7925
 7926
 7927
 7928
 7929
 7930
 7931
 7932
 7933
 7934
 7935
 7936
 7937
 7938
 7939
 7940
 7941
 7942
 7943
 7944
 7945
 7946
 7947
 7948
 7949
 7950
 7951
 7952
 7953
 7954
 7955
 7956
 7957
 7958
 7959
 7960
 7961
 7962
 7963
 7964
 7965
 7966
 7967
 7968
 7969
 7970
 7971
 7972
 7973
 7974
 7975
 7976
 7977
 7978
 7979
 7980
 7981
 7982
 7983
 7984
 7985
 7986
 7987
 7988
 7989
 7990
 7991
 7992
 7993
 7994
 7995
 7996
 7997
 7998
 7999
 8000
 8001
 8002
 8003
 8004
 8005
 8006
 8007
 8008
 8009
 8010
 8011
 8012
 8013
 8014
 8015
 8016
 8017
 8018
 8019
 8020
 8021
 8022
 8023
 8024
 8025
 8026
 8027
 8028
 8029
 8030
 8031
 8032
 8033
 8034
 8035
 8036
 8037
 8038
 8039
 8040
 8041
 8042
 8043
 8044
 8045
 8046
 8047
 8048
 8049
 8050
 8051
 8052
 8053
 8054
 8055
 8056
 8057
 8058
 8059
 8060
 8061
 8062
 8063
 8064
 8065
 8066
 8067
 8068
 8069
 8070
 8071
 8072
 8073
 8074
 8075
 8076
 8077
 8078
 8079
 8080
 8081
 8082
 8083
 8084
 8085
 8086
 8087
 8088
 8089
 8090
 8091
 8092
 8093
 8094
 8095
 8096
 8097
 8098
 8099
 8100
 8101
 8102
 8103
 8104
 8105
 8106
 8107
 8108
 8109
 8110
 8111
 8112
 8113
 8114
 8115
 8116
 8117
 8118
 8119
 8120
 8121
 8122
 8123
 8124
 8125
 8126
 8127
 8128
 8129
 8130
 8131
 8132
 8133
 8134
 8135
 8136
 8137
 8138
 8139
 8140
 8141
 8142
 8143
 8144
 8145
 8146
 8147
 8148
 8149
 8150
 8151
 8152
 8153
 8154
 8155
 8156
 8157
 8158
 8159
 8160
 8161
 8162
 8163
 8164
 8165
 8166
 8167
 8168
 8169
 8170
 8171
 8172
 8173
 8174
 8175
 8176
 8177
 8178
 8179
 8180
 8181
 8182
 8183
 8184
 8185
 8186
 8187
 8188
 8189
 8190
 8191
 8192
 8193
 8194
 8195
 8196
 8197
 8198
 8199
 8200
 8201
 8202
 8203
 8204
 8205
 8206
 8207
 8208
 8209
 8210
 8211
 8212
 8213
 8214
 8215
 8216
 8217
 8218
 8219
 8220
 8221
 8222
 8223
 8224
 8225
 8226
 8227
 8228
 8229
 8230
 8231
 8232
 8233
 8234
 8235
 8236
 8237
 8238
 8239
 8240
 8241
 8242
 8243
 8244
 8245
 8246
 8247
 8248
 8249
 8250
 8251
 8252
 8253
 8254
 8255
 8256
 8257
 8258
 8259
 8260
 8261
 8262
 8263
 8264
 8265
 8266
 8267
 8268
 8269
 8270
 8271
 8272
 8273
 8274
 8275
 8276
 8277
 8278
 8279
 8280
 8281
 8282
 8283
 8284
 8285
 8286
 8287
 8288
 8289
 8290
 8291
 8292
 8293
 8294
 8295
 8296
 8297
 8298
 8299
 8300
 8301
 8302
 8303
 8304
 8305
 8306
 8307
 8308
 8309
 8310
 8311
 8312
 8313
 8314
 8315
 8316
 8317
 8318
 8319
 8320
 8321
 8322
 8323
 8324
 8325
 8326
 8327
 8328
 8329
 8330
 8331
 8332
 8333
 8334
 8335
 8336
 8337
 8338
 8339
 8340
 8341
 8342
 8343
 8344
 8345
 8346
 8347
 8348
 8349
 8350
 8351
 8352
 8353
 8354
 8355
 8356
 8357
 8358
 8359
 8360
 8361
 8362
 8363
 8364
 8365
 8366
 8367
 8368
 8369
 8370
 8371
 8372
 8373
 8374
 8375
 8376
 8377
 8378
 8379
 8380
 8381
 8382
 8383
 8384
 8385
 8386
 8387
 8388
 8389
 8390
 8391
 8392
 8393
 8394
 8395
 8396
 8397
 8398
 8399
 8400
 8401
 8402
 8403
 8404
 8405
 8406
 8407
 8408
 8409
 8410
 8411
 8412
 8413
 8414
 8415
 8416
 8417
 8418
 8419
 8420
 8421
 8422
 8423
 8424
 8425
 8426
 8427
 8428
 8429
 8430
 8431
 8432
 8433
 8434
 8435
 8436
 8437
 8438
 8439
 8440
 8441
 8442
 8443
 8444
 8445
 8446
 8447
 8448
 8449
 8450
 8451
 8452
 8453
 8454
 8455
 8456
 8457
 8458
 8459
 8460
 8461
 8462
 8463
 8464
 8465
 8466
 8467
 8468
 8469
 8470
 8471
 8472
 8473
 8474
 8475
 8476
 8477
 8478
 8479
 8480
 8481
 8482
 8483
 8484
 8485
 8486
 8487
 8488
 8489
 8490
 8491
 8492
 8493
 8494
 8495
 8496
 8497
 8498
 8499
 8500
 8501
 8502
 8503
 8504
 8505
 8506
 8507
 8508
 8509
 8510
 8511
 8512
 8513
 8514
 8515
 8516
 8517
 8518
 8519
 8520
 8521
 8522
 8523
 8524
 8525
 8526
 8527
 8528
 8529
 8530
 8531
 8532
 8533
 8534
 8535
 8536
 8537
 8538
 8539
 8540
 8541
 8542
 8543
 8544
 8545
 8546
 8547
 8548
 8549
 8550
 8551
 8552
 8553
 8554
 8555
 8556
 8557
 8558
 8559
 8560
 8561
 8562
 8563
 8564
 8565
 8566
 8567
 8568
 8569
 8570
 8571
 8572
 8573
 8574
 8575
 8576
 8577
 8578
 8579
 8580
 8581
 8582
 8583
 8584
 8585
 8586
 8587
 8588
 8589
 8590
 8591
 8592
 8593
 8594
 8595
 8596
 8597
 8598
 8599
 8600
 8601
 8602
 8603
 8604
 8605
 8606
 8607
 8608
 8609
 8610
 8611
 8612
 8613
 8614
 8615
 8616
 8617
 8618
 8619
 8620
 8621
 8622
 8623
 8624
 8625
 8626
 8627
 8628
 8629
 8630
 8631
 8632
 8633
 8634
 8635
 8636
 8637
 8638
 8639
 8640
 8641
 8642
 8643
 8644
 8645
 8646
 8647
 8648
 8649
 8650
 8651
 8652
 8653
 8654
 8655
 8656
 8657
 8658
 8659
 8660
 8661
 8662
 8663
 8664
 8665
 8666
 8667
 8668
 8669
 8670
 8671
 8672
 8673
 8674
 8675
 8676
 8677
 8678
 8679
 8680
 8681
 8682
 8683
 8684
 8685
 8686
 8687
 8688
 8689
 8690
 8691
 8692
 8693
 8694
 8695
 8696
 8697
 8698
 8699
 8700
 8701
 8702
 8703
 8704
 8705
 8706
 8707
 8708
 8709
 8710
 8711
 8712
 8713
 8714
 8715
 8716
 8717
 8718
 8719
 8720
 8721
 8722
 8723
 8724
 8725
 8726
 8727
 8728
 8729
 8730
 8731
 8732
 8733
 8734
 8735
 8736
 8737
 8738
 8739
 8740
 8741
 8742
 8743
 8744
 8745
 8746
 8747
 8748
 8749
 8750
 8751
 8752
 8753
 8754
 8755
 8756
 8757
 8758
 8759
 8760
 8761
 8762
 8763
 8764
 8765
 8766
 8767
 8768
 8769
 8770
 8771
 8772
 8773
 8774
 8775
 8776
 8777
 8778
 8779
 8780
 8781
 8782
 8783
 8784
 8785
 8786
 8787
 8788
 8789
 8790
 8791
 8792
 8793
 8794
 8795
 8796
 8797
 8798
 8799
 8800
 8801
 8802
 8803
 8804
 8805
 8806
 8807
 8808
 8809
 8810
 8811
 8812
 8813
 8814
 8815
 8816
 8817
 8818
 8819
 8820
 8821
 8822
 8823
 8824
 8825
 8826
 8827
 8828
 8829
 8830
 8831
 8832
 8833
 8834
 8835
 8836
 8837
 8838
 8839
 8840
 8841
 8842
 8843
 8844
 8845
 8846
 8847
 8848
 8849
 8850
 8851
 8852
 8853
 8854
 8855
 8856
 8857
 8858
 8859
 8860
 8861
 8862
 8863
 8864
 8865
 8866
 8867
 8868
 8869
 8870
 8871
 8872
 8873
 8874
 8875
 8876
 8877
 8878
 8879
 8880
 8881
 8882
 8883
 8884
 8885
 8886
 8887
 8888
 8889
 8890
 8891
 8892
 8893
 8894
 8895
 8896
 8897
 8898
 8899
 8900
 8901
 8902
 8903
 8904
 8905
 8906
 8907
 8908
 8909
 8910
 8911
 8912
 8913
 8914
 8915
 8916
 8917
 8918
 8919
 8920
 8921
 8922
 8923
 8924
 8925
 8926
 8927
 8928
 8929
 8930
 8931
 8932
 8933
 8934
 8935
 8936
 8937
 8938
 8939
 8940
 8941
 8942
 8943
 8944
 8945
 8946
 8947
 8948
 8949
 8950
 8951
 8952
 8953
 8954
 8955
 8956
 8957
 8958
 8959
 8960
 8961
 8962
 8963
 8964
 8965
 8966
 8967
 8968
 8969
 8970
 8971
 8972
 8973
 8974
 8975
 8976
 8977
 8978
 8979
 8980
 8981
 8982
 8983
 8984
 8985
 8986
 8987
 8988
 8989
 8990
 8991
 8992
 8993
 8994
 8995
 8996
 8997
 8998
 8999
 9000
 9001
 9002
 9003
 9004
 9005
 9006
 9007
 9008
 9009
 9010
 9011
 9012
 9013
 9014
 9015
 9016
 9017
 9018
 9019
 9020
 9021
 9022
 9023
 9024
 9025
 9026
 9027
 9028
 9029
 9030
 9031
 9032
 9033
 9034
 9035
 9036
 9037
 9038
 9039
 9040
 9041
 9042
 9043
 9044
 9045
 9046
 9047
 9048
 9049
 9050
 9051
 9052
 9053
 9054
 9055
 9056
 9057
 9058
 9059
 9060
 9061
 9062
 9063
 9064
 9065
 9066
 9067
 9068
 9069
 9070
 9071
 9072
 9073
 9074
 9075
 9076
 9077
 9078
 9079
 9080
 9081
 9082
 9083
 9084
 9085
 9086
 9087
 9088
 9089
 9090
 9091
 9092
 9093
 9094
 9095
 9096
 9097
 9098
 9099
 9100
 9101
 9102
 9103
 9104
 9105
 9106
 9107
 9108
 9109
 9110
 9111
 9112
 9113
 9114
 9115
 9116
 9117
 9118
 9119
 9120
 9121
 9122
 9123
 9124
 9125
 9126
 9127
 9128
 9129
 9130
 9131
 9132
 9133
 9134
 9135
 9136
 9137
 9138
 9139
 9140
 9141
 9142
 9143
 9144
 9145
 9146
 9147
 9148
 9149
 9150
 9151
 9152
 9153
 9154
 9155
 9156
 9157
 9158
 9159
 9160
 9161
 9162
 9163
 9164
 9165
 9166
 9167
 9168
 9169
 9170
 9171
 9172
 9173
 9174
 9175
 9176
 9177
 9178
 9179
 9180
 9181
 9182
 9183
 9184
 9185
 9186
 9187
 9188
 9189
 9190
 9191
 9192
 9193
 9194
 9195
 9196
 9197
 9198
 9199
 9200
 9201
 9202
 9203
 9204
 9205
 9206
 9207
 9208
 9209
 9210
 9211
 9212
 9213
 9214
 9215
 9216
 9217
 9218
 9219
 9220
 9221
 9222
 9223
 9224
 9225
 9226
 9227
 9228
 9229
 9230
 9231
 9232
 9233
 9234
 9235
 9236
 9237
 9238
 9239
 9240
 9241
 9242
 9243
 9244
 9245
 9246
 9247
 9248
 9249
 9250
 9251
 9252
 9253
 9254
 9255
 9256
 9257
 9258
 9259
 9260
 9261
 9262
 9263
 9264
 9265
 9266
 9267
 9268
 9269
 9270
 9271
 9272
 9273
 9274
 9275
 9276
 9277
 9278
 9279
 9280
 9281
 9282
 9283
 9284
 9285
 9286
 9287
 9288
 9289
 9290
 9291
 9292
 9293
 9294
 9295
 9296
 9297
 9298
 9299
 9300
 9301
 9302
 9303
 9304
 9305
 9306
 9307
 9308
 9309
 9310
 9311
 9312
 9313
 9314
 9315
 9316
 9317
 9318
 9319
 9320
 9321
 9322
 9323
 9324
 9325
 9326
 9327
 9328
 9329
 9330
 9331
 9332
 9333
 9334
 9335
 9336
 9337
 9338
 9339
 9340
 9341
 9342
 9343
 9344
 9345
 9346
 9347
 9348
 9349
 9350
 9351
 9352
 9353
 9354
 9355
 9356
 9357
 9358
 9359
 9360
 9361
 9362
 9363
 9364
 9365
 9366
 9367
 9368
 9369
 9370
 9371
 9372
 9373
 9374
 9375
 9376
 9377
 9378
 9379
 9380
 9381
 9382
 9383
 9384
 9385
 9386
 9387
 9388
 9389
 9390
 9391
 9392
 9393
 9394
 9395
 9396
 9397
 9398
 9399
 9400
 9401
 9402
 9403
 9404
 9405
 9406
 9407
 9408
 9409
 9410
 9411
 9412
 9413
 9414
 9415
 9416
 9417
 9418
 9419
 9420
 9421
 9422
 9423
 9424
 9425
 9426
 9427
 9428
 9429
 9430
 9431
 9432
 9433
 9434
 9435
 9436
 9437
 9438
 9439
 9440
 9441
 9442
 9443
 9444
 9445
 9446
 9447
 9448
 9449
 9450
 9451
 9452
 9453
 9454
 9455
 9456
 9457
 9458
 9459
 9460
 9461
 9462
 9463
 9464
 9465
 9466
 9467
 9468
 9469
 9470
 9471
 9472
 9473
 9474
 9475
 9476
 9477
 9478
 9479
 9480
 9481
 9482
 9483
 9484
 9485
 9486
 9487
 9488
 9489
 9490
 9491
 9492
 9493
 9494
 9495
 9496
 9497
 9498
 9499
 9500
 9501
 9502
 9503
 9504
 9505
 9506
 9507
 9508
 9509
 9510
 9511
 9512
 9513
 9514
 9515
 9516
 9517
 9518
 9519
 9520
 9521
 9522
 9523
 9524
 9525
 9526
 9527
 9528
 9529
 9530
 9531
 9532
 9533
 9534
 9535
 9536
 9537
 9538
 9539
 9540
 9541
 9542
 9543
 9544
 9545
 9546
 9547
 9548
 9549
 9550
 9551
 9552
 9553
 9554
 9555
 9556
 9557
 9558
 9559
 9560
 9561
 9562
 9563
 9564
 9565
 9566
 9567
 9568
 9569
 9570
 9571
 9572
 9573
 9574
 9575
 9576
 9577
 9578
 9579
 9580
 9581
 9582
 9583
 9584
 9585
 9586
 9587
 9588
 9589
 9590
 9591
 9592
 9593
 9594
 9595
 9596
 9597
 9598
 9599
 9600
 9601
 9602
 9603
 9604
 9605
 9606
 9607
 9608
 9609
 9610
 9611
 9612
 9613
 9614
 9615
 9616
 9617
 9618
 9619
 9620
 9621
 9622
 9623
 9624
 9625
 9626
 9627
 9628
 9629
 9630
 9631
 9632
 9633
 9634
 9635
 9636
 9637
 9638
 9639
 9640
 9641
 9642
 9643
 9644
 9645
 9646
 9647
 9648
 9649
 9650
 9651
 9652
 9653
 9654
 9655
 9656
 9657
 9658
 9659
 9660
 9661
 9662
 9663
 9664
 9665
 9666
 9667
 9668
 9669
 9670
 9671
 9672
 9673
 9674
 9675
 9676
 9677
 9678
 9679
 9680
 9681
 9682
 9683
 9684
 9685
 9686
 9687
 9688
 9689
 9690
 9691
 9692
 9693
 9694
 9695
 9696
 9697
 9698
 9699
 9700
 9701
 9702
 9703
 9704
 9705
 9706
 9707
 9708
 9709
 9710
 9711
 9712
 9713
 9714
 9715
 9716
 9717
 9718
 9719
 9720
 9721
 9722
 9723
 9724
 9725
 9726
 9727
 9728
 9729
 9730
 9731
 9732
 9733
 9734
 9735
 9736
 9737
 9738
 9739
 9740
 9741
 9742
 9743
 9744
 9745
 9746
 9747
 9748
 9749
 9750
 9751
 9752
 9753
 9754
 9755
 9756
 9757
 9758
 9759
 9760
 9761
 9762
 9763
 9764
 9765
 9766
 9767
 9768
 9769
 9770
 9771
 9772
 9773
 9774
 9775
 9776
 9777
 9778
 9779
 9780
 9781
 9782
 9783
 9784
 9785
 9786
 9787
 9788
 9789
 9790
 9791
 9792
 9793
 9794
 9795
 9796
 9797
 9798
 9799
 9800
 9801
 9802
 9803
 9804
 9805
 9806
 9807
 9808
 9809
 9810
 9811
 9812
 9813
 9814
 9815
 9816
 9817
 9818
 9819
 9820
 9821
 9822
 9823
 9824
 9825
 9826
 9827
 9828
 9829
 9830
 9831
 9832
 9833
 9834
 9835
 9836
 9837
 9838
 9839
 9840
 9841
 9842
 9843
 9844
 9845
 9846
 9847
 9848
 9849
 9850
 9851
 9852
 9853
 9854
 9855
 9856
 9857
 9858
 9859
 9860
 9861
 9862
 9863
 9864
 9865
 9866
 9867
 9868
 9869
 9870
 9871
 9872
 9873
 9874
 9875
 9876
 9877
 9878
 9879
 9880
 9881
 9882
 9883
 9884
 9885
 9886
 9887
 9888
 9889
 9890
 9891
 9892
 9893
 9894
 9895
 9896
 9897
 9898
 9899
 9900
 9901
 9902
 9903
 9904
 9905
 9906
 9907
 9908
 9909
 9910
 9911
 9912
 9913
 9914
 9915
 9916
 9917
 9918
 9919
 9920
 9921
 9922
 9923
 9924
 9925
 9926
 9927
 9928
 9929
 9930
 9931
 9932
 9933
 9934
 9935
 9936
 9937
 9938
 9939
 9940
 9941
 9942
 9943
 9944
 9945
 9946
 9947
 9948
 9949
 9950
 9951
 9952
 9953
 9954
 9955
 9956
 9957
 9958
 9959
 9960
 9961
 9962
 9963
 9964
 9965
 9966
 9967
 9968
 9969
 9970
 9971
 9972
 9973
 9974
 9975
 9976
 9977
 9978
 9979
 9980
 9981
 9982
 9983
 9984
 9985
 9986
 9987
 9988
 9989
 9990
 9991
 9992
 9993
 9994
 9995
 9996
 9997
 9998
 9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
/* Ada language support routines for GDB, the GNU debugger.

   Copyright (C) 1992-2019 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */


#include "defs.h"
#include <ctype.h>
#include "demangle.h"
#include "gdb_regex.h"
#include "frame.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "gdbcmd.h"
#include "expression.h"
#include "parser-defs.h"
#include "language.h"
#include "varobj.h"
#include "c-lang.h"
#include "inferior.h"
#include "symfile.h"
#include "objfiles.h"
#include "breakpoint.h"
#include "gdbcore.h"
#include "hashtab.h"
#include "gdb_obstack.h"
#include "ada-lang.h"
#include "completer.h"
#include <sys/stat.h>
#include "ui-out.h"
#include "block.h"
#include "infcall.h"
#include "dictionary.h"
#include "annotate.h"
#include "valprint.h"
#include "source.h"
#include "observable.h"
#include "common/vec.h"
#include "stack.h"
#include "common/gdb_vecs.h"
#include "typeprint.h"
#include "namespace.h"

#include "psymtab.h"
#include "value.h"
#include "mi/mi-common.h"
#include "arch-utils.h"
#include "cli/cli-utils.h"
#include "common/function-view.h"
#include "common/byte-vector.h"
#include <algorithm>

/* Define whether or not the C operator '/' truncates towards zero for
   differently signed operands (truncation direction is undefined in C).
   Copied from valarith.c.  */

#ifndef TRUNCATION_TOWARDS_ZERO
#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
#endif

static struct type *desc_base_type (struct type *);

static struct type *desc_bounds_type (struct type *);

static struct value *desc_bounds (struct value *);

static int fat_pntr_bounds_bitpos (struct type *);

static int fat_pntr_bounds_bitsize (struct type *);

static struct type *desc_data_target_type (struct type *);

static struct value *desc_data (struct value *);

static int fat_pntr_data_bitpos (struct type *);

static int fat_pntr_data_bitsize (struct type *);

static struct value *desc_one_bound (struct value *, int, int);

static int desc_bound_bitpos (struct type *, int, int);

static int desc_bound_bitsize (struct type *, int, int);

static struct type *desc_index_type (struct type *, int);

static int desc_arity (struct type *);

static int ada_type_match (struct type *, struct type *, int);

static int ada_args_match (struct symbol *, struct value **, int);

static struct value *make_array_descriptor (struct type *, struct value *);

static void ada_add_block_symbols (struct obstack *,
				   const struct block *,
				   const lookup_name_info &lookup_name,
				   domain_enum, struct objfile *);

static void ada_add_all_symbols (struct obstack *, const struct block *,
				 const lookup_name_info &lookup_name,
				 domain_enum, int, int *);

static int is_nonfunction (struct block_symbol *, int);

static void add_defn_to_vec (struct obstack *, struct symbol *,
                             const struct block *);

static int num_defns_collected (struct obstack *);

static struct block_symbol *defns_collected (struct obstack *, int);

static struct value *resolve_subexp (expression_up *, int *, int,
                                     struct type *);

static void replace_operator_with_call (expression_up *, int, int, int,
                                        struct symbol *, const struct block *);

static int possible_user_operator_p (enum exp_opcode, struct value **);

static const char *ada_op_name (enum exp_opcode);

static const char *ada_decoded_op_name (enum exp_opcode);

static int numeric_type_p (struct type *);

static int integer_type_p (struct type *);

static int scalar_type_p (struct type *);

static int discrete_type_p (struct type *);

static enum ada_renaming_category parse_old_style_renaming (struct type *,
							    const char **,
							    int *,
							    const char **);

static struct symbol *find_old_style_renaming_symbol (const char *,
						      const struct block *);

static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
                                                int, int);

static struct value *evaluate_subexp_type (struct expression *, int *);

static struct type *ada_find_parallel_type_with_name (struct type *,
                                                      const char *);

static int is_dynamic_field (struct type *, int);

static struct type *to_fixed_variant_branch_type (struct type *,
						  const gdb_byte *,
                                                  CORE_ADDR, struct value *);

static struct type *to_fixed_array_type (struct type *, struct value *, int);

static struct type *to_fixed_range_type (struct type *, struct value *);

static struct type *to_static_fixed_type (struct type *);
static struct type *static_unwrap_type (struct type *type);

static struct value *unwrap_value (struct value *);

static struct type *constrained_packed_array_type (struct type *, long *);

static struct type *decode_constrained_packed_array_type (struct type *);

static long decode_packed_array_bitsize (struct type *);

static struct value *decode_constrained_packed_array (struct value *);

static int ada_is_packed_array_type  (struct type *);

static int ada_is_unconstrained_packed_array_type (struct type *);

static struct value *value_subscript_packed (struct value *, int,
                                             struct value **);

static struct value *coerce_unspec_val_to_type (struct value *,
                                                struct type *);

static int lesseq_defined_than (struct symbol *, struct symbol *);

static int equiv_types (struct type *, struct type *);

static int is_name_suffix (const char *);

static int advance_wild_match (const char **, const char *, int);

static bool wild_match (const char *name, const char *patn);

static struct value *ada_coerce_ref (struct value *);

static LONGEST pos_atr (struct value *);

static struct value *value_pos_atr (struct type *, struct value *);

static struct value *value_val_atr (struct type *, struct value *);

static struct symbol *standard_lookup (const char *, const struct block *,
                                       domain_enum);

static struct value *ada_search_struct_field (const char *, struct value *, int,
                                              struct type *);

static struct value *ada_value_primitive_field (struct value *, int, int,
                                                struct type *);

static int find_struct_field (const char *, struct type *, int,
                              struct type **, int *, int *, int *, int *);

static int ada_resolve_function (struct block_symbol *, int,
                                 struct value **, int, const char *,
                                 struct type *);

static int ada_is_direct_array_type (struct type *);

static void ada_language_arch_info (struct gdbarch *,
				    struct language_arch_info *);

static struct value *ada_index_struct_field (int, struct value *, int,
					     struct type *);

static struct value *assign_aggregate (struct value *, struct value *, 
				       struct expression *,
				       int *, enum noside);

static void aggregate_assign_from_choices (struct value *, struct value *, 
					   struct expression *,
					   int *, LONGEST *, int *,
					   int, LONGEST, LONGEST);

static void aggregate_assign_positional (struct value *, struct value *,
					 struct expression *,
					 int *, LONGEST *, int *, int,
					 LONGEST, LONGEST);


static void aggregate_assign_others (struct value *, struct value *,
				     struct expression *,
				     int *, LONGEST *, int, LONGEST, LONGEST);


static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);


static struct value *ada_evaluate_subexp (struct type *, struct expression *,
					  int *, enum noside);

static void ada_forward_operator_length (struct expression *, int, int *,
					 int *);

static struct type *ada_find_any_type (const char *name);

static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
  (const lookup_name_info &lookup_name);



/* The result of a symbol lookup to be stored in our symbol cache.  */

struct cache_entry
{
  /* The name used to perform the lookup.  */
  const char *name;
  /* The namespace used during the lookup.  */
  domain_enum domain;
  /* The symbol returned by the lookup, or NULL if no matching symbol
     was found.  */
  struct symbol *sym;
  /* The block where the symbol was found, or NULL if no matching
     symbol was found.  */
  const struct block *block;
  /* A pointer to the next entry with the same hash.  */
  struct cache_entry *next;
};

/* The Ada symbol cache, used to store the result of Ada-mode symbol
   lookups in the course of executing the user's commands.

   The cache is implemented using a simple, fixed-sized hash.
   The size is fixed on the grounds that there are not likely to be
   all that many symbols looked up during any given session, regardless
   of the size of the symbol table.  If we decide to go to a resizable
   table, let's just use the stuff from libiberty instead.  */

#define HASH_SIZE 1009

struct ada_symbol_cache
{
  /* An obstack used to store the entries in our cache.  */
  struct obstack cache_space;

  /* The root of the hash table used to implement our symbol cache.  */
  struct cache_entry *root[HASH_SIZE];
};

static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);

/* Maximum-sized dynamic type.  */
static unsigned int varsize_limit;

static const char ada_completer_word_break_characters[] =
#ifdef VMS
  " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
#else
  " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
#endif

/* The name of the symbol to use to get the name of the main subprogram.  */
static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
  = "__gnat_ada_main_program_name";

/* Limit on the number of warnings to raise per expression evaluation.  */
static int warning_limit = 2;

/* Number of warning messages issued; reset to 0 by cleanups after
   expression evaluation.  */
static int warnings_issued = 0;

static const char *known_runtime_file_name_patterns[] = {
  ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
};

static const char *known_auxiliary_function_name_patterns[] = {
  ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
};

/* Maintenance-related settings for this module.  */

static struct cmd_list_element *maint_set_ada_cmdlist;
static struct cmd_list_element *maint_show_ada_cmdlist;

/* Implement the "maintenance set ada" (prefix) command.  */

static void
maint_set_ada_cmd (const char *args, int from_tty)
{
  help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
	     gdb_stdout);
}

/* Implement the "maintenance show ada" (prefix) command.  */

static void
maint_show_ada_cmd (const char *args, int from_tty)
{
  cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
}

/* The "maintenance ada set/show ignore-descriptive-type" value.  */

static int ada_ignore_descriptive_types_p = 0;

			/* Inferior-specific data.  */

/* Per-inferior data for this module.  */

struct ada_inferior_data
{
  /* The ada__tags__type_specific_data type, which is used when decoding
     tagged types.  With older versions of GNAT, this type was directly
     accessible through a component ("tsd") in the object tag.  But this
     is no longer the case, so we cache it for each inferior.  */
  struct type *tsd_type;

  /* The exception_support_info data.  This data is used to determine
     how to implement support for Ada exception catchpoints in a given
     inferior.  */
  const struct exception_support_info *exception_info;
};

/* Our key to this module's inferior data.  */
static const struct inferior_data *ada_inferior_data;

/* A cleanup routine for our inferior data.  */
static void
ada_inferior_data_cleanup (struct inferior *inf, void *arg)
{
  struct ada_inferior_data *data;

  data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
  if (data != NULL)
    xfree (data);
}

/* Return our inferior data for the given inferior (INF).

   This function always returns a valid pointer to an allocated
   ada_inferior_data structure.  If INF's inferior data has not
   been previously set, this functions creates a new one with all
   fields set to zero, sets INF's inferior to it, and then returns
   a pointer to that newly allocated ada_inferior_data.  */

static struct ada_inferior_data *
get_ada_inferior_data (struct inferior *inf)
{
  struct ada_inferior_data *data;

  data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
  if (data == NULL)
    {
      data = XCNEW (struct ada_inferior_data);
      set_inferior_data (inf, ada_inferior_data, data);
    }

  return data;
}

/* Perform all necessary cleanups regarding our module's inferior data
   that is required after the inferior INF just exited.  */

static void
ada_inferior_exit (struct inferior *inf)
{
  ada_inferior_data_cleanup (inf, NULL);
  set_inferior_data (inf, ada_inferior_data, NULL);
}


			/* program-space-specific data.  */

/* This module's per-program-space data.  */
struct ada_pspace_data
{
  /* The Ada symbol cache.  */
  struct ada_symbol_cache *sym_cache;
};

/* Key to our per-program-space data.  */
static const struct program_space_data *ada_pspace_data_handle;

/* Return this module's data for the given program space (PSPACE).
   If not is found, add a zero'ed one now.

   This function always returns a valid object.  */

static struct ada_pspace_data *
get_ada_pspace_data (struct program_space *pspace)
{
  struct ada_pspace_data *data;

  data = ((struct ada_pspace_data *)
	  program_space_data (pspace, ada_pspace_data_handle));
  if (data == NULL)
    {
      data = XCNEW (struct ada_pspace_data);
      set_program_space_data (pspace, ada_pspace_data_handle, data);
    }

  return data;
}

/* The cleanup callback for this module's per-program-space data.  */

static void
ada_pspace_data_cleanup (struct program_space *pspace, void *data)
{
  struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;

  if (pspace_data->sym_cache != NULL)
    ada_free_symbol_cache (pspace_data->sym_cache);
  xfree (pspace_data);
}

                        /* Utilities */

/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
   all typedef layers have been peeled.  Otherwise, return TYPE.

   Normally, we really expect a typedef type to only have 1 typedef layer.
   In other words, we really expect the target type of a typedef type to be
   a non-typedef type.  This is particularly true for Ada units, because
   the language does not have a typedef vs not-typedef distinction.
   In that respect, the Ada compiler has been trying to eliminate as many
   typedef definitions in the debugging information, since they generally
   do not bring any extra information (we still use typedef under certain
   circumstances related mostly to the GNAT encoding).

   Unfortunately, we have seen situations where the debugging information
   generated by the compiler leads to such multiple typedef layers.  For
   instance, consider the following example with stabs:

     .stabs  "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
     .stabs  "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0

   This is an error in the debugging information which causes type
   pck__float_array___XUP to be defined twice, and the second time,
   it is defined as a typedef of a typedef.

   This is on the fringe of legality as far as debugging information is
   concerned, and certainly unexpected.  But it is easy to handle these
   situations correctly, so we can afford to be lenient in this case.  */

static struct type *
ada_typedef_target_type (struct type *type)
{
  while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
    type = TYPE_TARGET_TYPE (type);
  return type;
}

/* Given DECODED_NAME a string holding a symbol name in its
   decoded form (ie using the Ada dotted notation), returns
   its unqualified name.  */

static const char *
ada_unqualified_name (const char *decoded_name)
{
  const char *result;
  
  /* If the decoded name starts with '<', it means that the encoded
     name does not follow standard naming conventions, and thus that
     it is not your typical Ada symbol name.  Trying to unqualify it
     is therefore pointless and possibly erroneous.  */
  if (decoded_name[0] == '<')
    return decoded_name;

  result = strrchr (decoded_name, '.');
  if (result != NULL)
    result++;                   /* Skip the dot...  */
  else
    result = decoded_name;

  return result;
}

/* Return a string starting with '<', followed by STR, and '>'.  */

static std::string
add_angle_brackets (const char *str)
{
  return string_printf ("<%s>", str);
}

static const char *
ada_get_gdb_completer_word_break_characters (void)
{
  return ada_completer_word_break_characters;
}

/* Print an array element index using the Ada syntax.  */

static void
ada_print_array_index (struct value *index_value, struct ui_file *stream,
                       const struct value_print_options *options)
{
  LA_VALUE_PRINT (index_value, stream, options);
  fprintf_filtered (stream, " => ");
}

/* la_watch_location_expression for Ada.  */

gdb::unique_xmalloc_ptr<char>
ada_watch_location_expression (struct type *type, CORE_ADDR addr)
{
  type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
  std::string name = type_to_string (type);
  return gdb::unique_xmalloc_ptr<char>
    (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
}

/* Assuming VECT points to an array of *SIZE objects of size
   ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
   updating *SIZE as necessary and returning the (new) array.  */

void *
grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
{
  if (*size < min_size)
    {
      *size *= 2;
      if (*size < min_size)
        *size = min_size;
      vect = xrealloc (vect, *size * element_size);
    }
  return vect;
}

/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
   suffix of FIELD_NAME beginning "___".  */

static int
field_name_match (const char *field_name, const char *target)
{
  int len = strlen (target);

  return
    (strncmp (field_name, target, len) == 0
     && (field_name[len] == '\0'
         || (startswith (field_name + len, "___")
             && strcmp (field_name + strlen (field_name) - 6,
                        "___XVN") != 0)));
}


/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
   a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
   and return its index.  This function also handles fields whose name
   have ___ suffixes because the compiler sometimes alters their name
   by adding such a suffix to represent fields with certain constraints.
   If the field could not be found, return a negative number if
   MAYBE_MISSING is set.  Otherwise raise an error.  */

int
ada_get_field_index (const struct type *type, const char *field_name,
                     int maybe_missing)
{
  int fieldno;
  struct type *struct_type = check_typedef ((struct type *) type);

  for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
    if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
      return fieldno;

  if (!maybe_missing)
    error (_("Unable to find field %s in struct %s.  Aborting"),
           field_name, TYPE_NAME (struct_type));

  return -1;
}

/* The length of the prefix of NAME prior to any "___" suffix.  */

int
ada_name_prefix_len (const char *name)
{
  if (name == NULL)
    return 0;
  else
    {
      const char *p = strstr (name, "___");

      if (p == NULL)
        return strlen (name);
      else
        return p - name;
    }
}

/* Return non-zero if SUFFIX is a suffix of STR.
   Return zero if STR is null.  */

static int
is_suffix (const char *str, const char *suffix)
{
  int len1, len2;

  if (str == NULL)
    return 0;
  len1 = strlen (str);
  len2 = strlen (suffix);
  return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
}

/* The contents of value VAL, treated as a value of type TYPE.  The
   result is an lval in memory if VAL is.  */

static struct value *
coerce_unspec_val_to_type (struct value *val, struct type *type)
{
  type = ada_check_typedef (type);
  if (value_type (val) == type)
    return val;
  else
    {
      struct value *result;

      /* Make sure that the object size is not unreasonable before
         trying to allocate some memory for it.  */
      ada_ensure_varsize_limit (type);

      if (value_lazy (val)
          || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
	result = allocate_value_lazy (type);
      else
	{
	  result = allocate_value (type);
	  value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
	}
      set_value_component_location (result, val);
      set_value_bitsize (result, value_bitsize (val));
      set_value_bitpos (result, value_bitpos (val));
      set_value_address (result, value_address (val));
      return result;
    }
}

static const gdb_byte *
cond_offset_host (const gdb_byte *valaddr, long offset)
{
  if (valaddr == NULL)
    return NULL;
  else
    return valaddr + offset;
}

static CORE_ADDR
cond_offset_target (CORE_ADDR address, long offset)
{
  if (address == 0)
    return 0;
  else
    return address + offset;
}

/* Issue a warning (as for the definition of warning in utils.c, but
   with exactly one argument rather than ...), unless the limit on the
   number of warnings has passed during the evaluation of the current
   expression.  */

/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
   provided by "complaint".  */
static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);

static void
lim_warning (const char *format, ...)
{
  va_list args;

  va_start (args, format);
  warnings_issued += 1;
  if (warnings_issued <= warning_limit)
    vwarning (format, args);

  va_end (args);
}

/* Issue an error if the size of an object of type T is unreasonable,
   i.e. if it would be a bad idea to allocate a value of this type in
   GDB.  */

void
ada_ensure_varsize_limit (const struct type *type)
{
  if (TYPE_LENGTH (type) > varsize_limit)
    error (_("object size is larger than varsize-limit"));
}

/* Maximum value of a SIZE-byte signed integer type.  */
static LONGEST
max_of_size (int size)
{
  LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);

  return top_bit | (top_bit - 1);
}

/* Minimum value of a SIZE-byte signed integer type.  */
static LONGEST
min_of_size (int size)
{
  return -max_of_size (size) - 1;
}

/* Maximum value of a SIZE-byte unsigned integer type.  */
static ULONGEST
umax_of_size (int size)
{
  ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);

  return top_bit | (top_bit - 1);
}

/* Maximum value of integral type T, as a signed quantity.  */
static LONGEST
max_of_type (struct type *t)
{
  if (TYPE_UNSIGNED (t))
    return (LONGEST) umax_of_size (TYPE_LENGTH (t));
  else
    return max_of_size (TYPE_LENGTH (t));
}

/* Minimum value of integral type T, as a signed quantity.  */
static LONGEST
min_of_type (struct type *t)
{
  if (TYPE_UNSIGNED (t)) 
    return 0;
  else
    return min_of_size (TYPE_LENGTH (t));
}

/* The largest value in the domain of TYPE, a discrete type, as an integer.  */
LONGEST
ada_discrete_type_high_bound (struct type *type)
{
  type = resolve_dynamic_type (type, NULL, 0);
  switch (TYPE_CODE (type))
    {
    case TYPE_CODE_RANGE:
      return TYPE_HIGH_BOUND (type);
    case TYPE_CODE_ENUM:
      return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
    case TYPE_CODE_BOOL:
      return 1;
    case TYPE_CODE_CHAR:
    case TYPE_CODE_INT:
      return max_of_type (type);
    default:
      error (_("Unexpected type in ada_discrete_type_high_bound."));
    }
}

/* The smallest value in the domain of TYPE, a discrete type, as an integer.  */
LONGEST
ada_discrete_type_low_bound (struct type *type)
{
  type = resolve_dynamic_type (type, NULL, 0);
  switch (TYPE_CODE (type))
    {
    case TYPE_CODE_RANGE:
      return TYPE_LOW_BOUND (type);
    case TYPE_CODE_ENUM:
      return TYPE_FIELD_ENUMVAL (type, 0);
    case TYPE_CODE_BOOL:
      return 0;
    case TYPE_CODE_CHAR:
    case TYPE_CODE_INT:
      return min_of_type (type);
    default:
      error (_("Unexpected type in ada_discrete_type_low_bound."));
    }
}

/* The identity on non-range types.  For range types, the underlying
   non-range scalar type.  */

static struct type *
get_base_type (struct type *type)
{
  while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
    {
      if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
        return type;
      type = TYPE_TARGET_TYPE (type);
    }
  return type;
}

/* Return a decoded version of the given VALUE.  This means returning
   a value whose type is obtained by applying all the GNAT-specific
   encondings, making the resulting type a static but standard description
   of the initial type.  */

struct value *
ada_get_decoded_value (struct value *value)
{
  struct type *type = ada_check_typedef (value_type (value));

  if (ada_is_array_descriptor_type (type)
      || (ada_is_constrained_packed_array_type (type)
          && TYPE_CODE (type) != TYPE_CODE_PTR))
    {
      if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)  /* array access type.  */
        value = ada_coerce_to_simple_array_ptr (value);
      else
        value = ada_coerce_to_simple_array (value);
    }
  else
    value = ada_to_fixed_value (value);

  return value;
}

/* Same as ada_get_decoded_value, but with the given TYPE.
   Because there is no associated actual value for this type,
   the resulting type might be a best-effort approximation in
   the case of dynamic types.  */

struct type *
ada_get_decoded_type (struct type *type)
{
  type = to_static_fixed_type (type);
  if (ada_is_constrained_packed_array_type (type))
    type = ada_coerce_to_simple_array_type (type);
  return type;
}



                                /* Language Selection */

/* If the main program is in Ada, return language_ada, otherwise return LANG
   (the main program is in Ada iif the adainit symbol is found).  */

enum language
ada_update_initial_language (enum language lang)
{
  if (lookup_minimal_symbol ("adainit", (const char *) NULL,
                             (struct objfile *) NULL).minsym != NULL)
    return language_ada;

  return lang;
}

/* If the main procedure is written in Ada, then return its name.
   The result is good until the next call.  Return NULL if the main
   procedure doesn't appear to be in Ada.  */

char *
ada_main_name (void)
{
  struct bound_minimal_symbol msym;
  static gdb::unique_xmalloc_ptr<char> main_program_name;

  /* For Ada, the name of the main procedure is stored in a specific
     string constant, generated by the binder.  Look for that symbol,
     extract its address, and then read that string.  If we didn't find
     that string, then most probably the main procedure is not written
     in Ada.  */
  msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);

  if (msym.minsym != NULL)
    {
      CORE_ADDR main_program_name_addr;
      int err_code;

      main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
      if (main_program_name_addr == 0)
        error (_("Invalid address for Ada main program name."));

      target_read_string (main_program_name_addr, &main_program_name,
                          1024, &err_code);

      if (err_code != 0)
        return NULL;
      return main_program_name.get ();
    }

  /* The main procedure doesn't seem to be in Ada.  */
  return NULL;
}

                                /* Symbols */

/* Table of Ada operators and their GNAT-encoded names.  Last entry is pair
   of NULLs.  */

const struct ada_opname_map ada_opname_table[] = {
  {"Oadd", "\"+\"", BINOP_ADD},
  {"Osubtract", "\"-\"", BINOP_SUB},
  {"Omultiply", "\"*\"", BINOP_MUL},
  {"Odivide", "\"/\"", BINOP_DIV},
  {"Omod", "\"mod\"", BINOP_MOD},
  {"Orem", "\"rem\"", BINOP_REM},
  {"Oexpon", "\"**\"", BINOP_EXP},
  {"Olt", "\"<\"", BINOP_LESS},
  {"Ole", "\"<=\"", BINOP_LEQ},
  {"Ogt", "\">\"", BINOP_GTR},
  {"Oge", "\">=\"", BINOP_GEQ},
  {"Oeq", "\"=\"", BINOP_EQUAL},
  {"One", "\"/=\"", BINOP_NOTEQUAL},
  {"Oand", "\"and\"", BINOP_BITWISE_AND},
  {"Oor", "\"or\"", BINOP_BITWISE_IOR},
  {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
  {"Oconcat", "\"&\"", BINOP_CONCAT},
  {"Oabs", "\"abs\"", UNOP_ABS},
  {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
  {"Oadd", "\"+\"", UNOP_PLUS},
  {"Osubtract", "\"-\"", UNOP_NEG},
  {NULL, NULL}
};

/* The "encoded" form of DECODED, according to GNAT conventions.  The
   result is valid until the next call to ada_encode.  If
   THROW_ERRORS, throw an error if invalid operator name is found.
   Otherwise, return NULL in that case.  */

static char *
ada_encode_1 (const char *decoded, bool throw_errors)
{
  static char *encoding_buffer = NULL;
  static size_t encoding_buffer_size = 0;
  const char *p;
  int k;

  if (decoded == NULL)
    return NULL;

  GROW_VECT (encoding_buffer, encoding_buffer_size,
             2 * strlen (decoded) + 10);

  k = 0;
  for (p = decoded; *p != '\0'; p += 1)
    {
      if (*p == '.')
        {
          encoding_buffer[k] = encoding_buffer[k + 1] = '_';
          k += 2;
        }
      else if (*p == '"')
        {
          const struct ada_opname_map *mapping;

          for (mapping = ada_opname_table;
               mapping->encoded != NULL
               && !startswith (p, mapping->decoded); mapping += 1)
            ;
          if (mapping->encoded == NULL)
	    {
	      if (throw_errors)
		error (_("invalid Ada operator name: %s"), p);
	      else
		return NULL;
	    }
          strcpy (encoding_buffer + k, mapping->encoded);
          k += strlen (mapping->encoded);
          break;
        }
      else
        {
          encoding_buffer[k] = *p;
          k += 1;
        }
    }

  encoding_buffer[k] = '\0';
  return encoding_buffer;
}

/* The "encoded" form of DECODED, according to GNAT conventions.
   The result is valid until the next call to ada_encode.  */

char *
ada_encode (const char *decoded)
{
  return ada_encode_1 (decoded, true);
}

/* Return NAME folded to lower case, or, if surrounded by single
   quotes, unfolded, but with the quotes stripped away.  Result good
   to next call.  */

char *
ada_fold_name (const char *name)
{
  static char *fold_buffer = NULL;
  static size_t fold_buffer_size = 0;

  int len = strlen (name);
  GROW_VECT (fold_buffer, fold_buffer_size, len + 1);

  if (name[0] == '\'')
    {
      strncpy (fold_buffer, name + 1, len - 2);
      fold_buffer[len - 2] = '\000';
    }
  else
    {
      int i;

      for (i = 0; i <= len; i += 1)
        fold_buffer[i] = tolower (name[i]);
    }

  return fold_buffer;
}

/* Return nonzero if C is either a digit or a lowercase alphabet character.  */

static int
is_lower_alphanum (const char c)
{
  return (isdigit (c) || (isalpha (c) && islower (c)));
}

/* ENCODED is the linkage name of a symbol and LEN contains its length.
   This function saves in LEN the length of that same symbol name but
   without either of these suffixes:
     . .{DIGIT}+
     . ${DIGIT}+
     . ___{DIGIT}+
     . __{DIGIT}+.

   These are suffixes introduced by the compiler for entities such as
   nested subprogram for instance, in order to avoid name clashes.
   They do not serve any purpose for the debugger.  */

static void
ada_remove_trailing_digits (const char *encoded, int *len)
{
  if (*len > 1 && isdigit (encoded[*len - 1]))
    {
      int i = *len - 2;

      while (i > 0 && isdigit (encoded[i]))
        i--;
      if (i >= 0 && encoded[i] == '.')
        *len = i;
      else if (i >= 0 && encoded[i] == '$')
        *len = i;
      else if (i >= 2 && startswith (encoded + i - 2, "___"))
        *len = i - 2;
      else if (i >= 1 && startswith (encoded + i - 1, "__"))
        *len = i - 1;
    }
}

/* Remove the suffix introduced by the compiler for protected object
   subprograms.  */

static void
ada_remove_po_subprogram_suffix (const char *encoded, int *len)
{
  /* Remove trailing N.  */

  /* Protected entry subprograms are broken into two
     separate subprograms: The first one is unprotected, and has
     a 'N' suffix; the second is the protected version, and has
     the 'P' suffix.  The second calls the first one after handling
     the protection.  Since the P subprograms are internally generated,
     we leave these names undecoded, giving the user a clue that this
     entity is internal.  */

  if (*len > 1
      && encoded[*len - 1] == 'N'
      && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
    *len = *len - 1;
}

/* Remove trailing X[bn]* suffixes (indicating names in package bodies).  */

static void
ada_remove_Xbn_suffix (const char *encoded, int *len)
{
  int i = *len - 1;

  while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
    i--;

  if (encoded[i] != 'X')
    return;

  if (i == 0)
    return;

  if (isalnum (encoded[i-1]))
    *len = i;
}

/* If ENCODED follows the GNAT entity encoding conventions, then return
   the decoded form of ENCODED.  Otherwise, return "<%s>" where "%s" is
   replaced by ENCODED.

   The resulting string is valid until the next call of ada_decode.
   If the string is unchanged by decoding, the original string pointer
   is returned.  */

const char *
ada_decode (const char *encoded)
{
  int i, j;
  int len0;
  const char *p;
  char *decoded;
  int at_start_name;
  static char *decoding_buffer = NULL;
  static size_t decoding_buffer_size = 0;

  /* With function descriptors on PPC64, the value of a symbol named
     ".FN", if it exists, is the entry point of the function "FN".  */
  if (encoded[0] == '.')
    encoded += 1;

  /* The name of the Ada main procedure starts with "_ada_".
     This prefix is not part of the decoded name, so skip this part
     if we see this prefix.  */
  if (startswith (encoded, "_ada_"))
    encoded += 5;

  /* If the name starts with '_', then it is not a properly encoded
     name, so do not attempt to decode it.  Similarly, if the name
     starts with '<', the name should not be decoded.  */
  if (encoded[0] == '_' || encoded[0] == '<')
    goto Suppress;

  len0 = strlen (encoded);

  ada_remove_trailing_digits (encoded, &len0);
  ada_remove_po_subprogram_suffix (encoded, &len0);

  /* Remove the ___X.* suffix if present.  Do not forget to verify that
     the suffix is located before the current "end" of ENCODED.  We want
     to avoid re-matching parts of ENCODED that have previously been
     marked as discarded (by decrementing LEN0).  */
  p = strstr (encoded, "___");
  if (p != NULL && p - encoded < len0 - 3)
    {
      if (p[3] == 'X')
        len0 = p - encoded;
      else
        goto Suppress;
    }

  /* Remove any trailing TKB suffix.  It tells us that this symbol
     is for the body of a task, but that information does not actually
     appear in the decoded name.  */

  if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
    len0 -= 3;

  /* Remove any trailing TB suffix.  The TB suffix is slightly different
     from the TKB suffix because it is used for non-anonymous task
     bodies.  */

  if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
    len0 -= 2;

  /* Remove trailing "B" suffixes.  */
  /* FIXME: brobecker/2006-04-19: Not sure what this are used for...  */

  if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
    len0 -= 1;

  /* Make decoded big enough for possible expansion by operator name.  */

  GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
  decoded = decoding_buffer;

  /* Remove trailing __{digit}+ or trailing ${digit}+.  */

  if (len0 > 1 && isdigit (encoded[len0 - 1]))
    {
      i = len0 - 2;
      while ((i >= 0 && isdigit (encoded[i]))
             || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
        i -= 1;
      if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
        len0 = i - 1;
      else if (encoded[i] == '$')
        len0 = i;
    }

  /* The first few characters that are not alphabetic are not part
     of any encoding we use, so we can copy them over verbatim.  */

  for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
    decoded[j] = encoded[i];

  at_start_name = 1;
  while (i < len0)
    {
      /* Is this a symbol function?  */
      if (at_start_name && encoded[i] == 'O')
        {
          int k;

          for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
            {
              int op_len = strlen (ada_opname_table[k].encoded);
              if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
                            op_len - 1) == 0)
                  && !isalnum (encoded[i + op_len]))
                {
                  strcpy (decoded + j, ada_opname_table[k].decoded);
                  at_start_name = 0;
                  i += op_len;
                  j += strlen (ada_opname_table[k].decoded);
                  break;
                }
            }
          if (ada_opname_table[k].encoded != NULL)
            continue;
        }
      at_start_name = 0;

      /* Replace "TK__" with "__", which will eventually be translated
         into "." (just below).  */

      if (i < len0 - 4 && startswith (encoded + i, "TK__"))
        i += 2;

      /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
         be translated into "." (just below).  These are internal names
         generated for anonymous blocks inside which our symbol is nested.  */

      if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
          && encoded [i+2] == 'B' && encoded [i+3] == '_'
          && isdigit (encoded [i+4]))
        {
          int k = i + 5;
          
          while (k < len0 && isdigit (encoded[k]))
            k++;  /* Skip any extra digit.  */

          /* Double-check that the "__B_{DIGITS}+" sequence we found
             is indeed followed by "__".  */
          if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
            i = k;
        }

      /* Remove _E{DIGITS}+[sb] */

      /* Just as for protected object subprograms, there are 2 categories
         of subprograms created by the compiler for each entry.  The first
         one implements the actual entry code, and has a suffix following
         the convention above; the second one implements the barrier and
         uses the same convention as above, except that the 'E' is replaced
         by a 'B'.

         Just as above, we do not decode the name of barrier functions
         to give the user a clue that the code he is debugging has been
         internally generated.  */

      if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
          && isdigit (encoded[i+2]))
        {
          int k = i + 3;

          while (k < len0 && isdigit (encoded[k]))
            k++;

          if (k < len0
              && (encoded[k] == 'b' || encoded[k] == 's'))
            {
              k++;
              /* Just as an extra precaution, make sure that if this
                 suffix is followed by anything else, it is a '_'.
                 Otherwise, we matched this sequence by accident.  */
              if (k == len0
                  || (k < len0 && encoded[k] == '_'))
                i = k;
            }
        }

      /* Remove trailing "N" in [a-z0-9]+N__.  The N is added by
         the GNAT front-end in protected object subprograms.  */

      if (i < len0 + 3
          && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
        {
          /* Backtrack a bit up until we reach either the begining of
             the encoded name, or "__".  Make sure that we only find
             digits or lowercase characters.  */
          const char *ptr = encoded + i - 1;

          while (ptr >= encoded && is_lower_alphanum (ptr[0]))
            ptr--;
          if (ptr < encoded
              || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
            i++;
        }

      if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
        {
          /* This is a X[bn]* sequence not separated from the previous
             part of the name with a non-alpha-numeric character (in other
             words, immediately following an alpha-numeric character), then
             verify that it is placed at the end of the encoded name.  If
             not, then the encoding is not valid and we should abort the
             decoding.  Otherwise, just skip it, it is used in body-nested
             package names.  */
          do
            i += 1;
          while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
          if (i < len0)
            goto Suppress;
        }
      else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
        {
         /* Replace '__' by '.'.  */
          decoded[j] = '.';
          at_start_name = 1;
          i += 2;
          j += 1;
        }
      else
        {
          /* It's a character part of the decoded name, so just copy it
             over.  */
          decoded[j] = encoded[i];
          i += 1;
          j += 1;
        }
    }
  decoded[j] = '\000';

  /* Decoded names should never contain any uppercase character.
     Double-check this, and abort the decoding if we find one.  */

  for (i = 0; decoded[i] != '\0'; i += 1)
    if (isupper (decoded[i]) || decoded[i] == ' ')
      goto Suppress;

  if (strcmp (decoded, encoded) == 0)
    return encoded;
  else
    return decoded;

Suppress:
  GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
  decoded = decoding_buffer;
  if (encoded[0] == '<')
    strcpy (decoded, encoded);
  else
    xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
  return decoded;

}

/* Table for keeping permanent unique copies of decoded names.  Once
   allocated, names in this table are never released.  While this is a
   storage leak, it should not be significant unless there are massive
   changes in the set of decoded names in successive versions of a 
   symbol table loaded during a single session.  */
static struct htab *decoded_names_store;

/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
   in the language-specific part of GSYMBOL, if it has not been
   previously computed.  Tries to save the decoded name in the same
   obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
   in any case, the decoded symbol has a lifetime at least that of
   GSYMBOL).
   The GSYMBOL parameter is "mutable" in the C++ sense: logically
   const, but nevertheless modified to a semantically equivalent form
   when a decoded name is cached in it.  */

const char *
ada_decode_symbol (const struct general_symbol_info *arg)
{
  struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
  const char **resultp =
    &gsymbol->language_specific.demangled_name;

  if (!gsymbol->ada_mangled)
    {
      const char *decoded = ada_decode (gsymbol->name);
      struct obstack *obstack = gsymbol->language_specific.obstack;

      gsymbol->ada_mangled = 1;

      if (obstack != NULL)
	*resultp
	  = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
      else
        {
	  /* Sometimes, we can't find a corresponding objfile, in
	     which case, we put the result on the heap.  Since we only
	     decode when needed, we hope this usually does not cause a
	     significant memory leak (FIXME).  */

          char **slot = (char **) htab_find_slot (decoded_names_store,
                                                  decoded, INSERT);

          if (*slot == NULL)
            *slot = xstrdup (decoded);
          *resultp = *slot;
        }
    }

  return *resultp;
}

static char *
ada_la_decode (const char *encoded, int options)
{
  return xstrdup (ada_decode (encoded));
}

/* Implement la_sniff_from_mangled_name for Ada.  */

static int
ada_sniff_from_mangled_name (const char *mangled, char **out)
{
  const char *demangled = ada_decode (mangled);

  *out = NULL;

  if (demangled != mangled && demangled != NULL && demangled[0] != '<')
    {
      /* Set the gsymbol language to Ada, but still return 0.
	 Two reasons for that:

	 1. For Ada, we prefer computing the symbol's decoded name
	 on the fly rather than pre-compute it, in order to save
	 memory (Ada projects are typically very large).

	 2. There are some areas in the definition of the GNAT
	 encoding where, with a bit of bad luck, we might be able
	 to decode a non-Ada symbol, generating an incorrect
	 demangled name (Eg: names ending with "TB" for instance
	 are identified as task bodies and so stripped from
	 the decoded name returned).

	 Returning 1, here, but not setting *DEMANGLED, helps us get a
	 little bit of the best of both worlds.  Because we're last,
	 we should not affect any of the other languages that were
	 able to demangle the symbol before us; we get to correctly
	 tag Ada symbols as such; and even if we incorrectly tagged a
	 non-Ada symbol, which should be rare, any routing through the
	 Ada language should be transparent (Ada tries to behave much
	 like C/C++ with non-Ada symbols).  */
      return 1;
    }

  return 0;
}



                                /* Arrays */

/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
   generated by the GNAT compiler to describe the index type used
   for each dimension of an array, check whether it follows the latest
   known encoding.  If not, fix it up to conform to the latest encoding.
   Otherwise, do nothing.  This function also does nothing if
   INDEX_DESC_TYPE is NULL.

   The GNAT encoding used to describle the array index type evolved a bit.
   Initially, the information would be provided through the name of each
   field of the structure type only, while the type of these fields was
   described as unspecified and irrelevant.  The debugger was then expected
   to perform a global type lookup using the name of that field in order
   to get access to the full index type description.  Because these global
   lookups can be very expensive, the encoding was later enhanced to make
   the global lookup unnecessary by defining the field type as being
   the full index type description.

   The purpose of this routine is to allow us to support older versions
   of the compiler by detecting the use of the older encoding, and by
   fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
   we essentially replace each field's meaningless type by the associated
   index subtype).  */

void
ada_fixup_array_indexes_type (struct type *index_desc_type)
{
  int i;

  if (index_desc_type == NULL)
    return;
  gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);

  /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
     to check one field only, no need to check them all).  If not, return
     now.

     If our INDEX_DESC_TYPE was generated using the older encoding,
     the field type should be a meaningless integer type whose name
     is not equal to the field name.  */
  if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
      && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
                 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
    return;

  /* Fixup each field of INDEX_DESC_TYPE.  */
  for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
   {
     const char *name = TYPE_FIELD_NAME (index_desc_type, i);
     struct type *raw_type = ada_check_typedef (ada_find_any_type (name));

     if (raw_type)
       TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
   }
}

/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors.  */

static const char *bound_name[] = {
  "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
  "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
};

/* Maximum number of array dimensions we are prepared to handle.  */

#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))


/* The desc_* routines return primitive portions of array descriptors
   (fat pointers).  */

/* The descriptor or array type, if any, indicated by TYPE; removes
   level of indirection, if needed.  */

static struct type *
desc_base_type (struct type *type)
{
  if (type == NULL)
    return NULL;
  type = ada_check_typedef (type);
  if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
    type = ada_typedef_target_type (type);

  if (type != NULL
      && (TYPE_CODE (type) == TYPE_CODE_PTR
          || TYPE_CODE (type) == TYPE_CODE_REF))
    return ada_check_typedef (TYPE_TARGET_TYPE (type));
  else
    return type;
}

/* True iff TYPE indicates a "thin" array pointer type.  */

static int
is_thin_pntr (struct type *type)
{
  return
    is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
    || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
}

/* The descriptor type for thin pointer type TYPE.  */

static struct type *
thin_descriptor_type (struct type *type)
{
  struct type *base_type = desc_base_type (type);

  if (base_type == NULL)
    return NULL;
  if (is_suffix (ada_type_name (base_type), "___XVE"))
    return base_type;
  else
    {
      struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");

      if (alt_type == NULL)
        return base_type;
      else
        return alt_type;
    }
}

/* A pointer to the array data for thin-pointer value VAL.  */

static struct value *
thin_data_pntr (struct value *val)
{
  struct type *type = ada_check_typedef (value_type (val));
  struct type *data_type = desc_data_target_type (thin_descriptor_type (type));

  data_type = lookup_pointer_type (data_type);

  if (TYPE_CODE (type) == TYPE_CODE_PTR)
    return value_cast (data_type, value_copy (val));
  else
    return value_from_longest (data_type, value_address (val));
}

/* True iff TYPE indicates a "thick" array pointer type.  */

static int
is_thick_pntr (struct type *type)
{
  type = desc_base_type (type);
  return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
          && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
}

/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
   pointer to one, the type of its bounds data; otherwise, NULL.  */

static struct type *
desc_bounds_type (struct type *type)
{
  struct type *r;

  type = desc_base_type (type);

  if (type == NULL)
    return NULL;
  else if (is_thin_pntr (type))
    {
      type = thin_descriptor_type (type);
      if (type == NULL)
        return NULL;
      r = lookup_struct_elt_type (type, "BOUNDS", 1);
      if (r != NULL)
        return ada_check_typedef (r);
    }
  else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
    {
      r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
      if (r != NULL)
        return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
    }
  return NULL;
}

/* If ARR is an array descriptor (fat or thin pointer), or pointer to
   one, a pointer to its bounds data.   Otherwise NULL.  */

static struct value *
desc_bounds (struct value *arr)
{
  struct type *type = ada_check_typedef (value_type (arr));

  if (is_thin_pntr (type))
    {
      struct type *bounds_type =
        desc_bounds_type (thin_descriptor_type (type));
      LONGEST addr;

      if (bounds_type == NULL)
        error (_("Bad GNAT array descriptor"));

      /* NOTE: The following calculation is not really kosher, but
         since desc_type is an XVE-encoded type (and shouldn't be),
         the correct calculation is a real pain.  FIXME (and fix GCC).  */
      if (TYPE_CODE (type) == TYPE_CODE_PTR)
        addr = value_as_long (arr);
      else
        addr = value_address (arr);

      return
        value_from_longest (lookup_pointer_type (bounds_type),
                            addr - TYPE_LENGTH (bounds_type));
    }

  else if (is_thick_pntr (type))
    {
      struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
					       _("Bad GNAT array descriptor"));
      struct type *p_bounds_type = value_type (p_bounds);

      if (p_bounds_type
	  && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
	{
	  struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);

	  if (TYPE_STUB (target_type))
	    p_bounds = value_cast (lookup_pointer_type
				   (ada_check_typedef (target_type)),
				   p_bounds);
	}
      else
	error (_("Bad GNAT array descriptor"));

      return p_bounds;
    }
  else
    return NULL;
}

/* If TYPE is the type of an array-descriptor (fat pointer),  the bit
   position of the field containing the address of the bounds data.  */

static int
fat_pntr_bounds_bitpos (struct type *type)
{
  return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
}

/* If TYPE is the type of an array-descriptor (fat pointer), the bit
   size of the field containing the address of the bounds data.  */

static int
fat_pntr_bounds_bitsize (struct type *type)
{
  type = desc_base_type (type);

  if (TYPE_FIELD_BITSIZE (type, 1) > 0)
    return TYPE_FIELD_BITSIZE (type, 1);
  else
    return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
}

/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
   pointer to one, the type of its array data (a array-with-no-bounds type);
   otherwise, NULL.  Use ada_type_of_array to get an array type with bounds
   data.  */

static struct type *
desc_data_target_type (struct type *type)
{
  type = desc_base_type (type);

  /* NOTE: The following is bogus; see comment in desc_bounds.  */
  if (is_thin_pntr (type))
    return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
  else if (is_thick_pntr (type))
    {
      struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);

      if (data_type
	  && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
	return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
    }

  return NULL;
}

/* If ARR is an array descriptor (fat or thin pointer), a pointer to
   its array data.  */

static struct value *
desc_data (struct value *arr)
{
  struct type *type = value_type (arr);

  if (is_thin_pntr (type))
    return thin_data_pntr (arr);
  else if (is_thick_pntr (type))
    return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
                             _("Bad GNAT array descriptor"));
  else
    return NULL;
}


/* If TYPE is the type of an array-descriptor (fat pointer), the bit
   position of the field containing the address of the data.  */

static int
fat_pntr_data_bitpos (struct type *type)
{
  return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
}

/* If TYPE is the type of an array-descriptor (fat pointer), the bit
   size of the field containing the address of the data.  */

static int
fat_pntr_data_bitsize (struct type *type)
{
  type = desc_base_type (type);

  if (TYPE_FIELD_BITSIZE (type, 0) > 0)
    return TYPE_FIELD_BITSIZE (type, 0);
  else
    return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
}

/* If BOUNDS is an array-bounds structure (or pointer to one), return
   the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
   bound, if WHICH is 1.  The first bound is I=1.  */

static struct value *
desc_one_bound (struct value *bounds, int i, int which)
{
  return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
                           _("Bad GNAT array descriptor bounds"));
}

/* If BOUNDS is an array-bounds structure type, return the bit position
   of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
   bound, if WHICH is 1.  The first bound is I=1.  */

static int
desc_bound_bitpos (struct type *type, int i, int which)
{
  return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
}

/* If BOUNDS is an array-bounds structure type, return the bit field size
   of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
   bound, if WHICH is 1.  The first bound is I=1.  */

static int
desc_bound_bitsize (struct type *type, int i, int which)
{
  type = desc_base_type (type);

  if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
    return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
  else
    return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
}

/* If TYPE is the type of an array-bounds structure, the type of its
   Ith bound (numbering from 1).  Otherwise, NULL.  */

static struct type *
desc_index_type (struct type *type, int i)
{
  type = desc_base_type (type);

  if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
    return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
  else
    return NULL;
}

/* The number of index positions in the array-bounds type TYPE.
   Return 0 if TYPE is NULL.  */

static int
desc_arity (struct type *type)
{
  type = desc_base_type (type);

  if (type != NULL)
    return TYPE_NFIELDS (type) / 2;
  return 0;
}

/* Non-zero iff TYPE is a simple array type (not a pointer to one) or 
   an array descriptor type (representing an unconstrained array
   type).  */

static int
ada_is_direct_array_type (struct type *type)
{
  if (type == NULL)
    return 0;
  type = ada_check_typedef (type);
  return (TYPE_CODE (type) == TYPE_CODE_ARRAY
          || ada_is_array_descriptor_type (type));
}

/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
 * to one.  */

static int
ada_is_array_type (struct type *type)
{
  while (type != NULL 
	 && (TYPE_CODE (type) == TYPE_CODE_PTR 
	     || TYPE_CODE (type) == TYPE_CODE_REF))
    type = TYPE_TARGET_TYPE (type);
  return ada_is_direct_array_type (type);
}

/* Non-zero iff TYPE is a simple array type or pointer to one.  */

int
ada_is_simple_array_type (struct type *type)
{
  if (type == NULL)
    return 0;
  type = ada_check_typedef (type);
  return (TYPE_CODE (type) == TYPE_CODE_ARRAY
          || (TYPE_CODE (type) == TYPE_CODE_PTR
              && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
                 == TYPE_CODE_ARRAY));
}

/* Non-zero iff TYPE belongs to a GNAT array descriptor.  */

int
ada_is_array_descriptor_type (struct type *type)
{
  struct type *data_type = desc_data_target_type (type);

  if (type == NULL)
    return 0;
  type = ada_check_typedef (type);
  return (data_type != NULL
	  && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
	  && desc_arity (desc_bounds_type (type)) > 0);
}

/* Non-zero iff type is a partially mal-formed GNAT array
   descriptor.  FIXME: This is to compensate for some problems with
   debugging output from GNAT.  Re-examine periodically to see if it
   is still needed.  */

int
ada_is_bogus_array_descriptor (struct type *type)
{
  return
    type != NULL
    && TYPE_CODE (type) == TYPE_CODE_STRUCT
    && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
        || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
    && !ada_is_array_descriptor_type (type);
}


/* If ARR has a record type in the form of a standard GNAT array descriptor,
   (fat pointer) returns the type of the array data described---specifically,
   a pointer-to-array type.  If BOUNDS is non-zero, the bounds data are filled
   in from the descriptor; otherwise, they are left unspecified.  If
   the ARR denotes a null array descriptor and BOUNDS is non-zero,
   returns NULL.  The result is simply the type of ARR if ARR is not
   a descriptor.  */
struct type *
ada_type_of_array (struct value *arr, int bounds)
{
  if (ada_is_constrained_packed_array_type (value_type (arr)))
    return decode_constrained_packed_array_type (value_type (arr));

  if (!ada_is_array_descriptor_type (value_type (arr)))
    return value_type (arr);

  if (!bounds)
    {
      struct type *array_type =
	ada_check_typedef (desc_data_target_type (value_type (arr)));

      if (ada_is_unconstrained_packed_array_type (value_type (arr)))
	TYPE_FIELD_BITSIZE (array_type, 0) =
	  decode_packed_array_bitsize (value_type (arr));
      
      return array_type;
    }
  else
    {
      struct type *elt_type;
      int arity;
      struct value *descriptor;

      elt_type = ada_array_element_type (value_type (arr), -1);
      arity = ada_array_arity (value_type (arr));

      if (elt_type == NULL || arity == 0)
        return ada_check_typedef (value_type (arr));

      descriptor = desc_bounds (arr);
      if (value_as_long (descriptor) == 0)
        return NULL;
      while (arity > 0)
        {
          struct type *range_type = alloc_type_copy (value_type (arr));
          struct type *array_type = alloc_type_copy (value_type (arr));
          struct value *low = desc_one_bound (descriptor, arity, 0);
          struct value *high = desc_one_bound (descriptor, arity, 1);

          arity -= 1;
          create_static_range_type (range_type, value_type (low),
				    longest_to_int (value_as_long (low)),
				    longest_to_int (value_as_long (high)));
          elt_type = create_array_type (array_type, elt_type, range_type);

	  if (ada_is_unconstrained_packed_array_type (value_type (arr)))
	    {
	      /* We need to store the element packed bitsize, as well as
	         recompute the array size, because it was previously
		 computed based on the unpacked element size.  */
	      LONGEST lo = value_as_long (low);
	      LONGEST hi = value_as_long (high);

	      TYPE_FIELD_BITSIZE (elt_type, 0) =
		decode_packed_array_bitsize (value_type (arr));
	      /* If the array has no element, then the size is already
	         zero, and does not need to be recomputed.  */
	      if (lo < hi)
		{
		  int array_bitsize =
		        (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);

		  TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
		}
	    }
        }

      return lookup_pointer_type (elt_type);
    }
}

/* If ARR does not represent an array, returns ARR unchanged.
   Otherwise, returns either a standard GDB array with bounds set
   appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
   GDB array.  Returns NULL if ARR is a null fat pointer.  */

struct value *
ada_coerce_to_simple_array_ptr (struct value *arr)
{
  if (ada_is_array_descriptor_type (value_type (arr)))
    {
      struct type *arrType = ada_type_of_array (arr, 1);

      if (arrType == NULL)
        return NULL;
      return value_cast (arrType, value_copy (desc_data (arr)));
    }
  else if (ada_is_constrained_packed_array_type (value_type (arr)))
    return decode_constrained_packed_array (arr);
  else
    return arr;
}

/* If ARR does not represent an array, returns ARR unchanged.
   Otherwise, returns a standard GDB array describing ARR (which may
   be ARR itself if it already is in the proper form).  */

struct value *
ada_coerce_to_simple_array (struct value *arr)
{
  if (ada_is_array_descriptor_type (value_type (arr)))
    {
      struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);

      if (arrVal == NULL)
        error (_("Bounds unavailable for null array pointer."));
      ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
      return value_ind (arrVal);
    }
  else if (ada_is_constrained_packed_array_type (value_type (arr)))
    return decode_constrained_packed_array (arr);
  else
    return arr;
}

/* If TYPE represents a GNAT array type, return it translated to an
   ordinary GDB array type (possibly with BITSIZE fields indicating
   packing).  For other types, is the identity.  */

struct type *
ada_coerce_to_simple_array_type (struct type *type)
{
  if (ada_is_constrained_packed_array_type (type))
    return decode_constrained_packed_array_type (type);

  if (ada_is_array_descriptor_type (type))
    return ada_check_typedef (desc_data_target_type (type));

  return type;
}

/* Non-zero iff TYPE represents a standard GNAT packed-array type.  */

static int
ada_is_packed_array_type  (struct type *type)
{
  if (type == NULL)
    return 0;
  type = desc_base_type (type);
  type = ada_check_typedef (type);
  return
    ada_type_name (type) != NULL
    && strstr (ada_type_name (type), "___XP") != NULL;
}

/* Non-zero iff TYPE represents a standard GNAT constrained
   packed-array type.  */

int
ada_is_constrained_packed_array_type (struct type *type)
{
  return ada_is_packed_array_type (type)
    && !ada_is_array_descriptor_type (type);
}

/* Non-zero iff TYPE represents an array descriptor for a
   unconstrained packed-array type.  */

static int
ada_is_unconstrained_packed_array_type (struct type *type)
{
  return ada_is_packed_array_type (type)
    && ada_is_array_descriptor_type (type);
}

/* Given that TYPE encodes a packed array type (constrained or unconstrained),
   return the size of its elements in bits.  */

static long
decode_packed_array_bitsize (struct type *type)
{
  const char *raw_name;
  const char *tail;
  long bits;

  /* Access to arrays implemented as fat pointers are encoded as a typedef
     of the fat pointer type.  We need the name of the fat pointer type
     to do the decoding, so strip the typedef layer.  */
  if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
    type = ada_typedef_target_type (type);

  raw_name = ada_type_name (ada_check_typedef (type));
  if (!raw_name)
    raw_name = ada_type_name (desc_base_type (type));

  if (!raw_name)
    return 0;

  tail = strstr (raw_name, "___XP");
  gdb_assert (tail != NULL);

  if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
    {
      lim_warning
	(_("could not understand bit size information on packed array"));
      return 0;
    }

  return bits;
}

/* Given that TYPE is a standard GDB array type with all bounds filled
   in, and that the element size of its ultimate scalar constituents
   (that is, either its elements, or, if it is an array of arrays, its
   elements' elements, etc.) is *ELT_BITS, return an identical type,
   but with the bit sizes of its elements (and those of any
   constituent arrays) recorded in the BITSIZE components of its
   TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
   in bits.

   Note that, for arrays whose index type has an XA encoding where
   a bound references a record discriminant, getting that discriminant,
   and therefore the actual value of that bound, is not possible
   because none of the given parameters gives us access to the record.
   This function assumes that it is OK in the context where it is being
   used to return an array whose bounds are still dynamic and where
   the length is arbitrary.  */

static struct type *
constrained_packed_array_type (struct type *type, long *elt_bits)
{
  struct type *new_elt_type;
  struct type *new_type;
  struct type *index_type_desc;
  struct type *index_type;
  LONGEST low_bound, high_bound;

  type = ada_check_typedef (type);
  if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
    return type;

  index_type_desc = ada_find_parallel_type (type, "___XA");
  if (index_type_desc)
    index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
				      NULL);
  else
    index_type = TYPE_INDEX_TYPE (type);

  new_type = alloc_type_copy (type);
  new_elt_type =
    constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
				   elt_bits);
  create_array_type (new_type, new_elt_type, index_type);
  TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
  TYPE_NAME (new_type) = ada_type_name (type);

  if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
       && is_dynamic_type (check_typedef (index_type)))
      || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
    low_bound = high_bound = 0;
  if (high_bound < low_bound)
    *elt_bits = TYPE_LENGTH (new_type) = 0;
  else
    {
      *elt_bits *= (high_bound - low_bound + 1);
      TYPE_LENGTH (new_type) =
        (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
    }

  TYPE_FIXED_INSTANCE (new_type) = 1;
  return new_type;
}

/* The array type encoded by TYPE, where
   ada_is_constrained_packed_array_type (TYPE).  */

static struct type *
decode_constrained_packed_array_type (struct type *type)
{
  const char *raw_name = ada_type_name (ada_check_typedef (type));
  char *name;
  const char *tail;
  struct type *shadow_type;
  long bits;

  if (!raw_name)
    raw_name = ada_type_name (desc_base_type (type));

  if (!raw_name)
    return NULL;

  name = (char *) alloca (strlen (raw_name) + 1);
  tail = strstr (raw_name, "___XP");
  type = desc_base_type (type);

  memcpy (name, raw_name, tail - raw_name);
  name[tail - raw_name] = '\000';

  shadow_type = ada_find_parallel_type_with_name (type, name);

  if (shadow_type == NULL)
    {
      lim_warning (_("could not find bounds information on packed array"));
      return NULL;
    }
  shadow_type = check_typedef (shadow_type);

  if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
    {
      lim_warning (_("could not understand bounds "
		     "information on packed array"));
      return NULL;
    }

  bits = decode_packed_array_bitsize (type);
  return constrained_packed_array_type (shadow_type, &bits);
}

/* Given that ARR is a struct value *indicating a GNAT constrained packed
   array, returns a simple array that denotes that array.  Its type is a
   standard GDB array type except that the BITSIZEs of the array
   target types are set to the number of bits in each element, and the
   type length is set appropriately.  */

static struct value *
decode_constrained_packed_array (struct value *arr)
{
  struct type *type;

  /* If our value is a pointer, then dereference it. Likewise if
     the value is a reference.  Make sure that this operation does not
     cause the target type to be fixed, as this would indirectly cause
     this array to be decoded.  The rest of the routine assumes that
     the array hasn't been decoded yet, so we use the basic "coerce_ref"
     and "value_ind" routines to perform the dereferencing, as opposed
     to using "ada_coerce_ref" or "ada_value_ind".  */
  arr = coerce_ref (arr);
  if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
    arr = value_ind (arr);

  type = decode_constrained_packed_array_type (value_type (arr));
  if (type == NULL)
    {
      error (_("can't unpack array"));
      return NULL;
    }

  if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
      && ada_is_modular_type (value_type (arr)))
    {
       /* This is a (right-justified) modular type representing a packed
 	 array with no wrapper.  In order to interpret the value through
 	 the (left-justified) packed array type we just built, we must
 	 first left-justify it.  */
      int bit_size, bit_pos;
      ULONGEST mod;

      mod = ada_modulus (value_type (arr)) - 1;
      bit_size = 0;
      while (mod > 0)
	{
	  bit_size += 1;
	  mod >>= 1;
	}
      bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
      arr = ada_value_primitive_packed_val (arr, NULL,
					    bit_pos / HOST_CHAR_BIT,
					    bit_pos % HOST_CHAR_BIT,
					    bit_size,
					    type);
    }

  return coerce_unspec_val_to_type (arr, type);
}


/* The value of the element of packed array ARR at the ARITY indices
   given in IND.   ARR must be a simple array.  */

static struct value *
value_subscript_packed (struct value *arr, int arity, struct value **ind)
{
  int i;
  int bits, elt_off, bit_off;
  long elt_total_bit_offset;
  struct type *elt_type;
  struct value *v;

  bits = 0;
  elt_total_bit_offset = 0;
  elt_type = ada_check_typedef (value_type (arr));
  for (i = 0; i < arity; i += 1)
    {
      if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
          || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
        error
          (_("attempt to do packed indexing of "
	     "something other than a packed array"));
      else
        {
          struct type *range_type = TYPE_INDEX_TYPE (elt_type);
          LONGEST lowerbound, upperbound;
          LONGEST idx;

          if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
            {
              lim_warning (_("don't know bounds of array"));
              lowerbound = upperbound = 0;
            }

          idx = pos_atr (ind[i]);
          if (idx < lowerbound || idx > upperbound)
            lim_warning (_("packed array index %ld out of bounds"),
			 (long) idx);
          bits = TYPE_FIELD_BITSIZE (elt_type, 0);
          elt_total_bit_offset += (idx - lowerbound) * bits;
          elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
        }
    }
  elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
  bit_off = elt_total_bit_offset % HOST_CHAR_BIT;

  v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
                                      bits, elt_type);
  return v;
}

/* Non-zero iff TYPE includes negative integer values.  */

static int
has_negatives (struct type *type)
{
  switch (TYPE_CODE (type))
    {
    default:
      return 0;
    case TYPE_CODE_INT:
      return !TYPE_UNSIGNED (type);
    case TYPE_CODE_RANGE:
      return TYPE_LOW_BOUND (type) < 0;
    }
}

/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
   unpack that data into UNPACKED.  UNPACKED_LEN is the size in bytes of
   the unpacked buffer.

   The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
   enough to contain at least BIT_OFFSET bits.  If not, an error is raised.

   IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
   zero otherwise.

   IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.

   IS_SCALAR is nonzero if the data corresponds to a signed type.  */

static void
ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
			  gdb_byte *unpacked, int unpacked_len,
			  int is_big_endian, int is_signed_type,
			  int is_scalar)
{
  int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
  int src_idx;                  /* Index into the source area */
  int src_bytes_left;           /* Number of source bytes left to process.  */
  int srcBitsLeft;              /* Number of source bits left to move */
  int unusedLS;                 /* Number of bits in next significant
                                   byte of source that are unused */

  int unpacked_idx;             /* Index into the unpacked buffer */
  int unpacked_bytes_left;      /* Number of bytes left to set in unpacked.  */

  unsigned long accum;          /* Staging area for bits being transferred */
  int accumSize;                /* Number of meaningful bits in accum */
  unsigned char sign;

  /* Transmit bytes from least to most significant; delta is the direction
     the indices move.  */
  int delta = is_big_endian ? -1 : 1;

  /* Make sure that unpacked is large enough to receive the BIT_SIZE
     bits from SRC.  .*/
  if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
    error (_("Cannot unpack %d bits into buffer of %d bytes"),
	   bit_size, unpacked_len);

  srcBitsLeft = bit_size;
  src_bytes_left = src_len;
  unpacked_bytes_left = unpacked_len;
  sign = 0;

  if (is_big_endian)
    {
      src_idx = src_len - 1;
      if (is_signed_type
	  && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
        sign = ~0;

      unusedLS =
        (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
        % HOST_CHAR_BIT;

      if (is_scalar)
	{
          accumSize = 0;
          unpacked_idx = unpacked_len - 1;
	}
      else
	{
          /* Non-scalar values must be aligned at a byte boundary...  */
          accumSize =
            (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
          /* ... And are placed at the beginning (most-significant) bytes
             of the target.  */
          unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
          unpacked_bytes_left = unpacked_idx + 1;
	}
    }
  else
    {
      int sign_bit_offset = (bit_size + bit_offset - 1) % 8;

      src_idx = unpacked_idx = 0;
      unusedLS = bit_offset;
      accumSize = 0;

      if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
        sign = ~0;
    }

  accum = 0;
  while (src_bytes_left > 0)
    {
      /* Mask for removing bits of the next source byte that are not
         part of the value.  */
      unsigned int unusedMSMask =
        (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
        1;
      /* Sign-extend bits for this byte.  */
      unsigned int signMask = sign & ~unusedMSMask;

      accum |=
        (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
      accumSize += HOST_CHAR_BIT - unusedLS;
      if (accumSize >= HOST_CHAR_BIT)
        {
          unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
          accumSize -= HOST_CHAR_BIT;
          accum >>= HOST_CHAR_BIT;
          unpacked_bytes_left -= 1;
          unpacked_idx += delta;
        }
      srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
      unusedLS = 0;
      src_bytes_left -= 1;
      src_idx += delta;
    }
  while (unpacked_bytes_left > 0)
    {
      accum |= sign << accumSize;
      unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
      accumSize -= HOST_CHAR_BIT;
      if (accumSize < 0)
	accumSize = 0;
      accum >>= HOST_CHAR_BIT;
      unpacked_bytes_left -= 1;
      unpacked_idx += delta;
    }
}

/* Create a new value of type TYPE from the contents of OBJ starting
   at byte OFFSET, and bit offset BIT_OFFSET within that byte,
   proceeding for BIT_SIZE bits.  If OBJ is an lval in memory, then
   assigning through the result will set the field fetched from.
   VALADDR is ignored unless OBJ is NULL, in which case,
   VALADDR+OFFSET must address the start of storage containing the 
   packed value.  The value returned  in this case is never an lval.
   Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT.  */

struct value *
ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
				long offset, int bit_offset, int bit_size,
                                struct type *type)
{
  struct value *v;
  const gdb_byte *src;                /* First byte containing data to unpack */
  gdb_byte *unpacked;
  const int is_scalar = is_scalar_type (type);
  const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
  gdb::byte_vector staging;

  type = ada_check_typedef (type);

  if (obj == NULL)
    src = valaddr + offset;
  else
    src = value_contents (obj) + offset;

  if (is_dynamic_type (type))
    {
      /* The length of TYPE might by dynamic, so we need to resolve
	 TYPE in order to know its actual size, which we then use
	 to create the contents buffer of the value we return.
	 The difficulty is that the data containing our object is
	 packed, and therefore maybe not at a byte boundary.  So, what
	 we do, is unpack the data into a byte-aligned buffer, and then
	 use that buffer as our object's value for resolving the type.  */
      int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
      staging.resize (staging_len);

      ada_unpack_from_contents (src, bit_offset, bit_size,
			        staging.data (), staging.size (),
				is_big_endian, has_negatives (type),
				is_scalar);
      type = resolve_dynamic_type (type, staging.data (), 0);
      if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
	{
	  /* This happens when the length of the object is dynamic,
	     and is actually smaller than the space reserved for it.
	     For instance, in an array of variant records, the bit_size
	     we're given is the array stride, which is constant and
	     normally equal to the maximum size of its element.
	     But, in reality, each element only actually spans a portion
	     of that stride.  */
	  bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
	}
    }

  if (obj == NULL)
    {
      v = allocate_value (type);
      src = valaddr + offset;
    }
  else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
    {
      int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
      gdb_byte *buf;

      v = value_at (type, value_address (obj) + offset);
      buf = (gdb_byte *) alloca (src_len);
      read_memory (value_address (v), buf, src_len);
      src = buf;
    }
  else
    {
      v = allocate_value (type);
      src = value_contents (obj) + offset;
    }

  if (obj != NULL)
    {
      long new_offset = offset;

      set_value_component_location (v, obj);
      set_value_bitpos (v, bit_offset + value_bitpos (obj));
      set_value_bitsize (v, bit_size);
      if (value_bitpos (v) >= HOST_CHAR_BIT)
        {
	  ++new_offset;
          set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
        }
      set_value_offset (v, new_offset);

      /* Also set the parent value.  This is needed when trying to
	 assign a new value (in inferior memory).  */
      set_value_parent (v, obj);
    }
  else
    set_value_bitsize (v, bit_size);
  unpacked = value_contents_writeable (v);

  if (bit_size == 0)
    {
      memset (unpacked, 0, TYPE_LENGTH (type));
      return v;
    }

  if (staging.size () == TYPE_LENGTH (type))
    {
      /* Small short-cut: If we've unpacked the data into a buffer
	 of the same size as TYPE's length, then we can reuse that,
	 instead of doing the unpacking again.  */
      memcpy (unpacked, staging.data (), staging.size ());
    }
  else
    ada_unpack_from_contents (src, bit_offset, bit_size,
			      unpacked, TYPE_LENGTH (type),
			      is_big_endian, has_negatives (type), is_scalar);

  return v;
}

/* Store the contents of FROMVAL into the location of TOVAL.
   Return a new value with the location of TOVAL and contents of
   FROMVAL.   Handles assignment into packed fields that have
   floating-point or non-scalar types.  */

static struct value *
ada_value_assign (struct value *toval, struct value *fromval)
{
  struct type *type = value_type (toval);
  int bits = value_bitsize (toval);

  toval = ada_coerce_ref (toval);
  fromval = ada_coerce_ref (fromval);

  if (ada_is_direct_array_type (value_type (toval)))
    toval = ada_coerce_to_simple_array (toval);
  if (ada_is_direct_array_type (value_type (fromval)))
    fromval = ada_coerce_to_simple_array (fromval);

  if (!deprecated_value_modifiable (toval))
    error (_("Left operand of assignment is not a modifiable lvalue."));

  if (VALUE_LVAL (toval) == lval_memory
      && bits > 0
      && (TYPE_CODE (type) == TYPE_CODE_FLT
          || TYPE_CODE (type) == TYPE_CODE_STRUCT))
    {
      int len = (value_bitpos (toval)
		 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
      int from_size;
      gdb_byte *buffer = (gdb_byte *) alloca (len);
      struct value *val;
      CORE_ADDR to_addr = value_address (toval);

      if (TYPE_CODE (type) == TYPE_CODE_FLT)
        fromval = value_cast (type, fromval);

      read_memory (to_addr, buffer, len);
      from_size = value_bitsize (fromval);
      if (from_size == 0)
	from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
      if (gdbarch_bits_big_endian (get_type_arch (type)))
        copy_bitwise (buffer, value_bitpos (toval),
		      value_contents (fromval), from_size - bits, bits, 1);
      else
        copy_bitwise (buffer, value_bitpos (toval),
		      value_contents (fromval), 0, bits, 0);
      write_memory_with_notification (to_addr, buffer, len);

      val = value_copy (toval);
      memcpy (value_contents_raw (val), value_contents (fromval),
              TYPE_LENGTH (type));
      deprecated_set_value_type (val, type);

      return val;
    }

  return value_assign (toval, fromval);
}


/* Given that COMPONENT is a memory lvalue that is part of the lvalue
   CONTAINER, assign the contents of VAL to COMPONENTS's place in
   CONTAINER.  Modifies the VALUE_CONTENTS of CONTAINER only, not
   COMPONENT, and not the inferior's memory.  The current contents
   of COMPONENT are ignored.

   Although not part of the initial design, this function also works
   when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
   had a null address, and COMPONENT had an address which is equal to
   its offset inside CONTAINER.  */

static void
value_assign_to_component (struct value *container, struct value *component,
			   struct value *val)
{
  LONGEST offset_in_container =
    (LONGEST)  (value_address (component) - value_address (container));
  int bit_offset_in_container =
    value_bitpos (component) - value_bitpos (container);
  int bits;

  val = value_cast (value_type (component), val);

  if (value_bitsize (component) == 0)
    bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
  else
    bits = value_bitsize (component);

  if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
    {
      int src_offset;

      if (is_scalar_type (check_typedef (value_type (component))))
        src_offset
	  = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
      else
	src_offset = 0;
      copy_bitwise (value_contents_writeable (container) + offset_in_container,
		    value_bitpos (container) + bit_offset_in_container,
		    value_contents (val), src_offset, bits, 1);
    }
  else
    copy_bitwise (value_contents_writeable (container) + offset_in_container,
		  value_bitpos (container) + bit_offset_in_container,
		  value_contents (val), 0, bits, 0);
}

/* Determine if TYPE is an access to an unconstrained array.  */

bool
ada_is_access_to_unconstrained_array (struct type *type)
{
  return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
	  && is_thick_pntr (ada_typedef_target_type (type)));
}

/* The value of the element of array ARR at the ARITY indices given in IND.
   ARR may be either a simple array, GNAT array descriptor, or pointer
   thereto.  */

struct value *
ada_value_subscript (struct value *arr, int arity, struct value **ind)
{
  int k;
  struct value *elt;
  struct type *elt_type;

  elt = ada_coerce_to_simple_array (arr);

  elt_type = ada_check_typedef (value_type (elt));
  if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
      && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
    return value_subscript_packed (elt, arity, ind);

  for (k = 0; k < arity; k += 1)
    {
      struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);

      if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
        error (_("too many subscripts (%d expected)"), k);

      elt = value_subscript (elt, pos_atr (ind[k]));

      if (ada_is_access_to_unconstrained_array (saved_elt_type)
	  && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
	{
	  /* The element is a typedef to an unconstrained array,
	     except that the value_subscript call stripped the
	     typedef layer.  The typedef layer is GNAT's way to
	     specify that the element is, at the source level, an
	     access to the unconstrained array, rather than the
	     unconstrained array.  So, we need to restore that
	     typedef layer, which we can do by forcing the element's
	     type back to its original type. Otherwise, the returned
	     value is going to be printed as the array, rather
	     than as an access.  Another symptom of the same issue
	     would be that an expression trying to dereference the
	     element would also be improperly rejected.  */
	  deprecated_set_value_type (elt, saved_elt_type);
	}

      elt_type = ada_check_typedef (value_type (elt));
    }

  return elt;
}

/* Assuming ARR is a pointer to a GDB array, the value of the element
   of *ARR at the ARITY indices given in IND.
   Does not read the entire array into memory.

   Note: Unlike what one would expect, this function is used instead of
   ada_value_subscript for basically all non-packed array types.  The reason
   for this is that a side effect of doing our own pointer arithmetics instead
   of relying on value_subscript is that there is no implicit typedef peeling.
   This is important for arrays of array accesses, where it allows us to
   preserve the fact that the array's element is an array access, where the
   access part os encoded in a typedef layer.  */

static struct value *
ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
{
  int k;
  struct value *array_ind = ada_value_ind (arr);
  struct type *type
    = check_typedef (value_enclosing_type (array_ind));

  if (TYPE_CODE (type) == TYPE_CODE_ARRAY
      && TYPE_FIELD_BITSIZE (type, 0) > 0)
    return value_subscript_packed (array_ind, arity, ind);

  for (k = 0; k < arity; k += 1)
    {
      LONGEST lwb, upb;
      struct value *lwb_value;

      if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
        error (_("too many subscripts (%d expected)"), k);
      arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
                        value_copy (arr));
      get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
      lwb_value = value_from_longest (value_type(ind[k]), lwb);
      arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
      type = TYPE_TARGET_TYPE (type);
    }

  return value_ind (arr);
}

/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
   actual type of ARRAY_PTR is ignored), returns the Ada slice of
   HIGH'Pos-LOW'Pos+1 elements starting at index LOW.  The lower bound of
   this array is LOW, as per Ada rules.  */
static struct value *
ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
                          int low, int high)
{
  struct type *type0 = ada_check_typedef (type);
  struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
  struct type *index_type
    = create_static_range_type (NULL, base_index_type, low, high);
  struct type *slice_type = create_array_type_with_stride
			      (NULL, TYPE_TARGET_TYPE (type0), index_type,
			       get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
			       TYPE_FIELD_BITSIZE (type0, 0));
  int base_low =  ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
  LONGEST base_low_pos, low_pos;
  CORE_ADDR base;

  if (!discrete_position (base_index_type, low, &low_pos)
      || !discrete_position (base_index_type, base_low, &base_low_pos))
    {
      warning (_("unable to get positions in slice, use bounds instead"));
      low_pos = low;
      base_low_pos = base_low;
    }

  base = value_as_address (array_ptr)
    + ((low_pos - base_low_pos)
       * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
  return value_at_lazy (slice_type, base);
}


static struct value *
ada_value_slice (struct value *array, int low, int high)
{
  struct type *type = ada_check_typedef (value_type (array));
  struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
  struct type *index_type
    = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
  struct type *slice_type = create_array_type_with_stride
			      (NULL, TYPE_TARGET_TYPE (type), index_type,
			       get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
			       TYPE_FIELD_BITSIZE (type, 0));
  LONGEST low_pos, high_pos;

  if (!discrete_position (base_index_type, low, &low_pos)
      || !discrete_position (base_index_type, high, &high_pos))
    {
      warning (_("unable to get positions in slice, use bounds instead"));
      low_pos = low;
      high_pos = high;
    }

  return value_cast (slice_type,
		     value_slice (array, low, high_pos - low_pos + 1));
}

/* If type is a record type in the form of a standard GNAT array
   descriptor, returns the number of dimensions for type.  If arr is a
   simple array, returns the number of "array of"s that prefix its
   type designation.  Otherwise, returns 0.  */

int
ada_array_arity (struct type *type)
{
  int arity;

  if (type == NULL)
    return 0;

  type = desc_base_type (type);

  arity = 0;
  if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
    return desc_arity (desc_bounds_type (type));
  else
    while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
      {
        arity += 1;
        type = ada_check_typedef (TYPE_TARGET_TYPE (type));
      }

  return arity;
}

/* If TYPE is a record type in the form of a standard GNAT array
   descriptor or a simple array type, returns the element type for
   TYPE after indexing by NINDICES indices, or by all indices if
   NINDICES is -1.  Otherwise, returns NULL.  */

struct type *
ada_array_element_type (struct type *type, int nindices)
{
  type = desc_base_type (type);

  if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
    {
      int k;
      struct type *p_array_type;

      p_array_type = desc_data_target_type (type);

      k = ada_array_arity (type);
      if (k == 0)
        return NULL;

      /* Initially p_array_type = elt_type(*)[]...(k times)...[].  */
      if (nindices >= 0 && k > nindices)
        k = nindices;
      while (k > 0 && p_array_type != NULL)
        {
          p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
          k -= 1;
        }
      return p_array_type;
    }
  else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
    {
      while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
        {
          type = TYPE_TARGET_TYPE (type);
          nindices -= 1;
        }
      return type;
    }

  return NULL;
}

/* The type of nth index in arrays of given type (n numbering from 1).
   Does not examine memory.  Throws an error if N is invalid or TYPE
   is not an array type.  NAME is the name of the Ada attribute being
   evaluated ('range, 'first, 'last, or 'length); it is used in building
   the error message.  */

static struct type *
ada_index_type (struct type *type, int n, const char *name)
{
  struct type *result_type;

  type = desc_base_type (type);

  if (n < 0 || n > ada_array_arity (type))
    error (_("invalid dimension number to '%s"), name);

  if (ada_is_simple_array_type (type))
    {
      int i;

      for (i = 1; i < n; i += 1)
        type = TYPE_TARGET_TYPE (type);
      result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
      /* FIXME: The stabs type r(0,0);bound;bound in an array type
         has a target type of TYPE_CODE_UNDEF.  We compensate here, but
         perhaps stabsread.c would make more sense.  */
      if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
        result_type = NULL;
    }
  else
    {
      result_type = desc_index_type (desc_bounds_type (type), n);
      if (result_type == NULL)
	error (_("attempt to take bound of something that is not an array"));
    }

  return result_type;
}

/* Given that arr is an array type, returns the lower bound of the
   Nth index (numbering from 1) if WHICH is 0, and the upper bound if
   WHICH is 1.  This returns bounds 0 .. -1 if ARR_TYPE is an
   array-descriptor type.  It works for other arrays with bounds supplied
   by run-time quantities other than discriminants.  */

static LONGEST
ada_array_bound_from_type (struct type *arr_type, int n, int which)
{
  struct type *type, *index_type_desc, *index_type;
  int i;

  gdb_assert (which == 0 || which == 1);

  if (ada_is_constrained_packed_array_type (arr_type))
    arr_type = decode_constrained_packed_array_type (arr_type);

  if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
    return (LONGEST) - which;

  if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
    type = TYPE_TARGET_TYPE (arr_type);
  else
    type = arr_type;

  if (TYPE_FIXED_INSTANCE (type))
    {
      /* The array has already been fixed, so we do not need to
	 check the parallel ___XA type again.  That encoding has
	 already been applied, so ignore it now.  */
      index_type_desc = NULL;
    }
  else
    {
      index_type_desc = ada_find_parallel_type (type, "___XA");
      ada_fixup_array_indexes_type (index_type_desc);
    }

  if (index_type_desc != NULL)
    index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
				      NULL);
  else
    {
      struct type *elt_type = check_typedef (type);

      for (i = 1; i < n; i++)
	elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));

      index_type = TYPE_INDEX_TYPE (elt_type);
    }

  return
    (LONGEST) (which == 0
               ? ada_discrete_type_low_bound (index_type)
               : ada_discrete_type_high_bound (index_type));
}

/* Given that arr is an array value, returns the lower bound of the
   nth index (numbering from 1) if WHICH is 0, and the upper bound if
   WHICH is 1.  This routine will also work for arrays with bounds
   supplied by run-time quantities other than discriminants.  */

static LONGEST
ada_array_bound (struct value *arr, int n, int which)
{
  struct type *arr_type;

  if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
    arr = value_ind (arr);
  arr_type = value_enclosing_type (arr);

  if (ada_is_constrained_packed_array_type (arr_type))
    return ada_array_bound (decode_constrained_packed_array (arr), n, which);
  else if (ada_is_simple_array_type (arr_type))
    return ada_array_bound_from_type (arr_type, n, which);
  else
    return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
}

/* Given that arr is an array value, returns the length of the
   nth index.  This routine will also work for arrays with bounds
   supplied by run-time quantities other than discriminants.
   Does not work for arrays indexed by enumeration types with representation
   clauses at the moment.  */

static LONGEST
ada_array_length (struct value *arr, int n)
{
  struct type *arr_type, *index_type;
  int low, high;

  if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
    arr = value_ind (arr);
  arr_type = value_enclosing_type (arr);

  if (ada_is_constrained_packed_array_type (arr_type))
    return ada_array_length (decode_constrained_packed_array (arr), n);

  if (ada_is_simple_array_type (arr_type))
    {
      low = ada_array_bound_from_type (arr_type, n, 0);
      high = ada_array_bound_from_type (arr_type, n, 1);
    }
  else
    {
      low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
      high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
    }

  arr_type = check_typedef (arr_type);
  index_type = ada_index_type (arr_type, n, "length");
  if (index_type != NULL)
    {
      struct type *base_type;
      if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
	base_type = TYPE_TARGET_TYPE (index_type);
      else
	base_type = index_type;

      low = pos_atr (value_from_longest (base_type, low));
      high = pos_atr (value_from_longest (base_type, high));
    }
  return high - low + 1;
}

/* An empty array whose type is that of ARR_TYPE (an array type),
   with bounds LOW to LOW-1.  */

static struct value *
empty_array (struct type *arr_type, int low)
{
  struct type *arr_type0 = ada_check_typedef (arr_type);
  struct type *index_type
    = create_static_range_type
        (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),  low, low - 1);
  struct type *elt_type = ada_array_element_type (arr_type0, 1);

  return allocate_value (create_array_type (NULL, elt_type, index_type));
}


                                /* Name resolution */

/* The "decoded" name for the user-definable Ada operator corresponding
   to OP.  */

static const char *
ada_decoded_op_name (enum exp_opcode op)
{
  int i;

  for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
    {
      if (ada_opname_table[i].op == op)
        return ada_opname_table[i].decoded;
    }
  error (_("Could not find operator name for opcode"));
}


/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
   references (marked by OP_VAR_VALUE nodes in which the symbol has an
   undefined namespace) and converts operators that are
   user-defined into appropriate function calls.  If CONTEXT_TYPE is
   non-null, it provides a preferred result type [at the moment, only
   type void has any effect---causing procedures to be preferred over
   functions in calls].  A null CONTEXT_TYPE indicates that a non-void
   return type is preferred.  May change (expand) *EXP.  */

static void
resolve (expression_up *expp, int void_context_p)
{
  struct type *context_type = NULL;
  int pc = 0;

  if (void_context_p)
    context_type = builtin_type ((*expp)->gdbarch)->builtin_void;

  resolve_subexp (expp, &pc, 1, context_type);
}

/* Resolve the operator of the subexpression beginning at
   position *POS of *EXPP.  "Resolving" consists of replacing
   the symbols that have undefined namespaces in OP_VAR_VALUE nodes
   with their resolutions, replacing built-in operators with
   function calls to user-defined operators, where appropriate, and,
   when DEPROCEDURE_P is non-zero, converting function-valued variables
   into parameterless calls.  May expand *EXPP.  The CONTEXT_TYPE functions
   are as in ada_resolve, above.  */

static struct value *
resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
                struct type *context_type)
{
  int pc = *pos;
  int i;
  struct expression *exp;       /* Convenience: == *expp.  */
  enum exp_opcode op = (*expp)->elts[pc].opcode;
  struct value **argvec;        /* Vector of operand types (alloca'ed).  */
  int nargs;                    /* Number of operands.  */
  int oplen;

  argvec = NULL;
  nargs = 0;
  exp = expp->get ();

  /* Pass one: resolve operands, saving their types and updating *pos,
     if needed.  */
  switch (op)
    {
    case OP_FUNCALL:
      if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
          && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
        *pos += 7;
      else
        {
          *pos += 3;
          resolve_subexp (expp, pos, 0, NULL);
        }
      nargs = longest_to_int (exp->elts[pc + 1].longconst);
      break;

    case UNOP_ADDR:
      *pos += 1;
      resolve_subexp (expp, pos, 0, NULL);
      break;

    case UNOP_QUAL:
      *pos += 3;
      resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
      break;

    case OP_ATR_MODULUS:
    case OP_ATR_SIZE:
    case OP_ATR_TAG:
    case OP_ATR_FIRST:
    case OP_ATR_LAST:
    case OP_ATR_LENGTH:
    case OP_ATR_POS:
    case OP_ATR_VAL:
    case OP_ATR_MIN:
    case OP_ATR_MAX:
    case TERNOP_IN_RANGE:
    case BINOP_IN_BOUNDS:
    case UNOP_IN_RANGE:
    case OP_AGGREGATE:
    case OP_OTHERS:
    case OP_CHOICES:
    case OP_POSITIONAL:
    case OP_DISCRETE_RANGE:
    case OP_NAME:
      ada_forward_operator_length (exp, pc, &oplen, &nargs);
      *pos += oplen;
      break;

    case BINOP_ASSIGN:
      {
        struct value *arg1;

        *pos += 1;
        arg1 = resolve_subexp (expp, pos, 0, NULL);
        if (arg1 == NULL)
          resolve_subexp (expp, pos, 1, NULL);
        else
          resolve_subexp (expp, pos, 1, value_type (arg1));
        break;
      }

    case UNOP_CAST:
      *pos += 3;
      nargs = 1;
      break;

    case BINOP_ADD:
    case BINOP_SUB:
    case BINOP_MUL:
    case BINOP_DIV:
    case BINOP_REM:
    case BINOP_MOD:
    case BINOP_EXP:
    case BINOP_CONCAT:
    case BINOP_LOGICAL_AND:
    case BINOP_LOGICAL_OR:
    case BINOP_BITWISE_AND:
    case BINOP_BITWISE_IOR:
    case BINOP_BITWISE_XOR:

    case BINOP_EQUAL:
    case BINOP_NOTEQUAL:
    case BINOP_LESS:
    case BINOP_GTR:
    case BINOP_LEQ:
    case BINOP_GEQ:

    case BINOP_REPEAT:
    case BINOP_SUBSCRIPT:
    case BINOP_COMMA:
      *pos += 1;
      nargs = 2;
      break;

    case UNOP_NEG:
    case UNOP_PLUS:
    case UNOP_LOGICAL_NOT:
    case UNOP_ABS:
    case UNOP_IND:
      *pos += 1;
      nargs = 1;
      break;

    case OP_LONG:
    case OP_FLOAT:
    case OP_VAR_VALUE:
    case OP_VAR_MSYM_VALUE:
      *pos += 4;
      break;

    case OP_TYPE:
    case OP_BOOL:
    case OP_LAST:
    case OP_INTERNALVAR:
      *pos += 3;
      break;

    case UNOP_MEMVAL:
      *pos += 3;
      nargs = 1;
      break;

    case OP_REGISTER:
      *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
      break;

    case STRUCTOP_STRUCT:
      *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
      nargs = 1;
      break;

    case TERNOP_SLICE:
      *pos += 1;
      nargs = 3;
      break;

    case OP_STRING:
      break;

    default:
      error (_("Unexpected operator during name resolution"));
    }

  argvec = XALLOCAVEC (struct value *, nargs + 1);
  for (i = 0; i < nargs; i += 1)
    argvec[i] = resolve_subexp (expp, pos, 1, NULL);
  argvec[i] = NULL;
  exp = expp->get ();

  /* Pass two: perform any resolution on principal operator.  */
  switch (op)
    {
    default:
      break;

    case OP_VAR_VALUE:
      if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
        {
          std::vector<struct block_symbol> candidates;
          int n_candidates;

          n_candidates =
            ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
                                    (exp->elts[pc + 2].symbol),
                                    exp->elts[pc + 1].block, VAR_DOMAIN,
                                    &candidates);

          if (n_candidates > 1)
            {
              /* Types tend to get re-introduced locally, so if there
                 are any local symbols that are not types, first filter
                 out all types.  */
              int j;
              for (j = 0; j < n_candidates; j += 1)
                switch (SYMBOL_CLASS (candidates[j].symbol))
                  {
                  case LOC_REGISTER:
                  case LOC_ARG:
                  case LOC_REF_ARG:
                  case LOC_REGPARM_ADDR:
                  case LOC_LOCAL:
                  case LOC_COMPUTED:
                    goto FoundNonType;
                  default:
                    break;
                  }
            FoundNonType:
              if (j < n_candidates)
                {
                  j = 0;
                  while (j < n_candidates)
                    {
                      if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
                        {
                          candidates[j] = candidates[n_candidates - 1];
                          n_candidates -= 1;
                        }
                      else
                        j += 1;
                    }
                }
            }

          if (n_candidates == 0)
            error (_("No definition found for %s"),
                   SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
          else if (n_candidates == 1)
            i = 0;
          else if (deprocedure_p
                   && !is_nonfunction (candidates.data (), n_candidates))
            {
              i = ada_resolve_function
                (candidates.data (), n_candidates, NULL, 0,
                 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
                 context_type);
              if (i < 0)
                error (_("Could not find a match for %s"),
                       SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
            }
          else
            {
              printf_filtered (_("Multiple matches for %s\n"),
                               SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
              user_select_syms (candidates.data (), n_candidates, 1);
              i = 0;
            }

          exp->elts[pc + 1].block = candidates[i].block;
          exp->elts[pc + 2].symbol = candidates[i].symbol;
	  innermost_block.update (candidates[i]);
        }

      if (deprocedure_p
          && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
              == TYPE_CODE_FUNC))
        {
          replace_operator_with_call (expp, pc, 0, 4,
                                      exp->elts[pc + 2].symbol,
                                      exp->elts[pc + 1].block);
          exp = expp->get ();
        }
      break;

    case OP_FUNCALL:
      {
        if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
            && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
          {
	    std::vector<struct block_symbol> candidates;
            int n_candidates;

            n_candidates =
              ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
                                      (exp->elts[pc + 5].symbol),
                                      exp->elts[pc + 4].block, VAR_DOMAIN,
                                      &candidates);

            if (n_candidates == 1)
              i = 0;
            else
              {
                i = ada_resolve_function
                  (candidates.data (), n_candidates,
                   argvec, nargs,
                   SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
                   context_type);
                if (i < 0)
                  error (_("Could not find a match for %s"),
                         SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
              }

            exp->elts[pc + 4].block = candidates[i].block;
            exp->elts[pc + 5].symbol = candidates[i].symbol;
	    innermost_block.update (candidates[i]);
          }
      }
      break;
    case BINOP_ADD:
    case BINOP_SUB:
    case BINOP_MUL:
    case BINOP_DIV:
    case BINOP_REM:
    case BINOP_MOD:
    case BINOP_CONCAT:
    case BINOP_BITWISE_AND:
    case BINOP_BITWISE_IOR:
    case BINOP_BITWISE_XOR:
    case BINOP_EQUAL:
    case BINOP_NOTEQUAL:
    case BINOP_LESS:
    case BINOP_GTR:
    case BINOP_LEQ:
    case BINOP_GEQ:
    case BINOP_EXP:
    case UNOP_NEG:
    case UNOP_PLUS:
    case UNOP_LOGICAL_NOT:
    case UNOP_ABS:
      if (possible_user_operator_p (op, argvec))
        {
	  std::vector<struct block_symbol> candidates;
          int n_candidates;

          n_candidates =
            ada_lookup_symbol_list (ada_decoded_op_name (op),
                                    (struct block *) NULL, VAR_DOMAIN,
                                    &candidates);

          i = ada_resolve_function (candidates.data (), n_candidates, argvec,
				    nargs, ada_decoded_op_name (op), NULL);
          if (i < 0)
            break;

	  replace_operator_with_call (expp, pc, nargs, 1,
				      candidates[i].symbol,
				      candidates[i].block);
          exp = expp->get ();
        }
      break;

    case OP_TYPE:
    case OP_REGISTER:
      return NULL;
    }

  *pos = pc;
  if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
    return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
				    exp->elts[pc + 1].objfile,
				    exp->elts[pc + 2].msymbol);
  else
    return evaluate_subexp_type (exp, pos);
}

/* Return non-zero if formal type FTYPE matches actual type ATYPE.  If
   MAY_DEREF is non-zero, the formal may be a pointer and the actual
   a non-pointer.  */
/* The term "match" here is rather loose.  The match is heuristic and
   liberal.  */

static int
ada_type_match (struct type *ftype, struct type *atype, int may_deref)
{
  ftype = ada_check_typedef (ftype);
  atype = ada_check_typedef (atype);

  if (TYPE_CODE (ftype) == TYPE_CODE_REF)
    ftype = TYPE_TARGET_TYPE (ftype);
  if (TYPE_CODE (atype) == TYPE_CODE_REF)
    atype = TYPE_TARGET_TYPE (atype);

  switch (TYPE_CODE (ftype))
    {
    default:
      return TYPE_CODE (ftype) == TYPE_CODE (atype);
    case TYPE_CODE_PTR:
      if (TYPE_CODE (atype) == TYPE_CODE_PTR)
        return ada_type_match (TYPE_TARGET_TYPE (ftype),
                               TYPE_TARGET_TYPE (atype), 0);
      else
        return (may_deref
                && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
    case TYPE_CODE_INT:
    case TYPE_CODE_ENUM:
    case TYPE_CODE_RANGE:
      switch (TYPE_CODE (atype))
        {
        case TYPE_CODE_INT:
        case TYPE_CODE_ENUM:
        case TYPE_CODE_RANGE:
          return 1;
        default:
          return 0;
        }

    case TYPE_CODE_ARRAY:
      return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
              || ada_is_array_descriptor_type (atype));

    case TYPE_CODE_STRUCT:
      if (ada_is_array_descriptor_type (ftype))
        return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
                || ada_is_array_descriptor_type (atype));
      else
        return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
                && !ada_is_array_descriptor_type (atype));

    case TYPE_CODE_UNION:
    case TYPE_CODE_FLT:
      return (TYPE_CODE (atype) == TYPE_CODE (ftype));
    }
}

/* Return non-zero if the formals of FUNC "sufficiently match" the
   vector of actual argument types ACTUALS of size N_ACTUALS.  FUNC
   may also be an enumeral, in which case it is treated as a 0-
   argument function.  */

static int
ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
{
  int i;
  struct type *func_type = SYMBOL_TYPE (func);

  if (SYMBOL_CLASS (func) == LOC_CONST
      && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
    return (n_actuals == 0);
  else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
    return 0;

  if (TYPE_NFIELDS (func_type) != n_actuals)
    return 0;

  for (i = 0; i < n_actuals; i += 1)
    {
      if (actuals[i] == NULL)
        return 0;
      else
        {
          struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
								   i));
          struct type *atype = ada_check_typedef (value_type (actuals[i]));

          if (!ada_type_match (ftype, atype, 1))
            return 0;
        }
    }
  return 1;
}

/* False iff function type FUNC_TYPE definitely does not produce a value
   compatible with type CONTEXT_TYPE.  Conservatively returns 1 if
   FUNC_TYPE is not a valid function type with a non-null return type
   or an enumerated type.  A null CONTEXT_TYPE indicates any non-void type.  */

static int
return_match (struct type *func_type, struct type *context_type)
{
  struct type *return_type;

  if (func_type == NULL)
    return 1;

  if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
    return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
  else
    return_type = get_base_type (func_type);
  if (return_type == NULL)
    return 1;

  context_type = get_base_type (context_type);

  if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
    return context_type == NULL || return_type == context_type;
  else if (context_type == NULL)
    return TYPE_CODE (return_type) != TYPE_CODE_VOID;
  else
    return TYPE_CODE (return_type) == TYPE_CODE (context_type);
}


/* Returns the index in SYMS[0..NSYMS-1] that contains  the symbol for the
   function (if any) that matches the types of the NARGS arguments in
   ARGS.  If CONTEXT_TYPE is non-null and there is at least one match
   that returns that type, then eliminate matches that don't.  If
   CONTEXT_TYPE is void and there is at least one match that does not
   return void, eliminate all matches that do.

   Asks the user if there is more than one match remaining.  Returns -1
   if there is no such symbol or none is selected.  NAME is used
   solely for messages.  May re-arrange and modify SYMS in
   the process; the index returned is for the modified vector.  */

static int
ada_resolve_function (struct block_symbol syms[],
                      int nsyms, struct value **args, int nargs,
                      const char *name, struct type *context_type)
{
  int fallback;
  int k;
  int m;                        /* Number of hits */

  m = 0;
  /* In the first pass of the loop, we only accept functions matching
     context_type.  If none are found, we add a second pass of the loop
     where every function is accepted.  */
  for (fallback = 0; m == 0 && fallback < 2; fallback++)
    {
      for (k = 0; k < nsyms; k += 1)
        {
          struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));

          if (ada_args_match (syms[k].symbol, args, nargs)
              && (fallback || return_match (type, context_type)))
            {
              syms[m] = syms[k];
              m += 1;
            }
        }
    }

  /* If we got multiple matches, ask the user which one to use.  Don't do this
     interactive thing during completion, though, as the purpose of the
     completion is providing a list of all possible matches.  Prompting the
     user to filter it down would be completely unexpected in this case.  */
  if (m == 0)
    return -1;
  else if (m > 1 && !parse_completion)
    {
      printf_filtered (_("Multiple matches for %s\n"), name);
      user_select_syms (syms, m, 1);
      return 0;
    }
  return 0;
}

/* Returns true (non-zero) iff decoded name N0 should appear before N1
   in a listing of choices during disambiguation (see sort_choices, below).
   The idea is that overloadings of a subprogram name from the
   same package should sort in their source order.  We settle for ordering
   such symbols by their trailing number (__N  or $N).  */

static int
encoded_ordered_before (const char *N0, const char *N1)
{
  if (N1 == NULL)
    return 0;
  else if (N0 == NULL)
    return 1;
  else
    {
      int k0, k1;

      for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
        ;
      for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
        ;
      if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
          && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
        {
          int n0, n1;

          n0 = k0;
          while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
            n0 -= 1;
          n1 = k1;
          while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
            n1 -= 1;
          if (n0 == n1 && strncmp (N0, N1, n0) == 0)
            return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
        }
      return (strcmp (N0, N1) < 0);
    }
}

/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
   encoded names.  */

static void
sort_choices (struct block_symbol syms[], int nsyms)
{
  int i;

  for (i = 1; i < nsyms; i += 1)
    {
      struct block_symbol sym = syms[i];
      int j;

      for (j = i - 1; j >= 0; j -= 1)
        {
          if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
                                      SYMBOL_LINKAGE_NAME (sym.symbol)))
            break;
          syms[j + 1] = syms[j];
        }
      syms[j + 1] = sym;
    }
}

/* Whether GDB should display formals and return types for functions in the
   overloads selection menu.  */
static int print_signatures = 1;

/* Print the signature for SYM on STREAM according to the FLAGS options.  For
   all but functions, the signature is just the name of the symbol.  For
   functions, this is the name of the function, the list of types for formals
   and the return type (if any).  */

static void
ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
			    const struct type_print_options *flags)
{
  struct type *type = SYMBOL_TYPE (sym);

  fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
  if (!print_signatures
      || type == NULL
      || TYPE_CODE (type) != TYPE_CODE_FUNC)
    return;

  if (TYPE_NFIELDS (type) > 0)
    {
      int i;

      fprintf_filtered (stream, " (");
      for (i = 0; i < TYPE_NFIELDS (type); ++i)
	{
	  if (i > 0)
	    fprintf_filtered (stream, "; ");
	  ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
			  flags);
	}
      fprintf_filtered (stream, ")");
    }
  if (TYPE_TARGET_TYPE (type) != NULL
      && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
    {
      fprintf_filtered (stream, " return ");
      ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
    }
}

/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0 
   by asking the user (if necessary), returning the number selected, 
   and setting the first elements of SYMS items.  Error if no symbols
   selected.  */

/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
   to be re-integrated one of these days.  */

int
user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
{
  int i;
  int *chosen = XALLOCAVEC (int , nsyms);
  int n_chosen;
  int first_choice = (max_results == 1) ? 1 : 2;
  const char *select_mode = multiple_symbols_select_mode ();

  if (max_results < 1)
    error (_("Request to select 0 symbols!"));
  if (nsyms <= 1)
    return nsyms;

  if (select_mode == multiple_symbols_cancel)
    error (_("\
canceled because the command is ambiguous\n\
See set/show multiple-symbol."));

  /* If select_mode is "all", then return all possible symbols.
     Only do that if more than one symbol can be selected, of course.
     Otherwise, display the menu as usual.  */
  if (select_mode == multiple_symbols_all && max_results > 1)
    return nsyms;

  printf_filtered (_("[0] cancel\n"));
  if (max_results > 1)
    printf_filtered (_("[1] all\n"));

  sort_choices (syms, nsyms);

  for (i = 0; i < nsyms; i += 1)
    {
      if (syms[i].symbol == NULL)
        continue;

      if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
        {
          struct symtab_and_line sal =
            find_function_start_sal (syms[i].symbol, 1);

	  printf_filtered ("[%d] ", i + first_choice);
	  ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
				      &type_print_raw_options);
	  if (sal.symtab == NULL)
	    printf_filtered (_(" at <no source file available>:%d\n"),
			     sal.line);
	  else
	    printf_filtered (_(" at %s:%d\n"),
			     symtab_to_filename_for_display (sal.symtab),
			     sal.line);
          continue;
        }
      else
        {
          int is_enumeral =
            (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
             && SYMBOL_TYPE (syms[i].symbol) != NULL
             && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
	  struct symtab *symtab = NULL;

	  if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
	    symtab = symbol_symtab (syms[i].symbol);

          if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
	    {
	      printf_filtered ("[%d] ", i + first_choice);
	      ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
					  &type_print_raw_options);
	      printf_filtered (_(" at %s:%d\n"),
			       symtab_to_filename_for_display (symtab),
			       SYMBOL_LINE (syms[i].symbol));
	    }
          else if (is_enumeral
                   && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
            {
              printf_filtered (("[%d] "), i + first_choice);
              ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
                              gdb_stdout, -1, 0, &type_print_raw_options);
              printf_filtered (_("'(%s) (enumeral)\n"),
			       SYMBOL_PRINT_NAME (syms[i].symbol));
            }
	  else
	    {
	      printf_filtered ("[%d] ", i + first_choice);
	      ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
					  &type_print_raw_options);

	      if (symtab != NULL)
		printf_filtered (is_enumeral
				 ? _(" in %s (enumeral)\n")
				 : _(" at %s:?\n"),
				 symtab_to_filename_for_display (symtab));
	      else
		printf_filtered (is_enumeral
				 ? _(" (enumeral)\n")
				 : _(" at ?\n"));
	    }
        }
    }

  n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
                             "overload-choice");

  for (i = 0; i < n_chosen; i += 1)
    syms[i] = syms[chosen[i]];

  return n_chosen;
}

/* Read and validate a set of numeric choices from the user in the
   range 0 .. N_CHOICES-1.  Place the results in increasing
   order in CHOICES[0 .. N-1], and return N.

   The user types choices as a sequence of numbers on one line
   separated by blanks, encoding them as follows:

     + A choice of 0 means to cancel the selection, throwing an error.
     + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
     + The user chooses k by typing k+IS_ALL_CHOICE+1.

   The user is not allowed to choose more than MAX_RESULTS values.

   ANNOTATION_SUFFIX, if present, is used to annotate the input
   prompts (for use with the -f switch).  */

int
get_selections (int *choices, int n_choices, int max_results,
                int is_all_choice, const char *annotation_suffix)
{
  char *args;
  const char *prompt;
  int n_chosen;
  int first_choice = is_all_choice ? 2 : 1;

  prompt = getenv ("PS2");
  if (prompt == NULL)
    prompt = "> ";

  args = command_line_input (prompt, annotation_suffix);

  if (args == NULL)
    error_no_arg (_("one or more choice numbers"));

  n_chosen = 0;

  /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
     order, as given in args.  Choices are validated.  */
  while (1)
    {
      char *args2;
      int choice, j;

      args = skip_spaces (args);
      if (*args == '\0' && n_chosen == 0)
        error_no_arg (_("one or more choice numbers"));
      else if (*args == '\0')
        break;

      choice = strtol (args, &args2, 10);
      if (args == args2 || choice < 0
          || choice > n_choices + first_choice - 1)
        error (_("Argument must be choice number"));
      args = args2;

      if (choice == 0)
        error (_("cancelled"));

      if (choice < first_choice)
        {
          n_chosen = n_choices;
          for (j = 0; j < n_choices; j += 1)
            choices[j] = j;
          break;
        }
      choice -= first_choice;

      for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
        {
        }

      if (j < 0 || choice != choices[j])
        {
          int k;

          for (k = n_chosen - 1; k > j; k -= 1)
            choices[k + 1] = choices[k];
          choices[j + 1] = choice;
          n_chosen += 1;
        }
    }

  if (n_chosen > max_results)
    error (_("Select no more than %d of the above"), max_results);

  return n_chosen;
}

/* Replace the operator of length OPLEN at position PC in *EXPP with a call
   on the function identified by SYM and BLOCK, and taking NARGS
   arguments.  Update *EXPP as needed to hold more space.  */

static void
replace_operator_with_call (expression_up *expp, int pc, int nargs,
                            int oplen, struct symbol *sym,
                            const struct block *block)
{
  /* A new expression, with 6 more elements (3 for funcall, 4 for function
     symbol, -oplen for operator being replaced).  */
  struct expression *newexp = (struct expression *)
    xzalloc (sizeof (struct expression)
             + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
  struct expression *exp = expp->get ();

  newexp->nelts = exp->nelts + 7 - oplen;
  newexp->language_defn = exp->language_defn;
  newexp->gdbarch = exp->gdbarch;
  memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
  memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
          EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));

  newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
  newexp->elts[pc + 1].longconst = (LONGEST) nargs;

  newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
  newexp->elts[pc + 4].block = block;
  newexp->elts[pc + 5].symbol = sym;

  expp->reset (newexp);
}

/* Type-class predicates */

/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
   or FLOAT).  */

static int
numeric_type_p (struct type *type)
{
  if (type == NULL)
    return 0;
  else
    {
      switch (TYPE_CODE (type))
        {
        case TYPE_CODE_INT:
        case TYPE_CODE_FLT:
          return 1;
        case TYPE_CODE_RANGE:
          return (type == TYPE_TARGET_TYPE (type)
                  || numeric_type_p (TYPE_TARGET_TYPE (type)));
        default:
          return 0;
        }
    }
}

/* True iff TYPE is integral (an INT or RANGE of INTs).  */

static int
integer_type_p (struct type *type)
{
  if (type == NULL)
    return 0;
  else
    {
      switch (TYPE_CODE (type))
        {
        case TYPE_CODE_INT:
          return 1;
        case TYPE_CODE_RANGE:
          return (type == TYPE_TARGET_TYPE (type)
                  || integer_type_p (TYPE_TARGET_TYPE (type)));
        default:
          return 0;
        }
    }
}

/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM).  */

static int
scalar_type_p (struct type *type)
{
  if (type == NULL)
    return 0;
  else
    {
      switch (TYPE_CODE (type))
        {
        case TYPE_CODE_INT:
        case TYPE_CODE_RANGE:
        case TYPE_CODE_ENUM:
        case TYPE_CODE_FLT:
          return 1;
        default:
          return 0;
        }
    }
}

/* True iff TYPE is discrete (INT, RANGE, ENUM).  */

static int
discrete_type_p (struct type *type)
{
  if (type == NULL)
    return 0;
  else
    {
      switch (TYPE_CODE (type))
        {
        case TYPE_CODE_INT:
        case TYPE_CODE_RANGE:
        case TYPE_CODE_ENUM:
        case TYPE_CODE_BOOL:
          return 1;
        default:
          return 0;
        }
    }
}

/* Returns non-zero if OP with operands in the vector ARGS could be
   a user-defined function.  Errs on the side of pre-defined operators
   (i.e., result 0).  */

static int
possible_user_operator_p (enum exp_opcode op, struct value *args[])
{
  struct type *type0 =
    (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
  struct type *type1 =
    (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));

  if (type0 == NULL)
    return 0;

  switch (op)
    {
    default:
      return 0;

    case BINOP_ADD:
    case BINOP_SUB:
    case BINOP_MUL:
    case BINOP_DIV:
      return (!(numeric_type_p (type0) && numeric_type_p (type1)));

    case BINOP_REM:
    case BINOP_MOD:
    case BINOP_BITWISE_AND:
    case BINOP_BITWISE_IOR:
    case BINOP_BITWISE_XOR:
      return (!(integer_type_p (type0) && integer_type_p (type1)));

    case BINOP_EQUAL:
    case BINOP_NOTEQUAL:
    case BINOP_LESS:
    case BINOP_GTR:
    case BINOP_LEQ:
    case BINOP_GEQ:
      return (!(scalar_type_p (type0) && scalar_type_p (type1)));

    case BINOP_CONCAT:
      return !ada_is_array_type (type0) || !ada_is_array_type (type1);

    case BINOP_EXP:
      return (!(numeric_type_p (type0) && integer_type_p (type1)));

    case UNOP_NEG:
    case UNOP_PLUS:
    case UNOP_LOGICAL_NOT:
    case UNOP_ABS:
      return (!numeric_type_p (type0));

    }
}

                                /* Renaming */

/* NOTES: 

   1. In the following, we assume that a renaming type's name may
      have an ___XD suffix.  It would be nice if this went away at some
      point.
   2. We handle both the (old) purely type-based representation of 
      renamings and the (new) variable-based encoding.  At some point,
      it is devoutly to be hoped that the former goes away 
      (FIXME: hilfinger-2007-07-09).
   3. Subprogram renamings are not implemented, although the XRS
      suffix is recognized (FIXME: hilfinger-2007-07-09).  */

/* If SYM encodes a renaming, 

       <renaming> renames <renamed entity>,

   sets *LEN to the length of the renamed entity's name,
   *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
   the string describing the subcomponent selected from the renamed
   entity.  Returns ADA_NOT_RENAMING if SYM does not encode a renaming
   (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
   are undefined).  Otherwise, returns a value indicating the category
   of entity renamed: an object (ADA_OBJECT_RENAMING), exception
   (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
   subprogram (ADA_SUBPROGRAM_RENAMING).  Does no allocation; the
   strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
   deallocated.  The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
   may be NULL, in which case they are not assigned.

   [Currently, however, GCC does not generate subprogram renamings.]  */

enum ada_renaming_category
ada_parse_renaming (struct symbol *sym,
		    const char **renamed_entity, int *len, 
		    const char **renaming_expr)
{
  enum ada_renaming_category kind;
  const char *info;
  const char *suffix;

  if (sym == NULL)
    return ADA_NOT_RENAMING;
  switch (SYMBOL_CLASS (sym)) 
    {
    default:
      return ADA_NOT_RENAMING;
    case LOC_TYPEDEF:
      return parse_old_style_renaming (SYMBOL_TYPE (sym), 
				       renamed_entity, len, renaming_expr);
    case LOC_LOCAL:
    case LOC_STATIC:
    case LOC_COMPUTED:
    case LOC_OPTIMIZED_OUT:
      info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
      if (info == NULL)
	return ADA_NOT_RENAMING;
      switch (info[5])
	{
	case '_':
	  kind = ADA_OBJECT_RENAMING;
	  info += 6;
	  break;
	case 'E':
	  kind = ADA_EXCEPTION_RENAMING;
	  info += 7;
	  break;
	case 'P':
	  kind = ADA_PACKAGE_RENAMING;
	  info += 7;
	  break;
	case 'S':
	  kind = ADA_SUBPROGRAM_RENAMING;
	  info += 7;
	  break;
	default:
	  return ADA_NOT_RENAMING;
	}
    }

  if (renamed_entity != NULL)
    *renamed_entity = info;
  suffix = strstr (info, "___XE");
  if (suffix == NULL || suffix == info)
    return ADA_NOT_RENAMING;
  if (len != NULL)
    *len = strlen (info) - strlen (suffix);
  suffix += 5;
  if (renaming_expr != NULL)
    *renaming_expr = suffix;
  return kind;
}

/* Assuming TYPE encodes a renaming according to the old encoding in
   exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
   *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above.  Returns
   ADA_NOT_RENAMING otherwise.  */
static enum ada_renaming_category
parse_old_style_renaming (struct type *type,
			  const char **renamed_entity, int *len, 
			  const char **renaming_expr)
{
  enum ada_renaming_category kind;
  const char *name;
  const char *info;
  const char *suffix;

  if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM 
      || TYPE_NFIELDS (type) != 1)
    return ADA_NOT_RENAMING;

  name = TYPE_NAME (type);
  if (name == NULL)
    return ADA_NOT_RENAMING;
  
  name = strstr (name, "___XR");
  if (name == NULL)
    return ADA_NOT_RENAMING;
  switch (name[5])
    {
    case '\0':
    case '_':
      kind = ADA_OBJECT_RENAMING;
      break;
    case 'E':
      kind = ADA_EXCEPTION_RENAMING;
      break;
    case 'P':
      kind = ADA_PACKAGE_RENAMING;
      break;
    case 'S':
      kind = ADA_SUBPROGRAM_RENAMING;
      break;
    default:
      return ADA_NOT_RENAMING;
    }

  info = TYPE_FIELD_NAME (type, 0);
  if (info == NULL)
    return ADA_NOT_RENAMING;
  if (renamed_entity != NULL)
    *renamed_entity = info;
  suffix = strstr (info, "___XE");
  if (renaming_expr != NULL)
    *renaming_expr = suffix + 5;
  if (suffix == NULL || suffix == info)
    return ADA_NOT_RENAMING;
  if (len != NULL)
    *len = suffix - info;
  return kind;
}

/* Compute the value of the given RENAMING_SYM, which is expected to
   be a symbol encoding a renaming expression.  BLOCK is the block
   used to evaluate the renaming.  */

static struct value *
ada_read_renaming_var_value (struct symbol *renaming_sym,
			     const struct block *block)
{
  const char *sym_name;

  sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
  expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
  return evaluate_expression (expr.get ());
}


                                /* Evaluation: Function Calls */

/* Return an lvalue containing the value VAL.  This is the identity on
   lvalues, and otherwise has the side-effect of allocating memory
   in the inferior where a copy of the value contents is copied.  */

static struct value *
ensure_lval (struct value *val)
{
  if (VALUE_LVAL (val) == not_lval
      || VALUE_LVAL (val) == lval_internalvar)
    {
      int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
      const CORE_ADDR addr =
        value_as_long (value_allocate_space_in_inferior (len));

      VALUE_LVAL (val) = lval_memory;
      set_value_address (val, addr);
      write_memory (addr, value_contents (val), len);
    }

  return val;
}

/* Return the value ACTUAL, converted to be an appropriate value for a
   formal of type FORMAL_TYPE.  Use *SP as a stack pointer for
   allocating any necessary descriptors (fat pointers), or copies of
   values not residing in memory, updating it as needed.  */

struct value *
ada_convert_actual (struct value *actual, struct type *formal_type0)
{
  struct type *actual_type = ada_check_typedef (value_type (actual));
  struct type *formal_type = ada_check_typedef (formal_type0);
  struct type *formal_target =
    TYPE_CODE (formal_type) == TYPE_CODE_PTR
    ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
  struct type *actual_target =
    TYPE_CODE (actual_type) == TYPE_CODE_PTR
    ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;

  if (ada_is_array_descriptor_type (formal_target)
      && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
    return make_array_descriptor (formal_type, actual);
  else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
	   || TYPE_CODE (formal_type) == TYPE_CODE_REF)
    {
      struct value *result;

      if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
          && ada_is_array_descriptor_type (actual_target))
	result = desc_data (actual);
      else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
        {
          if (VALUE_LVAL (actual) != lval_memory)
            {
              struct value *val;

              actual_type = ada_check_typedef (value_type (actual));
              val = allocate_value (actual_type);
              memcpy ((char *) value_contents_raw (val),
                      (char *) value_contents (actual),
                      TYPE_LENGTH (actual_type));
              actual = ensure_lval (val);
            }
          result = value_addr (actual);
        }
      else
	return actual;
      return value_cast_pointers (formal_type, result, 0);
    }
  else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
    return ada_value_ind (actual);
  else if (ada_is_aligner_type (formal_type))
    {
      /* We need to turn this parameter into an aligner type
	 as well.  */
      struct value *aligner = allocate_value (formal_type);
      struct value *component = ada_value_struct_elt (aligner, "F", 0);

      value_assign_to_component (aligner, component, actual);
      return aligner;
    }

  return actual;
}

/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
   type TYPE.  This is usually an inefficient no-op except on some targets
   (such as AVR) where the representation of a pointer and an address
   differs.  */

static CORE_ADDR
value_pointer (struct value *value, struct type *type)
{
  struct gdbarch *gdbarch = get_type_arch (type);
  unsigned len = TYPE_LENGTH (type);
  gdb_byte *buf = (gdb_byte *) alloca (len);
  CORE_ADDR addr;

  addr = value_address (value);
  gdbarch_address_to_pointer (gdbarch, type, buf, addr);
  addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
  return addr;
}


/* Push a descriptor of type TYPE for array value ARR on the stack at
   *SP, updating *SP to reflect the new descriptor.  Return either
   an lvalue representing the new descriptor, or (if TYPE is a pointer-
   to-descriptor type rather than a descriptor type), a struct value *
   representing a pointer to this descriptor.  */

static struct value *
make_array_descriptor (struct type *type, struct value *arr)
{
  struct type *bounds_type = desc_bounds_type (type);
  struct type *desc_type = desc_base_type (type);
  struct value *descriptor = allocate_value (desc_type);
  struct value *bounds = allocate_value (bounds_type);
  int i;

  for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
       i > 0; i -= 1)
    {
      modify_field (value_type (bounds), value_contents_writeable (bounds),
		    ada_array_bound (arr, i, 0),
		    desc_bound_bitpos (bounds_type, i, 0),
		    desc_bound_bitsize (bounds_type, i, 0));
      modify_field (value_type (bounds), value_contents_writeable (bounds),
		    ada_array_bound (arr, i, 1),
		    desc_bound_bitpos (bounds_type, i, 1),
		    desc_bound_bitsize (bounds_type, i, 1));
    }

  bounds = ensure_lval (bounds);

  modify_field (value_type (descriptor),
		value_contents_writeable (descriptor),
		value_pointer (ensure_lval (arr),
			       TYPE_FIELD_TYPE (desc_type, 0)),
		fat_pntr_data_bitpos (desc_type),
		fat_pntr_data_bitsize (desc_type));

  modify_field (value_type (descriptor),
		value_contents_writeable (descriptor),
		value_pointer (bounds,
			       TYPE_FIELD_TYPE (desc_type, 1)),
		fat_pntr_bounds_bitpos (desc_type),
		fat_pntr_bounds_bitsize (desc_type));

  descriptor = ensure_lval (descriptor);

  if (TYPE_CODE (type) == TYPE_CODE_PTR)
    return value_addr (descriptor);
  else
    return descriptor;
}

                                /* Symbol Cache Module */

/* Performance measurements made as of 2010-01-15 indicate that
   this cache does bring some noticeable improvements.  Depending
   on the type of entity being printed, the cache can make it as much
   as an order of magnitude faster than without it.

   The descriptive type DWARF extension has significantly reduced
   the need for this cache, at least when DWARF is being used.  However,
   even in this case, some expensive name-based symbol searches are still
   sometimes necessary - to find an XVZ variable, mostly.  */

/* Initialize the contents of SYM_CACHE.  */

static void
ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
{
  obstack_init (&sym_cache->cache_space);
  memset (sym_cache->root, '\000', sizeof (sym_cache->root));
}

/* Free the memory used by SYM_CACHE.  */

static void
ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
{
  obstack_free (&sym_cache->cache_space, NULL);
  xfree (sym_cache);
}

/* Return the symbol cache associated to the given program space PSPACE.
   If not allocated for this PSPACE yet, allocate and initialize one.  */

static struct ada_symbol_cache *
ada_get_symbol_cache (struct program_space *pspace)
{
  struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);

  if (pspace_data->sym_cache == NULL)
    {
      pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
      ada_init_symbol_cache (pspace_data->sym_cache);
    }

  return pspace_data->sym_cache;
}

/* Clear all entries from the symbol cache.  */

static void
ada_clear_symbol_cache (void)
{
  struct ada_symbol_cache *sym_cache
    = ada_get_symbol_cache (current_program_space);

  obstack_free (&sym_cache->cache_space, NULL);
  ada_init_symbol_cache (sym_cache);
}

/* Search our cache for an entry matching NAME and DOMAIN.
   Return it if found, or NULL otherwise.  */

static struct cache_entry **
find_entry (const char *name, domain_enum domain)
{
  struct ada_symbol_cache *sym_cache
    = ada_get_symbol_cache (current_program_space);
  int h = msymbol_hash (name) % HASH_SIZE;
  struct cache_entry **e;

  for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
    {
      if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
        return e;
    }
  return NULL;
}

/* Search the symbol cache for an entry matching NAME and DOMAIN.
   Return 1 if found, 0 otherwise.

   If an entry was found and SYM is not NULL, set *SYM to the entry's
   SYM.  Same principle for BLOCK if not NULL.  */

static int
lookup_cached_symbol (const char *name, domain_enum domain,
                      struct symbol **sym, const struct block **block)
{
  struct cache_entry **e = find_entry (name, domain);

  if (e == NULL)
    return 0;
  if (sym != NULL)
    *sym = (*e)->sym;
  if (block != NULL)
    *block = (*e)->block;
  return 1;
}

/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
   in domain DOMAIN, save this result in our symbol cache.  */

static void
cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
              const struct block *block)
{
  struct ada_symbol_cache *sym_cache
    = ada_get_symbol_cache (current_program_space);
  int h;
  char *copy;
  struct cache_entry *e;

  /* Symbols for builtin types don't have a block.
     For now don't cache such symbols.  */
  if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
    return;

  /* If the symbol is a local symbol, then do not cache it, as a search
     for that symbol depends on the context.  To determine whether
     the symbol is local or not, we check the block where we found it
     against the global and static blocks of its associated symtab.  */
  if (sym
      && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
			    GLOBAL_BLOCK) != block
      && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
			    STATIC_BLOCK) != block)
    return;

  h = msymbol_hash (name) % HASH_SIZE;
  e = XOBNEW (&sym_cache->cache_space, cache_entry);
  e->next = sym_cache->root[h];
  sym_cache->root[h] = e;
  e->name = copy
    = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
  strcpy (copy, name);
  e->sym = sym;
  e->domain = domain;
  e->block = block;
}

                                /* Symbol Lookup */

/* Return the symbol name match type that should be used used when
   searching for all symbols matching LOOKUP_NAME.

   LOOKUP_NAME is expected to be a symbol name after transformation
   for Ada lookups.  */

static symbol_name_match_type
name_match_type_from_name (const char *lookup_name)
{
  return (strstr (lookup_name, "__") == NULL
	  ? symbol_name_match_type::WILD
	  : symbol_name_match_type::FULL);
}

/* Return the result of a standard (literal, C-like) lookup of NAME in
   given DOMAIN, visible from lexical block BLOCK.  */

static struct symbol *
standard_lookup (const char *name, const struct block *block,
                 domain_enum domain)
{
  /* Initialize it just to avoid a GCC false warning.  */
  struct block_symbol sym = {NULL, NULL};

  if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
    return sym.symbol;
  ada_lookup_encoded_symbol (name, block, domain, &sym);
  cache_symbol (name, domain, sym.symbol, sym.block);
  return sym.symbol;
}


/* Non-zero iff there is at least one non-function/non-enumeral symbol
   in the symbol fields of SYMS[0..N-1].  We treat enumerals as functions, 
   since they contend in overloading in the same way.  */
static int
is_nonfunction (struct block_symbol syms[], int n)
{
  int i;

  for (i = 0; i < n; i += 1)
    if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
        && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
            || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
      return 1;

  return 0;
}

/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
   struct types.  Otherwise, they may not.  */

static int
equiv_types (struct type *type0, struct type *type1)
{
  if (type0 == type1)
    return 1;
  if (type0 == NULL || type1 == NULL
      || TYPE_CODE (type0) != TYPE_CODE (type1))
    return 0;
  if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
       || TYPE_CODE (type0) == TYPE_CODE_ENUM)
      && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
      && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
    return 1;

  return 0;
}

/* True iff SYM0 represents the same entity as SYM1, or one that is
   no more defined than that of SYM1.  */

static int
lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
{
  if (sym0 == sym1)
    return 1;
  if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
      || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
    return 0;

  switch (SYMBOL_CLASS (sym0))
    {
    case LOC_UNDEF:
      return 1;
    case LOC_TYPEDEF:
      {
        struct type *type0 = SYMBOL_TYPE (sym0);
        struct type *type1 = SYMBOL_TYPE (sym1);
        const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
        const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
        int len0 = strlen (name0);

        return
          TYPE_CODE (type0) == TYPE_CODE (type1)
          && (equiv_types (type0, type1)
              || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
                  && startswith (name1 + len0, "___XV")));
      }
    case LOC_CONST:
      return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
        && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
    default:
      return 0;
    }
}

/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
   records in OBSTACKP.  Do nothing if SYM is a duplicate.  */

static void
add_defn_to_vec (struct obstack *obstackp,
                 struct symbol *sym,
                 const struct block *block)
{
  int i;
  struct block_symbol *prevDefns = defns_collected (obstackp, 0);

  /* Do not try to complete stub types, as the debugger is probably
     already scanning all symbols matching a certain name at the
     time when this function is called.  Trying to replace the stub
     type by its associated full type will cause us to restart a scan
     which may lead to an infinite recursion.  Instead, the client
     collecting the matching symbols will end up collecting several
     matches, with at least one of them complete.  It can then filter
     out the stub ones if needed.  */

  for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
    {
      if (lesseq_defined_than (sym, prevDefns[i].symbol))
        return;
      else if (lesseq_defined_than (prevDefns[i].symbol, sym))
        {
          prevDefns[i].symbol = sym;
          prevDefns[i].block = block;
          return;
        }
    }

  {
    struct block_symbol info;

    info.symbol = sym;
    info.block = block;
    obstack_grow (obstackp, &info, sizeof (struct block_symbol));
  }
}

/* Number of block_symbol structures currently collected in current vector in
   OBSTACKP.  */

static int
num_defns_collected (struct obstack *obstackp)
{
  return obstack_object_size (obstackp) / sizeof (struct block_symbol);
}

/* Vector of block_symbol structures currently collected in current vector in
   OBSTACKP.  If FINISH, close off the vector and return its final address.  */

static struct block_symbol *
defns_collected (struct obstack *obstackp, int finish)
{
  if (finish)
    return (struct block_symbol *) obstack_finish (obstackp);
  else
    return (struct block_symbol *) obstack_base (obstackp);
}

/* Return a bound minimal symbol matching NAME according to Ada
   decoding rules.  Returns an invalid symbol if there is no such
   minimal symbol.  Names prefixed with "standard__" are handled
   specially: "standard__" is first stripped off, and only static and
   global symbols are searched.  */

struct bound_minimal_symbol
ada_lookup_simple_minsym (const char *name)
{
  struct bound_minimal_symbol result;

  memset (&result, 0, sizeof (result));

  symbol_name_match_type match_type = name_match_type_from_name (name);
  lookup_name_info lookup_name (name, match_type);

  symbol_name_matcher_ftype *match_name
    = ada_get_symbol_name_matcher (lookup_name);

  for (objfile *objfile : current_program_space->objfiles ())
    {
      for (minimal_symbol *msymbol : objfile->msymbols ())
	{
	  if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
	      && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
	    {
	      result.minsym = msymbol;
	      result.objfile = objfile;
	      break;
	    }
	}
    }

  return result;
}

/* For all subprograms that statically enclose the subprogram of the
   selected frame, add symbols matching identifier NAME in DOMAIN
   and their blocks to the list of data in OBSTACKP, as for
   ada_add_block_symbols (q.v.).   If WILD_MATCH_P, treat as NAME
   with a wildcard prefix.  */

static void
add_symbols_from_enclosing_procs (struct obstack *obstackp,
				  const lookup_name_info &lookup_name,
				  domain_enum domain)
{
}

/* True if TYPE is definitely an artificial type supplied to a symbol
   for which no debugging information was given in the symbol file.  */

static int
is_nondebugging_type (struct type *type)
{
  const char *name = ada_type_name (type);

  return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
}

/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
   that are deemed "identical" for practical purposes.

   This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
   types and that their number of enumerals is identical (in other
   words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)).  */

static int
ada_identical_enum_types_p (struct type *type1, struct type *type2)
{
  int i;

  /* The heuristic we use here is fairly conservative.  We consider
     that 2 enumerate types are identical if they have the same
     number of enumerals and that all enumerals have the same
     underlying value and name.  */

  /* All enums in the type should have an identical underlying value.  */
  for (i = 0; i < TYPE_NFIELDS (type1); i++)
    if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
      return 0;

  /* All enumerals should also have the same name (modulo any numerical
     suffix).  */
  for (i = 0; i < TYPE_NFIELDS (type1); i++)
    {
      const char *name_1 = TYPE_FIELD_NAME (type1, i);
      const char *name_2 = TYPE_FIELD_NAME (type2, i);
      int len_1 = strlen (name_1);
      int len_2 = strlen (name_2);

      ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
      ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
      if (len_1 != len_2
          || strncmp (TYPE_FIELD_NAME (type1, i),
		      TYPE_FIELD_NAME (type2, i),
		      len_1) != 0)
	return 0;
    }

  return 1;
}

/* Return nonzero if all the symbols in SYMS are all enumeral symbols
   that are deemed "identical" for practical purposes.  Sometimes,
   enumerals are not strictly identical, but their types are so similar
   that they can be considered identical.

   For instance, consider the following code:

      type Color is (Black, Red, Green, Blue, White);
      type RGB_Color is new Color range Red .. Blue;

   Type RGB_Color is a subrange of an implicit type which is a copy
   of type Color. If we call that implicit type RGB_ColorB ("B" is
   for "Base Type"), then type RGB_ColorB is a copy of type Color.
   As a result, when an expression references any of the enumeral
   by name (Eg. "print green"), the expression is technically
   ambiguous and the user should be asked to disambiguate. But
   doing so would only hinder the user, since it wouldn't matter
   what choice he makes, the outcome would always be the same.
   So, for practical purposes, we consider them as the same.  */

static int
symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
{
  int i;

  /* Before performing a thorough comparison check of each type,
     we perform a series of inexpensive checks.  We expect that these
     checks will quickly fail in the vast majority of cases, and thus
     help prevent the unnecessary use of a more expensive comparison.
     Said comparison also expects us to make some of these checks
     (see ada_identical_enum_types_p).  */

  /* Quick check: All symbols should have an enum type.  */
  for (i = 0; i < syms.size (); i++)
    if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
      return 0;

  /* Quick check: They should all have the same value.  */
  for (i = 1; i < syms.size (); i++)
    if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
      return 0;

  /* Quick check: They should all have the same number of enumerals.  */
  for (i = 1; i < syms.size (); i++)
    if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
        != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
      return 0;

  /* All the sanity checks passed, so we might have a set of
     identical enumeration types.  Perform a more complete
     comparison of the type of each symbol.  */
  for (i = 1; i < syms.size (); i++)
    if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
                                     SYMBOL_TYPE (syms[0].symbol)))
      return 0;

  return 1;
}

/* Remove any non-debugging symbols in SYMS that definitely
   duplicate other symbols in the list (The only case I know of where
   this happens is when object files containing stabs-in-ecoff are
   linked with files containing ordinary ecoff debugging symbols (or no
   debugging symbols)).  Modifies SYMS to squeeze out deleted entries.
   Returns the number of items in the modified list.  */

static int
remove_extra_symbols (std::vector<struct block_symbol> *syms)
{
  int i, j;

  /* We should never be called with less than 2 symbols, as there
     cannot be any extra symbol in that case.  But it's easy to
     handle, since we have nothing to do in that case.  */
  if (syms->size () < 2)
    return syms->size ();

  i = 0;
  while (i < syms->size ())
    {
      int remove_p = 0;

      /* If two symbols have the same name and one of them is a stub type,
         the get rid of the stub.  */

      if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
          && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
        {
          for (j = 0; j < syms->size (); j++)
            {
              if (j != i
                  && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
                  && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
                  && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
                             SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
                remove_p = 1;
            }
        }

      /* Two symbols with the same name, same class and same address
         should be identical.  */

      else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
          && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
          && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
        {
          for (j = 0; j < syms->size (); j += 1)
            {
              if (i != j
                  && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
                  && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
                             SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
                  && SYMBOL_CLASS ((*syms)[i].symbol)
		       == SYMBOL_CLASS ((*syms)[j].symbol)
                  && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
                  == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
                remove_p = 1;
            }
        }
      
      if (remove_p)
	syms->erase (syms->begin () + i);

      i += 1;
    }

  /* If all the remaining symbols are identical enumerals, then
     just keep the first one and discard the rest.

     Unlike what we did previously, we do not discard any entry
     unless they are ALL identical.  This is because the symbol
     comparison is not a strict comparison, but rather a practical
     comparison.  If all symbols are considered identical, then
     we can just go ahead and use the first one and discard the rest.
     But if we cannot reduce the list to a single element, we have
     to ask the user to disambiguate anyways.  And if we have to
     present a multiple-choice menu, it's less confusing if the list
     isn't missing some choices that were identical and yet distinct.  */
  if (symbols_are_identical_enums (*syms))
    syms->resize (1);

  return syms->size ();
}

/* Given a type that corresponds to a renaming entity, use the type name
   to extract the scope (package name or function name, fully qualified,
   and following the GNAT encoding convention) where this renaming has been
   defined.  */

static std::string
xget_renaming_scope (struct type *renaming_type)
{
  /* The renaming types adhere to the following convention:
     <scope>__<rename>___<XR extension>.
     So, to extract the scope, we search for the "___XR" extension,
     and then backtrack until we find the first "__".  */

  const char *name = TYPE_NAME (renaming_type);
  const char *suffix = strstr (name, "___XR");
  const char *last;

  /* Now, backtrack a bit until we find the first "__".  Start looking
     at suffix - 3, as the <rename> part is at least one character long.  */

  for (last = suffix - 3; last > name; last--)
    if (last[0] == '_' && last[1] == '_')
      break;

  /* Make a copy of scope and return it.  */
  return std::string (name, last);
}

/* Return nonzero if NAME corresponds to a package name.  */

static int
is_package_name (const char *name)
{
  /* Here, We take advantage of the fact that no symbols are generated
     for packages, while symbols are generated for each function.
     So the condition for NAME represent a package becomes equivalent
     to NAME not existing in our list of symbols.  There is only one
     small complication with library-level functions (see below).  */

  /* If it is a function that has not been defined at library level,
     then we should be able to look it up in the symbols.  */
  if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
    return 0;

  /* Library-level function names start with "_ada_".  See if function
     "_ada_" followed by NAME can be found.  */

  /* Do a quick check that NAME does not contain "__", since library-level
     functions names cannot contain "__" in them.  */
  if (strstr (name, "__") != NULL)
    return 0;

  std::string fun_name = string_printf ("_ada_%s", name);

  return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
}

/* Return nonzero if SYM corresponds to a renaming entity that is
   not visible from FUNCTION_NAME.  */

static int
old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
{
  if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
    return 0;

  std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));

  /* If the rename has been defined in a package, then it is visible.  */
  if (is_package_name (scope.c_str ()))
    return 0;

  /* Check that the rename is in the current function scope by checking
     that its name starts with SCOPE.  */

  /* If the function name starts with "_ada_", it means that it is
     a library-level function.  Strip this prefix before doing the
     comparison, as the encoding for the renaming does not contain
     this prefix.  */
  if (startswith (function_name, "_ada_"))
    function_name += 5;

  return !startswith (function_name, scope.c_str ());
}

/* Remove entries from SYMS that corresponds to a renaming entity that
   is not visible from the function associated with CURRENT_BLOCK or
   that is superfluous due to the presence of more specific renaming
   information.  Places surviving symbols in the initial entries of
   SYMS and returns the number of surviving symbols.
   
   Rationale:
   First, in cases where an object renaming is implemented as a
   reference variable, GNAT may produce both the actual reference
   variable and the renaming encoding.  In this case, we discard the
   latter.

   Second, GNAT emits a type following a specified encoding for each renaming
   entity.  Unfortunately, STABS currently does not support the definition
   of types that are local to a given lexical block, so all renamings types
   are emitted at library level.  As a consequence, if an application
   contains two renaming entities using the same name, and a user tries to
   print the value of one of these entities, the result of the ada symbol
   lookup will also contain the wrong renaming type.

   This function partially covers for this limitation by attempting to
   remove from the SYMS list renaming symbols that should be visible
   from CURRENT_BLOCK.  However, there does not seem be a 100% reliable
   method with the current information available.  The implementation
   below has a couple of limitations (FIXME: brobecker-2003-05-12):  
   
      - When the user tries to print a rename in a function while there
        is another rename entity defined in a package:  Normally, the
        rename in the function has precedence over the rename in the
        package, so the latter should be removed from the list.  This is
        currently not the case.
        
      - This function will incorrectly remove valid renames if
        the CURRENT_BLOCK corresponds to a function which symbol name
        has been changed by an "Export" pragma.  As a consequence,
        the user will be unable to print such rename entities.  */

static int
remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
			     const struct block *current_block)
{
  struct symbol *current_function;
  const char *current_function_name;
  int i;
  int is_new_style_renaming;

  /* If there is both a renaming foo___XR... encoded as a variable and
     a simple variable foo in the same block, discard the latter.
     First, zero out such symbols, then compress.  */
  is_new_style_renaming = 0;
  for (i = 0; i < syms->size (); i += 1)
    {
      struct symbol *sym = (*syms)[i].symbol;
      const struct block *block = (*syms)[i].block;
      const char *name;
      const char *suffix;

      if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
	continue;
      name = SYMBOL_LINKAGE_NAME (sym);
      suffix = strstr (name, "___XR");

      if (suffix != NULL)
	{
	  int name_len = suffix - name;
	  int j;

	  is_new_style_renaming = 1;
	  for (j = 0; j < syms->size (); j += 1)
	    if (i != j && (*syms)[j].symbol != NULL
		&& strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
			    name_len) == 0
		&& block == (*syms)[j].block)
	      (*syms)[j].symbol = NULL;
	}
    }
  if (is_new_style_renaming)
    {
      int j, k;

      for (j = k = 0; j < syms->size (); j += 1)
	if ((*syms)[j].symbol != NULL)
	    {
	      (*syms)[k] = (*syms)[j];
	      k += 1;
	    }
      return k;
    }

  /* Extract the function name associated to CURRENT_BLOCK.
     Abort if unable to do so.  */

  if (current_block == NULL)
    return syms->size ();

  current_function = block_linkage_function (current_block);
  if (current_function == NULL)
    return syms->size ();

  current_function_name = SYMBOL_LINKAGE_NAME (current_function);
  if (current_function_name == NULL)
    return syms->size ();

  /* Check each of the symbols, and remove it from the list if it is
     a type corresponding to a renaming that is out of the scope of
     the current block.  */

  i = 0;
  while (i < syms->size ())
    {
      if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
          == ADA_OBJECT_RENAMING
          && old_renaming_is_invisible ((*syms)[i].symbol,
					current_function_name))
	syms->erase (syms->begin () + i);
      else
        i += 1;
    }

  return syms->size ();
}

/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
   whose name and domain match NAME and DOMAIN respectively.
   If no match was found, then extend the search to "enclosing"
   routines (in other words, if we're inside a nested function,
   search the symbols defined inside the enclosing functions).
   If WILD_MATCH_P is nonzero, perform the naming matching in
   "wild" mode (see function "wild_match" for more info).

   Note: This function assumes that OBSTACKP has 0 (zero) element in it.  */

static void
ada_add_local_symbols (struct obstack *obstackp,
		       const lookup_name_info &lookup_name,
		       const struct block *block, domain_enum domain)
{
  int block_depth = 0;

  while (block != NULL)
    {
      block_depth += 1;
      ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);

      /* If we found a non-function match, assume that's the one.  */
      if (is_nonfunction (defns_collected (obstackp, 0),
                          num_defns_collected (obstackp)))
        return;

      block = BLOCK_SUPERBLOCK (block);
    }

  /* If no luck so far, try to find NAME as a local symbol in some lexically
     enclosing subprogram.  */
  if (num_defns_collected (obstackp) == 0 && block_depth > 2)
    add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
}

/* An object of this type is used as the user_data argument when
   calling the map_matching_symbols method.  */

struct match_data
{
  struct objfile *objfile;
  struct obstack *obstackp;
  struct symbol *arg_sym;
  int found_sym;
};

/* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
   to a list of symbols.  DATA0 is a pointer to a struct match_data *
   containing the obstack that collects the symbol list, the file that SYM
   must come from, a flag indicating whether a non-argument symbol has
   been found in the current block, and the last argument symbol
   passed in SYM within the current block (if any).  When SYM is null,
   marking the end of a block, the argument symbol is added if no
   other has been found.  */

static int
aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
{
  struct match_data *data = (struct match_data *) data0;
  
  if (sym == NULL)
    {
      if (!data->found_sym && data->arg_sym != NULL) 
	add_defn_to_vec (data->obstackp,
			 fixup_symbol_section (data->arg_sym, data->objfile),
			 block);
      data->found_sym = 0;
      data->arg_sym = NULL;
    }
  else 
    {
      if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
	return 0;
      else if (SYMBOL_IS_ARGUMENT (sym))
	data->arg_sym = sym;
      else
	{
	  data->found_sym = 1;
	  add_defn_to_vec (data->obstackp,
			   fixup_symbol_section (sym, data->objfile),
			   block);
	}
    }
  return 0;
}

/* Helper for add_nonlocal_symbols.  Find symbols in DOMAIN which are
   targeted by renamings matching LOOKUP_NAME in BLOCK.  Add these
   symbols to OBSTACKP.  Return whether we found such symbols.  */

static int
ada_add_block_renamings (struct obstack *obstackp,
			 const struct block *block,
			 const lookup_name_info &lookup_name,
			 domain_enum domain)
{
  struct using_direct *renaming;
  int defns_mark = num_defns_collected (obstackp);

  symbol_name_matcher_ftype *name_match
    = ada_get_symbol_name_matcher (lookup_name);

  for (renaming = block_using (block);
       renaming != NULL;
       renaming = renaming->next)
    {
      const char *r_name;

      /* Avoid infinite recursions: skip this renaming if we are actually
	 already traversing it.

	 Currently, symbol lookup in Ada don't use the namespace machinery from
	 C++/Fortran support: skip namespace imports that use them.  */
      if (renaming->searched
	  || (renaming->import_src != NULL
	      && renaming->import_src[0] != '\0')
	  || (renaming->import_dest != NULL
	      && renaming->import_dest[0] != '\0'))
	continue;
      renaming->searched = 1;

      /* TODO: here, we perform another name-based symbol lookup, which can
	 pull its own multiple overloads.  In theory, we should be able to do
	 better in this case since, in DWARF, DW_AT_import is a DIE reference,
	 not a simple name.  But in order to do this, we would need to enhance
	 the DWARF reader to associate a symbol to this renaming, instead of a
	 name.  So, for now, we do something simpler: re-use the C++/Fortran
	 namespace machinery.  */
      r_name = (renaming->alias != NULL
		? renaming->alias
		: renaming->declaration);
      if (name_match (r_name, lookup_name, NULL))
	{
	  lookup_name_info decl_lookup_name (renaming->declaration,
					     lookup_name.match_type ());
	  ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
			       1, NULL);
	}
      renaming->searched = 0;
    }
  return num_defns_collected (obstackp) != defns_mark;
}

/* Implements compare_names, but only applying the comparision using
   the given CASING.  */

static int
compare_names_with_case (const char *string1, const char *string2,
			 enum case_sensitivity casing)
{
  while (*string1 != '\0' && *string2 != '\0')
    {
      char c1, c2;

      if (isspace (*string1) || isspace (*string2))
	return strcmp_iw_ordered (string1, string2);

      if (casing == case_sensitive_off)
	{
	  c1 = tolower (*string1);
	  c2 = tolower (*string2);
	}
      else
	{
	  c1 = *string1;
	  c2 = *string2;
	}
      if (c1 != c2)
	break;

      string1 += 1;
      string2 += 1;
    }

  switch (*string1)
    {
    case '(':
      return strcmp_iw_ordered (string1, string2);
    case '_':
      if (*string2 == '\0')
	{
	  if (is_name_suffix (string1))
	    return 0;
	  else
	    return 1;
	}
      /* FALLTHROUGH */
    default:
      if (*string2 == '(')
	return strcmp_iw_ordered (string1, string2);
      else
	{
	  if (casing == case_sensitive_off)
	    return tolower (*string1) - tolower (*string2);
	  else
	    return *string1 - *string2;
	}
    }
}

/* Compare STRING1 to STRING2, with results as for strcmp.
   Compatible with strcmp_iw_ordered in that...

       strcmp_iw_ordered (STRING1, STRING2) <= 0

   ... implies...

       compare_names (STRING1, STRING2) <= 0

   (they may differ as to what symbols compare equal).  */

static int
compare_names (const char *string1, const char *string2)
{
  int result;

  /* Similar to what strcmp_iw_ordered does, we need to perform
     a case-insensitive comparison first, and only resort to
     a second, case-sensitive, comparison if the first one was
     not sufficient to differentiate the two strings.  */

  result = compare_names_with_case (string1, string2, case_sensitive_off);
  if (result == 0)
    result = compare_names_with_case (string1, string2, case_sensitive_on);

  return result;
}

/* Convenience function to get at the Ada encoded lookup name for
   LOOKUP_NAME, as a C string.  */

static const char *
ada_lookup_name (const lookup_name_info &lookup_name)
{
  return lookup_name.ada ().lookup_name ().c_str ();
}

/* Add to OBSTACKP all non-local symbols whose name and domain match
   LOOKUP_NAME and DOMAIN respectively.  The search is performed on
   GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
   symbols otherwise.  */

static void
add_nonlocal_symbols (struct obstack *obstackp,
		      const lookup_name_info &lookup_name,
		      domain_enum domain, int global)
{
  struct match_data data;

  memset (&data, 0, sizeof data);
  data.obstackp = obstackp;

  bool is_wild_match = lookup_name.ada ().wild_match_p ();

  for (objfile *objfile : current_program_space->objfiles ())
    {
      data.objfile = objfile;

      if (is_wild_match)
	objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
					       domain, global,
					       aux_add_nonlocal_symbols, &data,
					       symbol_name_match_type::WILD,
					       NULL);
      else
	objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
					       domain, global,
					       aux_add_nonlocal_symbols, &data,
					       symbol_name_match_type::FULL,
					       compare_names);

      for (compunit_symtab *cu : objfile->compunits ())
	{
	  const struct block *global_block
	    = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);

	  if (ada_add_block_renamings (obstackp, global_block, lookup_name,
				       domain))
	    data.found_sym = 1;
	}
    }

  if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
    {
      const char *name = ada_lookup_name (lookup_name);
      std::string name1 = std::string ("<_ada_") + name + '>';

      for (objfile *objfile : current_program_space->objfiles ())
        {
	  data.objfile = objfile;
	  objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
						 domain, global,
						 aux_add_nonlocal_symbols,
						 &data,
						 symbol_name_match_type::FULL,
						 compare_names);
	}
    }      	
}

/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
   FULL_SEARCH is non-zero, enclosing scope and in global scopes,
   returning the number of matches.  Add these to OBSTACKP.

   When FULL_SEARCH is non-zero, any non-function/non-enumeral
   symbol match within the nest of blocks whose innermost member is BLOCK,
   is the one match returned (no other matches in that or
   enclosing blocks is returned).  If there are any matches in or
   surrounding BLOCK, then these alone are returned.

   Names prefixed with "standard__" are handled specially:
   "standard__" is first stripped off (by the lookup_name
   constructor), and only static and global symbols are searched.

   If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
   to lookup global symbols.  */

static void
ada_add_all_symbols (struct obstack *obstackp,
		     const struct block *block,
		     const lookup_name_info &lookup_name,
		     domain_enum domain,
		     int full_search,
		     int *made_global_lookup_p)
{
  struct symbol *sym;

  if (made_global_lookup_p)
    *made_global_lookup_p = 0;

  /* Special case: If the user specifies a symbol name inside package
     Standard, do a non-wild matching of the symbol name without
     the "standard__" prefix.  This was primarily introduced in order
     to allow the user to specifically access the standard exceptions
     using, for instance, Standard.Constraint_Error when Constraint_Error
     is ambiguous (due to the user defining its own Constraint_Error
     entity inside its program).  */
  if (lookup_name.ada ().standard_p ())
    block = NULL;

  /* Check the non-global symbols.  If we have ANY match, then we're done.  */

  if (block != NULL)
    {
      if (full_search)
	ada_add_local_symbols (obstackp, lookup_name, block, domain);
      else
	{
	  /* In the !full_search case we're are being called by
	     ada_iterate_over_symbols, and we don't want to search
	     superblocks.  */
	  ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
	}
      if (num_defns_collected (obstackp) > 0 || !full_search)
	return;
    }

  /* No non-global symbols found.  Check our cache to see if we have
     already performed this search before.  If we have, then return
     the same result.  */

  if (lookup_cached_symbol (ada_lookup_name (lookup_name),
			    domain, &sym, &block))
    {
      if (sym != NULL)
	add_defn_to_vec (obstackp, sym, block);
      return;
    }

  if (made_global_lookup_p)
    *made_global_lookup_p = 1;

  /* Search symbols from all global blocks.  */
 
  add_nonlocal_symbols (obstackp, lookup_name, domain, 1);

  /* Now add symbols from all per-file blocks if we've gotten no hits
     (not strictly correct, but perhaps better than an error).  */

  if (num_defns_collected (obstackp) == 0)
    add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
}

/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
   is non-zero, enclosing scope and in global scopes, returning the number of
   matches.
   Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
   found and the blocks and symbol tables (if any) in which they were
   found.

   When full_search is non-zero, any non-function/non-enumeral
   symbol match within the nest of blocks whose innermost member is BLOCK,
   is the one match returned (no other matches in that or
   enclosing blocks is returned).  If there are any matches in or
   surrounding BLOCK, then these alone are returned.

   Names prefixed with "standard__" are handled specially: "standard__"
   is first stripped off, and only static and global symbols are searched.  */

static int
ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
			       const struct block *block,
			       domain_enum domain,
			       std::vector<struct block_symbol> *results,
			       int full_search)
{
  int syms_from_global_search;
  int ndefns;
  auto_obstack obstack;

  ada_add_all_symbols (&obstack, block, lookup_name,
		       domain, full_search, &syms_from_global_search);

  ndefns = num_defns_collected (&obstack);

  struct block_symbol *base = defns_collected (&obstack, 1);
  for (int i = 0; i < ndefns; ++i)
    results->push_back (base[i]);

  ndefns = remove_extra_symbols (results);

  if (ndefns == 0 && full_search && syms_from_global_search)
    cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);

  if (ndefns == 1 && full_search && syms_from_global_search)
    cache_symbol (ada_lookup_name (lookup_name), domain,
		  (*results)[0].symbol, (*results)[0].block);

  ndefns = remove_irrelevant_renamings (results, block);

  return ndefns;
}

/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
   in global scopes, returning the number of matches, and filling *RESULTS
   with (SYM,BLOCK) tuples.

   See ada_lookup_symbol_list_worker for further details.  */

int
ada_lookup_symbol_list (const char *name, const struct block *block,
			domain_enum domain,
			std::vector<struct block_symbol> *results)
{
  symbol_name_match_type name_match_type = name_match_type_from_name (name);
  lookup_name_info lookup_name (name, name_match_type);

  return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
}

/* Implementation of the la_iterate_over_symbols method.  */

static void
ada_iterate_over_symbols
  (const struct block *block, const lookup_name_info &name,
   domain_enum domain,
   gdb::function_view<symbol_found_callback_ftype> callback)
{
  int ndefs, i;
  std::vector<struct block_symbol> results;

  ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);

  for (i = 0; i < ndefs; ++i)
    {
      if (!callback (&results[i]))
	break;
    }
}

/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
   to 1, but choosing the first symbol found if there are multiple
   choices.

   The result is stored in *INFO, which must be non-NULL.
   If no match is found, INFO->SYM is set to NULL.  */

void
ada_lookup_encoded_symbol (const char *name, const struct block *block,
			   domain_enum domain,
			   struct block_symbol *info)
{
  /* Since we already have an encoded name, wrap it in '<>' to force a
     verbatim match.  Otherwise, if the name happens to not look like
     an encoded name (because it doesn't include a "__"),
     ada_lookup_name_info would re-encode/fold it again, and that
     would e.g., incorrectly lowercase object renaming names like
     "R28b" -> "r28b".  */
  std::string verbatim = std::string ("<") + name + '>';

  gdb_assert (info != NULL);
  *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL);
}

/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
   scope and in global scopes, or NULL if none.  NAME is folded and
   encoded first.  Otherwise, the result is as for ada_lookup_symbol_list,
   choosing the first symbol if there are multiple choices.
   If IS_A_FIELD_OF_THIS is not NULL, it is set to zero.  */

struct block_symbol
ada_lookup_symbol (const char *name, const struct block *block0,
                   domain_enum domain, int *is_a_field_of_this)
{
  if (is_a_field_of_this != NULL)
    *is_a_field_of_this = 0;

  std::vector<struct block_symbol> candidates;
  int n_candidates;

  n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);

  if (n_candidates == 0)
    return {};

  block_symbol info = candidates[0];
  info.symbol = fixup_symbol_section (info.symbol, NULL);
  return info;
}

static struct block_symbol
ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
			    const char *name,
                            const struct block *block,
                            const domain_enum domain)
{
  struct block_symbol sym;

  sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
  if (sym.symbol != NULL)
    return sym;

  /* If we haven't found a match at this point, try the primitive
     types.  In other languages, this search is performed before
     searching for global symbols in order to short-circuit that
     global-symbol search if it happens that the name corresponds
     to a primitive type.  But we cannot do the same in Ada, because
     it is perfectly legitimate for a program to declare a type which
     has the same name as a standard type.  If looking up a type in
     that situation, we have traditionally ignored the primitive type
     in favor of user-defined types.  This is why, unlike most other
     languages, we search the primitive types this late and only after
     having searched the global symbols without success.  */

  if (domain == VAR_DOMAIN)
    {
      struct gdbarch *gdbarch;

      if (block == NULL)
	gdbarch = target_gdbarch ();
      else
	gdbarch = block_gdbarch (block);
      sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
      if (sym.symbol != NULL)
	return sym;
    }

  return (struct block_symbol) {NULL, NULL};
}


/* True iff STR is a possible encoded suffix of a normal Ada name
   that is to be ignored for matching purposes.  Suffixes of parallel
   names (e.g., XVE) are not included here.  Currently, the possible suffixes
   are given by any of the regular expressions:

   [.$][0-9]+       [nested subprogram suffix, on platforms such as GNU/Linux]
   ___[0-9]+        [nested subprogram suffix, on platforms such as HP/UX]
   TKB              [subprogram suffix for task bodies]
   _E[0-9]+[bs]$    [protected object entry suffixes]
   (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$

   Also, any leading "__[0-9]+" sequence is skipped before the suffix
   match is performed.  This sequence is used to differentiate homonyms,
   is an optional part of a valid name suffix.  */

static int
is_name_suffix (const char *str)
{
  int k;
  const char *matching;
  const int len = strlen (str);

  /* Skip optional leading __[0-9]+.  */

  if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
    {
      str += 3;
      while (isdigit (str[0]))
        str += 1;
    }
  
  /* [.$][0-9]+ */

  if (str[0] == '.' || str[0] == '$')
    {
      matching = str + 1;
      while (isdigit (matching[0]))
        matching += 1;
      if (matching[0] == '\0')
        return 1;
    }

  /* ___[0-9]+ */

  if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
    {
      matching = str + 3;
      while (isdigit (matching[0]))
        matching += 1;
      if (matching[0] == '\0')
        return 1;
    }

  /* "TKB" suffixes are used for subprograms implementing task bodies.  */

  if (strcmp (str, "TKB") == 0)
    return 1;

#if 0
  /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
     with a N at the end.  Unfortunately, the compiler uses the same
     convention for other internal types it creates.  So treating
     all entity names that end with an "N" as a name suffix causes
     some regressions.  For instance, consider the case of an enumerated
     type.  To support the 'Image attribute, it creates an array whose
     name ends with N.
     Having a single character like this as a suffix carrying some
     information is a bit risky.  Perhaps we should change the encoding
     to be something like "_N" instead.  In the meantime, do not do
     the following check.  */
  /* Protected Object Subprograms */
  if (len == 1 && str [0] == 'N')
    return 1;
#endif

  /* _E[0-9]+[bs]$ */
  if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
    {
      matching = str + 3;
      while (isdigit (matching[0]))
        matching += 1;
      if ((matching[0] == 'b' || matching[0] == 's')
          && matching [1] == '\0')
        return 1;
    }

  /* ??? We should not modify STR directly, as we are doing below.  This
     is fine in this case, but may become problematic later if we find
     that this alternative did not work, and want to try matching
     another one from the begining of STR.  Since we modified it, we
     won't be able to find the begining of the string anymore!  */
  if (str[0] == 'X')
    {
      str += 1;
      while (str[0] != '_' && str[0] != '\0')
        {
          if (str[0] != 'n' && str[0] != 'b')
            return 0;
          str += 1;
        }
    }

  if (str[0] == '\000')
    return 1;

  if (str[0] == '_')
    {
      if (str[1] != '_' || str[2] == '\000')
        return 0;
      if (str[2] == '_')
        {
          if (strcmp (str + 3, "JM") == 0)
            return 1;
          /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
             the LJM suffix in favor of the JM one.  But we will
             still accept LJM as a valid suffix for a reasonable
             amount of time, just to allow ourselves to debug programs
             compiled using an older version of GNAT.  */
          if (strcmp (str + 3, "LJM") == 0)
            return 1;
          if (str[3] != 'X')
            return 0;
          if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
              || str[4] == 'U' || str[4] == 'P')
            return 1;
          if (str[4] == 'R' && str[5] != 'T')
            return 1;
          return 0;
        }
      if (!isdigit (str[2]))
        return 0;
      for (k = 3; str[k] != '\0'; k += 1)
        if (!isdigit (str[k]) && str[k] != '_')
          return 0;
      return 1;
    }
  if (str[0] == '$' && isdigit (str[1]))
    {
      for (k = 2; str[k] != '\0'; k += 1)
        if (!isdigit (str[k]) && str[k] != '_')
          return 0;
      return 1;
    }
  return 0;
}

/* Return non-zero if the string starting at NAME and ending before
   NAME_END contains no capital letters.  */

static int
is_valid_name_for_wild_match (const char *name0)
{
  const char *decoded_name = ada_decode (name0);
  int i;

  /* If the decoded name starts with an angle bracket, it means that
     NAME0 does not follow the GNAT encoding format.  It should then
     not be allowed as a possible wild match.  */
  if (decoded_name[0] == '<')
    return 0;

  for (i=0; decoded_name[i] != '\0'; i++)
    if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
      return 0;

  return 1;
}

/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
   that could start a simple name.  Assumes that *NAMEP points into
   the string beginning at NAME0.  */

static int
advance_wild_match (const char **namep, const char *name0, int target0)
{
  const char *name = *namep;

  while (1)
    {
      int t0, t1;

      t0 = *name;
      if (t0 == '_')
	{
	  t1 = name[1];
	  if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
	    {
	      name += 1;
	      if (name == name0 + 5 && startswith (name0, "_ada"))
		break;
	      else
		name += 1;
	    }
	  else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
				 || name[2] == target0))
	    {
	      name += 2;
	      break;
	    }
	  else
	    return 0;
	}
      else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
	name += 1;
      else
	return 0;
    }

  *namep = name;
  return 1;
}

/* Return true iff NAME encodes a name of the form prefix.PATN.
   Ignores any informational suffixes of NAME (i.e., for which
   is_name_suffix is true).  Assumes that PATN is a lower-cased Ada
   simple name.  */

static bool
wild_match (const char *name, const char *patn)
{
  const char *p;
  const char *name0 = name;

  while (1)
    {
      const char *match = name;

      if (*name == *patn)
	{
	  for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
	    if (*p != *name)
	      break;
	  if (*p == '\0' && is_name_suffix (name))
	    return match == name0 || is_valid_name_for_wild_match (name0);

	  if (name[-1] == '_')
	    name -= 1;
	}
      if (!advance_wild_match (&name, name0, *patn))
	return false;
    }
}

/* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
   any trailing suffixes that encode debugging information or leading
   _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
   information that is ignored).  */

static bool
full_match (const char *sym_name, const char *search_name)
{
  size_t search_name_len = strlen (search_name);

  if (strncmp (sym_name, search_name, search_name_len) == 0
      && is_name_suffix (sym_name + search_name_len))
    return true;

  if (startswith (sym_name, "_ada_")
      && strncmp (sym_name + 5, search_name, search_name_len) == 0
      && is_name_suffix (sym_name + search_name_len + 5))
    return true;

  return false;
}

/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
   *defn_symbols, updating the list of symbols in OBSTACKP (if
   necessary).  OBJFILE is the section containing BLOCK.  */

static void
ada_add_block_symbols (struct obstack *obstackp,
		       const struct block *block,
		       const lookup_name_info &lookup_name,
		       domain_enum domain, struct objfile *objfile)
{
  struct block_iterator iter;
  /* A matching argument symbol, if any.  */
  struct symbol *arg_sym;
  /* Set true when we find a matching non-argument symbol.  */
  int found_sym;
  struct symbol *sym;

  arg_sym = NULL;
  found_sym = 0;
  for (sym = block_iter_match_first (block, lookup_name, &iter);
       sym != NULL;
       sym = block_iter_match_next (lookup_name, &iter))
    {
      if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
				 SYMBOL_DOMAIN (sym), domain))
	{
	  if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
	    {
	      if (SYMBOL_IS_ARGUMENT (sym))
		arg_sym = sym;
	      else
		{
		  found_sym = 1;
		  add_defn_to_vec (obstackp,
				   fixup_symbol_section (sym, objfile),
				   block);
		}
	    }
	}
    }

  /* Handle renamings.  */

  if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
    found_sym = 1;

  if (!found_sym && arg_sym != NULL)
    {
      add_defn_to_vec (obstackp,
                       fixup_symbol_section (arg_sym, objfile),
                       block);
    }

  if (!lookup_name.ada ().wild_match_p ())
    {
      arg_sym = NULL;
      found_sym = 0;
      const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
      const char *name = ada_lookup_name.c_str ();
      size_t name_len = ada_lookup_name.size ();

      ALL_BLOCK_SYMBOLS (block, iter, sym)
      {
        if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
                                   SYMBOL_DOMAIN (sym), domain))
          {
            int cmp;

            cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
            if (cmp == 0)
              {
                cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
                if (cmp == 0)
                  cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
                                 name_len);
              }

            if (cmp == 0
                && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
              {
		if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
		  {
		    if (SYMBOL_IS_ARGUMENT (sym))
		      arg_sym = sym;
		    else
		      {
			found_sym = 1;
			add_defn_to_vec (obstackp,
					 fixup_symbol_section (sym, objfile),
					 block);
		      }
		  }
              }
          }
      }

      /* NOTE: This really shouldn't be needed for _ada_ symbols.
         They aren't parameters, right?  */
      if (!found_sym && arg_sym != NULL)
        {
          add_defn_to_vec (obstackp,
                           fixup_symbol_section (arg_sym, objfile),
                           block);
        }
    }
}


                                /* Symbol Completion */

/* See symtab.h.  */

bool
ada_lookup_name_info::matches
  (const char *sym_name,
   symbol_name_match_type match_type,
   completion_match_result *comp_match_res) const
{
  bool match = false;
  const char *text = m_encoded_name.c_str ();
  size_t text_len = m_encoded_name.size ();

  /* First, test against the fully qualified name of the symbol.  */

  if (strncmp (sym_name, text, text_len) == 0)
    match = true;

  if (match && !m_encoded_p)
    {
      /* One needed check before declaring a positive match is to verify
         that iff we are doing a verbatim match, the decoded version
         of the symbol name starts with '<'.  Otherwise, this symbol name
         is not a suitable completion.  */
      const char *sym_name_copy = sym_name;
      bool has_angle_bracket;

      sym_name = ada_decode (sym_name);
      has_angle_bracket = (sym_name[0] == '<');
      match = (has_angle_bracket == m_verbatim_p);
      sym_name = sym_name_copy;
    }

  if (match && !m_verbatim_p)
    {
      /* When doing non-verbatim match, another check that needs to
         be done is to verify that the potentially matching symbol name
         does not include capital letters, because the ada-mode would
         not be able to understand these symbol names without the
         angle bracket notation.  */
      const char *tmp;

      for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
      if (*tmp != '\0')
	match = false;
    }

  /* Second: Try wild matching...  */

  if (!match && m_wild_match_p)
    {
      /* Since we are doing wild matching, this means that TEXT
         may represent an unqualified symbol name.  We therefore must
         also compare TEXT against the unqualified name of the symbol.  */
      sym_name = ada_unqualified_name (ada_decode (sym_name));

      if (strncmp (sym_name, text, text_len) == 0)
	match = true;
    }

  /* Finally: If we found a match, prepare the result to return.  */

  if (!match)
    return false;

  if (comp_match_res != NULL)
    {
      std::string &match_str = comp_match_res->match.storage ();

      if (!m_encoded_p)
	match_str = ada_decode (sym_name);
      else
	{
	  if (m_verbatim_p)
	    match_str = add_angle_brackets (sym_name);
	  else
	    match_str = sym_name;

	}

      comp_match_res->set_match (match_str.c_str ());
    }

  return true;
}

/* Add the list of possible symbol names completing TEXT to TRACKER.
   WORD is the entire command on which completion is made.  */

static void
ada_collect_symbol_completion_matches (completion_tracker &tracker,
				       complete_symbol_mode mode,
				       symbol_name_match_type name_match_type,
				       const char *text, const char *word,
				       enum type_code code)
{
  struct symbol *sym;
  const struct block *b, *surrounding_static_block = 0;
  struct block_iterator iter;

  gdb_assert (code == TYPE_CODE_UNDEF);

  lookup_name_info lookup_name (text, name_match_type, true);

  /* First, look at the partial symtab symbols.  */
  expand_symtabs_matching (NULL,
			   lookup_name,
			   NULL,
			   NULL,
			   ALL_DOMAIN);

  /* At this point scan through the misc symbol vectors and add each
     symbol you find to the list.  Eventually we want to ignore
     anything that isn't a text symbol (everything else will be
     handled by the psymtab code above).  */

  for (objfile *objfile : current_program_space->objfiles ())
    {
      for (minimal_symbol *msymbol : objfile->msymbols ())
	{
	  QUIT;

	  if (completion_skip_symbol (mode, msymbol))
	    continue;

	  language symbol_language = MSYMBOL_LANGUAGE (msymbol);

	  /* Ada minimal symbols won't have their language set to Ada.  If
	     we let completion_list_add_name compare using the
	     default/C-like matcher, then when completing e.g., symbols in a
	     package named "pck", we'd match internal Ada symbols like
	     "pckS", which are invalid in an Ada expression, unless you wrap
	     them in '<' '>' to request a verbatim match.

	     Unfortunately, some Ada encoded names successfully demangle as
	     C++ symbols (using an old mangling scheme), such as "name__2Xn"
	     -> "Xn::name(void)" and thus some Ada minimal symbols end up
	     with the wrong language set.  Paper over that issue here.  */
	  if (symbol_language == language_auto
	      || symbol_language == language_cplus)
	    symbol_language = language_ada;

	  completion_list_add_name (tracker,
				    symbol_language,
				    MSYMBOL_LINKAGE_NAME (msymbol),
				    lookup_name, text, word);
	}
    }

  /* Search upwards from currently selected frame (so that we can
     complete on local vars.  */

  for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
    {
      if (!BLOCK_SUPERBLOCK (b))
        surrounding_static_block = b;   /* For elmin of dups */

      ALL_BLOCK_SYMBOLS (b, iter, sym)
      {
	if (completion_skip_symbol (mode, sym))
	  continue;

	completion_list_add_name (tracker,
				  SYMBOL_LANGUAGE (sym),
				  SYMBOL_LINKAGE_NAME (sym),
				  lookup_name, text, word);
      }
    }

  /* Go through the symtabs and check the externs and statics for
     symbols which match.  */

  for (objfile *objfile : current_program_space->objfiles ())
    {
      for (compunit_symtab *s : objfile->compunits ())
	{
	  QUIT;
	  b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
	  ALL_BLOCK_SYMBOLS (b, iter, sym)
	    {
	      if (completion_skip_symbol (mode, sym))
		continue;

	      completion_list_add_name (tracker,
					SYMBOL_LANGUAGE (sym),
					SYMBOL_LINKAGE_NAME (sym),
					lookup_name, text, word);
	    }
	}
    }

  for (objfile *objfile : current_program_space->objfiles ())
    {
      for (compunit_symtab *s : objfile->compunits ())
	{
	  QUIT;
	  b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
	  /* Don't do this block twice.  */
	  if (b == surrounding_static_block)
	    continue;
	  ALL_BLOCK_SYMBOLS (b, iter, sym)
	    {
	      if (completion_skip_symbol (mode, sym))
		continue;

	      completion_list_add_name (tracker,
					SYMBOL_LANGUAGE (sym),
					SYMBOL_LINKAGE_NAME (sym),
					lookup_name, text, word);
	    }
	}
    }
}

                                /* Field Access */

/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
   for tagged types.  */

static int
ada_is_dispatch_table_ptr_type (struct type *type)
{
  const char *name;

  if (TYPE_CODE (type) != TYPE_CODE_PTR)
    return 0;

  name = TYPE_NAME (TYPE_TARGET_TYPE (type));
  if (name == NULL)
    return 0;

  return (strcmp (name, "ada__tags__dispatch_table") == 0);
}

/* Return non-zero if TYPE is an interface tag.  */

static int
ada_is_interface_tag (struct type *type)
{
  const char *name = TYPE_NAME (type);

  if (name == NULL)
    return 0;

  return (strcmp (name, "ada__tags__interface_tag") == 0);
}

/* True if field number FIELD_NUM in struct or union type TYPE is supposed
   to be invisible to users.  */

int
ada_is_ignored_field (struct type *type, int field_num)
{
  if (field_num < 0 || field_num > TYPE_NFIELDS (type))
    return 1;

  /* Check the name of that field.  */
  {
    const char *name = TYPE_FIELD_NAME (type, field_num);

    /* Anonymous field names should not be printed.
       brobecker/2007-02-20: I don't think this can actually happen
       but we don't want to print the value of annonymous fields anyway.  */
    if (name == NULL)
      return 1;

    /* Normally, fields whose name start with an underscore ("_")
       are fields that have been internally generated by the compiler,
       and thus should not be printed.  The "_parent" field is special,
       however: This is a field internally generated by the compiler
       for tagged types, and it contains the components inherited from
       the parent type.  This field should not be printed as is, but
       should not be ignored either.  */
    if (name[0] == '_' && !startswith (name, "_parent"))
      return 1;
  }

  /* If this is the dispatch table of a tagged type or an interface tag,
     then ignore.  */
  if (ada_is_tagged_type (type, 1)
      && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
	  || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
    return 1;

  /* Not a special field, so it should not be ignored.  */
  return 0;
}

/* True iff TYPE has a tag field.  If REFOK, then TYPE may also be a
   pointer or reference type whose ultimate target has a tag field.  */

int
ada_is_tagged_type (struct type *type, int refok)
{
  return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
}

/* True iff TYPE represents the type of X'Tag */

int
ada_is_tag_type (struct type *type)
{
  type = ada_check_typedef (type);

  if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
    return 0;
  else
    {
      const char *name = ada_type_name (TYPE_TARGET_TYPE (type));

      return (name != NULL
              && strcmp (name, "ada__tags__dispatch_table") == 0);
    }
}

/* The type of the tag on VAL.  */

struct type *
ada_tag_type (struct value *val)
{
  return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
}

/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
   retired at Ada 05).  */

static int
is_ada95_tag (struct value *tag)
{
  return ada_value_struct_elt (tag, "tsd", 1) != NULL;
}

/* The value of the tag on VAL.  */

struct value *
ada_value_tag (struct value *val)
{
  return ada_value_struct_elt (val, "_tag", 0);
}

/* The value of the tag on the object of type TYPE whose contents are
   saved at VALADDR, if it is non-null, or is at memory address
   ADDRESS.  */

static struct value *
value_tag_from_contents_and_address (struct type *type,
				     const gdb_byte *valaddr,
                                     CORE_ADDR address)
{
  int tag_byte_offset;
  struct type *tag_type;

  if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
                         NULL, NULL, NULL))
    {
      const gdb_byte *valaddr1 = ((valaddr == NULL)
				  ? NULL
				  : valaddr + tag_byte_offset);
      CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;

      return value_from_contents_and_address (tag_type, valaddr1, address1);
    }
  return NULL;
}

static struct type *
type_from_tag (struct value *tag)
{
  const char *type_name = ada_tag_name (tag);

  if (type_name != NULL)
    return ada_find_any_type (ada_encode (type_name));
  return NULL;
}

/* Given a value OBJ of a tagged type, return a value of this
   type at the base address of the object.  The base address, as
   defined in Ada.Tags, it is the address of the primary tag of
   the object, and therefore where the field values of its full
   view can be fetched.  */

struct value *
ada_tag_value_at_base_address (struct value *obj)
{
  struct value *val;
  LONGEST offset_to_top = 0;
  struct type *ptr_type, *obj_type;
  struct value *tag;
  CORE_ADDR base_address;

  obj_type = value_type (obj);

  /* It is the responsability of the caller to deref pointers.  */

  if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
      || TYPE_CODE (obj_type) == TYPE_CODE_REF)
    return obj;

  tag = ada_value_tag (obj);
  if (!tag)
    return obj;

  /* Base addresses only appeared with Ada 05 and multiple inheritance.  */

  if (is_ada95_tag (tag))
    return obj;

  ptr_type = language_lookup_primitive_type
    (language_def (language_ada), target_gdbarch(), "storage_offset");
  ptr_type = lookup_pointer_type (ptr_type);
  val = value_cast (ptr_type, tag);
  if (!val)
    return obj;

  /* It is perfectly possible that an exception be raised while
     trying to determine the base address, just like for the tag;
     see ada_tag_name for more details.  We do not print the error
     message for the same reason.  */

  TRY
    {
      offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
    }

  CATCH (e, RETURN_MASK_ERROR)
    {
      return obj;
    }
  END_CATCH

  /* If offset is null, nothing to do.  */

  if (offset_to_top == 0)
    return obj;

  /* -1 is a special case in Ada.Tags; however, what should be done
     is not quite clear from the documentation.  So do nothing for
     now.  */

  if (offset_to_top == -1)
    return obj;

  /* OFFSET_TO_TOP used to be a positive value to be subtracted
     from the base address.  This was however incompatible with
     C++ dispatch table: C++ uses a *negative* value to *add*
     to the base address.  Ada's convention has therefore been
     changed in GNAT 19.0w 20171023: since then, C++ and Ada
     use the same convention.  Here, we support both cases by
     checking the sign of OFFSET_TO_TOP.  */

  if (offset_to_top > 0)
    offset_to_top = -offset_to_top;

  base_address = value_address (obj) + offset_to_top;
  tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);

  /* Make sure that we have a proper tag at the new address.
     Otherwise, offset_to_top is bogus (which can happen when
     the object is not initialized yet).  */

  if (!tag)
    return obj;

  obj_type = type_from_tag (tag);

  if (!obj_type)
    return obj;

  return value_from_contents_and_address (obj_type, NULL, base_address);
}

/* Return the "ada__tags__type_specific_data" type.  */

static struct type *
ada_get_tsd_type (struct inferior *inf)
{
  struct ada_inferior_data *data = get_ada_inferior_data (inf);

  if (data->tsd_type == 0)
    data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
  return data->tsd_type;
}

/* Return the TSD (type-specific data) associated to the given TAG.
   TAG is assumed to be the tag of a tagged-type entity.

   May return NULL if we are unable to get the TSD.  */

static struct value *
ada_get_tsd_from_tag (struct value *tag)
{
  struct value *val;
  struct type *type;

  /* First option: The TSD is simply stored as a field of our TAG.
     Only older versions of GNAT would use this format, but we have
     to test it first, because there are no visible markers for
     the current approach except the absence of that field.  */

  val = ada_value_struct_elt (tag, "tsd", 1);
  if (val)
    return val;

  /* Try the second representation for the dispatch table (in which
     there is no explicit 'tsd' field in the referent of the tag pointer,
     and instead the tsd pointer is stored just before the dispatch
     table.  */

  type = ada_get_tsd_type (current_inferior());
  if (type == NULL)
    return NULL;
  type = lookup_pointer_type (lookup_pointer_type (type));
  val = value_cast (type, tag);
  if (val == NULL)
    return NULL;
  return value_ind (value_ptradd (val, -1));
}

/* Given the TSD of a tag (type-specific data), return a string
   containing the name of the associated type.

   The returned value is good until the next call.  May return NULL
   if we are unable to determine the tag name.  */

static char *
ada_tag_name_from_tsd (struct value *tsd)
{
  static char name[1024];
  char *p;
  struct value *val;

  val = ada_value_struct_elt (tsd, "expanded_name", 1);
  if (val == NULL)
    return NULL;
  read_memory_string (value_as_address (val), name, sizeof (name) - 1);
  for (p = name; *p != '\0'; p += 1)
    if (isalpha (*p))
      *p = tolower (*p);
  return name;
}

/* The type name of the dynamic type denoted by the 'tag value TAG, as
   a C string.

   Return NULL if the TAG is not an Ada tag, or if we were unable to
   determine the name of that tag.  The result is good until the next
   call.  */

const char *
ada_tag_name (struct value *tag)
{
  char *name = NULL;

  if (!ada_is_tag_type (value_type (tag)))
    return NULL;

  /* It is perfectly possible that an exception be raised while trying
     to determine the TAG's name, even under normal circumstances:
     The associated variable may be uninitialized or corrupted, for
     instance. We do not let any exception propagate past this point.
     instead we return NULL.

     We also do not print the error message either (which often is very
     low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
     the caller print a more meaningful message if necessary.  */
  TRY
    {
      struct value *tsd = ada_get_tsd_from_tag (tag);

      if (tsd != NULL)
	name = ada_tag_name_from_tsd (tsd);
    }
  CATCH (e, RETURN_MASK_ERROR)
    {
    }
  END_CATCH

  return name;
}

/* The parent type of TYPE, or NULL if none.  */

struct type *
ada_parent_type (struct type *type)
{
  int i;

  type = ada_check_typedef (type);

  if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
    return NULL;

  for (i = 0; i < TYPE_NFIELDS (type); i += 1)
    if (ada_is_parent_field (type, i))
      {
        struct type *parent_type = TYPE_FIELD_TYPE (type, i);

        /* If the _parent field is a pointer, then dereference it.  */
        if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
          parent_type = TYPE_TARGET_TYPE (parent_type);
        /* If there is a parallel XVS type, get the actual base type.  */
        parent_type = ada_get_base_type (parent_type);

        return ada_check_typedef (parent_type);
      }

  return NULL;
}

/* True iff field number FIELD_NUM of structure type TYPE contains the
   parent-type (inherited) fields of a derived type.  Assumes TYPE is
   a structure type with at least FIELD_NUM+1 fields.  */

int
ada_is_parent_field (struct type *type, int field_num)
{
  const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);

  return (name != NULL
          && (startswith (name, "PARENT")
              || startswith (name, "_parent")));
}

/* True iff field number FIELD_NUM of structure type TYPE is a
   transparent wrapper field (which should be silently traversed when doing
   field selection and flattened when printing).  Assumes TYPE is a
   structure type with at least FIELD_NUM+1 fields.  Such fields are always
   structures.  */

int
ada_is_wrapper_field (struct type *type, int field_num)
{
  const char *name = TYPE_FIELD_NAME (type, field_num);

  if (name != NULL && strcmp (name, "RETVAL") == 0)
    {
      /* This happens in functions with "out" or "in out" parameters
	 which are passed by copy.  For such functions, GNAT describes
	 the function's return type as being a struct where the return
	 value is in a field called RETVAL, and where the other "out"
	 or "in out" parameters are fields of that struct.  This is not
	 a wrapper.  */
      return 0;
    }

  return (name != NULL
          && (startswith (name, "PARENT")
              || strcmp (name, "REP") == 0
              || startswith (name, "_parent")
              || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
}

/* True iff field number FIELD_NUM of structure or union type TYPE
   is a variant wrapper.  Assumes TYPE is a structure type with at least
   FIELD_NUM+1 fields.  */

int
ada_is_variant_part (struct type *type, int field_num)
{
  struct type *field_type = TYPE_FIELD_TYPE (type, field_num);

  return (TYPE_CODE (field_type) == TYPE_CODE_UNION
          || (is_dynamic_field (type, field_num)
              && (TYPE_CODE (TYPE_TARGET_TYPE (field_type)) 
		  == TYPE_CODE_UNION)));
}

/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
   whose discriminants are contained in the record type OUTER_TYPE,
   returns the type of the controlling discriminant for the variant.
   May return NULL if the type could not be found.  */

struct type *
ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
{
  const char *name = ada_variant_discrim_name (var_type);

  return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
}

/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
   valid field number within it, returns 1 iff field FIELD_NUM of TYPE
   represents a 'when others' clause; otherwise 0.  */

int
ada_is_others_clause (struct type *type, int field_num)
{
  const char *name = TYPE_FIELD_NAME (type, field_num);

  return (name != NULL && name[0] == 'O');
}

/* Assuming that TYPE0 is the type of the variant part of a record,
   returns the name of the discriminant controlling the variant.
   The value is valid until the next call to ada_variant_discrim_name.  */

const char *
ada_variant_discrim_name (struct type *type0)
{
  static char *result = NULL;
  static size_t result_len = 0;
  struct type *type;
  const char *name;
  const char *discrim_end;
  const char *discrim_start;

  if (TYPE_CODE (type0) == TYPE_CODE_PTR)
    type = TYPE_TARGET_TYPE (type0);
  else
    type = type0;

  name = ada_type_name (type);

  if (name == NULL || name[0] == '\000')
    return "";

  for (discrim_end = name + strlen (name) - 6; discrim_end != name;
       discrim_end -= 1)
    {
      if (startswith (discrim_end, "___XVN"))
        break;
    }
  if (discrim_end == name)
    return "";

  for (discrim_start = discrim_end; discrim_start != name + 3;
       discrim_start -= 1)
    {
      if (discrim_start == name + 1)
        return "";
      if ((discrim_start > name + 3
           && startswith (discrim_start - 3, "___"))
          || discrim_start[-1] == '.')
        break;
    }

  GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
  strncpy (result, discrim_start, discrim_end - discrim_start);
  result[discrim_end - discrim_start] = '\0';
  return result;
}

/* Scan STR for a subtype-encoded number, beginning at position K.
   Put the position of the character just past the number scanned in
   *NEW_K, if NEW_K!=NULL.  Put the scanned number in *R, if R!=NULL.
   Return 1 if there was a valid number at the given position, and 0
   otherwise.  A "subtype-encoded" number consists of the absolute value
   in decimal, followed by the letter 'm' to indicate a negative number.
   Assumes 0m does not occur.  */

int
ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
{
  ULONGEST RU;

  if (!isdigit (str[k]))
    return 0;

  /* Do it the hard way so as not to make any assumption about
     the relationship of unsigned long (%lu scan format code) and
     LONGEST.  */
  RU = 0;
  while (isdigit (str[k]))
    {
      RU = RU * 10 + (str[k] - '0');
      k += 1;
    }

  if (str[k] == 'm')
    {
      if (R != NULL)
        *R = (-(LONGEST) (RU - 1)) - 1;
      k += 1;
    }
  else if (R != NULL)
    *R = (LONGEST) RU;

  /* NOTE on the above: Technically, C does not say what the results of
     - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
     number representable as a LONGEST (although either would probably work
     in most implementations).  When RU>0, the locution in the then branch
     above is always equivalent to the negative of RU.  */

  if (new_k != NULL)
    *new_k = k;
  return 1;
}

/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
   and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
   in the range encoded by field FIELD_NUM of TYPE; otherwise 0.  */

int
ada_in_variant (LONGEST val, struct type *type, int field_num)
{
  const char *name = TYPE_FIELD_NAME (type, field_num);
  int p;

  p = 0;
  while (1)
    {
      switch (name[p])
        {
        case '\0':
          return 0;
        case 'S':
          {
            LONGEST W;

            if (!ada_scan_number (name, p + 1, &W, &p))
              return 0;
            if (val == W)
              return 1;
            break;
          }
        case 'R':
          {
            LONGEST L, U;

            if (!ada_scan_number (name, p + 1, &L, &p)
                || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
              return 0;
            if (val >= L && val <= U)
              return 1;
            break;
          }
        case 'O':
          return 1;
        default:
          return 0;
        }
    }
}

/* FIXME: Lots of redundancy below.  Try to consolidate.  */

/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
   ARG_TYPE, extract and return the value of one of its (non-static)
   fields.  FIELDNO says which field.   Differs from value_primitive_field
   only in that it can handle packed values of arbitrary type.  */

static struct value *
ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
                           struct type *arg_type)
{
  struct type *type;

  arg_type = ada_check_typedef (arg_type);
  type = TYPE_FIELD_TYPE (arg_type, fieldno);

  /* Handle packed fields.  */

  if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
    {
      int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
      int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);

      return ada_value_primitive_packed_val (arg1, value_contents (arg1),
                                             offset + bit_pos / 8,
                                             bit_pos % 8, bit_size, type);
    }
  else
    return value_primitive_field (arg1, offset, fieldno, arg_type);
}

/* Find field with name NAME in object of type TYPE.  If found, 
   set the following for each argument that is non-null:
    - *FIELD_TYPE_P to the field's type; 
    - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within 
      an object of that type;
    - *BIT_OFFSET_P to the bit offset modulo byte size of the field; 
    - *BIT_SIZE_P to its size in bits if the field is packed, and 
      0 otherwise;
   If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
   fields up to but not including the desired field, or by the total
   number of fields if not found.   A NULL value of NAME never
   matches; the function just counts visible fields in this case.
   
   Notice that we need to handle when a tagged record hierarchy
   has some components with the same name, like in this scenario:

      type Top_T is tagged record
         N : Integer := 1;
         U : Integer := 974;
         A : Integer := 48;
      end record;

      type Middle_T is new Top.Top_T with record
         N : Character := 'a';
         C : Integer := 3;
      end record;

     type Bottom_T is new Middle.Middle_T with record
        N : Float := 4.0;
        C : Character := '5';
        X : Integer := 6;
        A : Character := 'J';
     end record;

   Let's say we now have a variable declared and initialized as follow:

     TC : Top_A := new Bottom_T;

   And then we use this variable to call this function

     procedure Assign (Obj: in out Top_T; TV : Integer);

   as follow:

      Assign (Top_T (B), 12);

   Now, we're in the debugger, and we're inside that procedure
   then and we want to print the value of obj.c:

   Usually, the tagged record or one of the parent type owns the
   component to print and there's no issue but in this particular
   case, what does it mean to ask for Obj.C? Since the actual
   type for object is type Bottom_T, it could mean two things: type
   component C from the Middle_T view, but also component C from
   Bottom_T.  So in that "undefined" case, when the component is
   not found in the non-resolved type (which includes all the
   components of the parent type), then resolve it and see if we
   get better luck once expanded.

   In the case of homonyms in the derived tagged type, we don't
   guaranty anything, and pick the one that's easiest for us
   to program.

   Returns 1 if found, 0 otherwise.  */

static int
find_struct_field (const char *name, struct type *type, int offset,
                   struct type **field_type_p,
                   int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
		   int *index_p)
{
  int i;
  int parent_offset = -1;

  type = ada_check_typedef (type);

  if (field_type_p != NULL)
    *field_type_p = NULL;
  if (byte_offset_p != NULL)
    *byte_offset_p = 0;
  if (bit_offset_p != NULL)
    *bit_offset_p = 0;
  if (bit_size_p != NULL)
    *bit_size_p = 0;

  for (i = 0; i < TYPE_NFIELDS (type); i += 1)
    {
      int bit_pos = TYPE_FIELD_BITPOS (type, i);
      int fld_offset = offset + bit_pos / 8;
      const char *t_field_name = TYPE_FIELD_NAME (type, i);

      if (t_field_name == NULL)
        continue;

      else if (ada_is_parent_field (type, i))
        {
	  /* This is a field pointing us to the parent type of a tagged
	     type.  As hinted in this function's documentation, we give
	     preference to fields in the current record first, so what
	     we do here is just record the index of this field before
	     we skip it.  If it turns out we couldn't find our field
	     in the current record, then we'll get back to it and search
	     inside it whether the field might exist in the parent.  */

          parent_offset = i;
          continue;
        }

      else if (name != NULL && field_name_match (t_field_name, name))
        {
          int bit_size = TYPE_FIELD_BITSIZE (type, i);

	  if (field_type_p != NULL)
	    *field_type_p = TYPE_FIELD_TYPE (type, i);
	  if (byte_offset_p != NULL)
	    *byte_offset_p = fld_offset;
	  if (bit_offset_p != NULL)
	    *bit_offset_p = bit_pos % 8;
	  if (bit_size_p != NULL)
	    *bit_size_p = bit_size;
          return 1;
        }
      else if (ada_is_wrapper_field (type, i))
        {
	  if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
				 field_type_p, byte_offset_p, bit_offset_p,
				 bit_size_p, index_p))
            return 1;
        }
      else if (ada_is_variant_part (type, i))
        {
	  /* PNH: Wait.  Do we ever execute this section, or is ARG always of 
	     fixed type?? */
          int j;
          struct type *field_type
	    = ada_check_typedef (TYPE_FIELD_TYPE (type, i));

          for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
            {
              if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
                                     fld_offset
                                     + TYPE_FIELD_BITPOS (field_type, j) / 8,
                                     field_type_p, byte_offset_p,
                                     bit_offset_p, bit_size_p, index_p))
                return 1;
            }
        }
      else if (index_p != NULL)
	*index_p += 1;
    }

  /* Field not found so far.  If this is a tagged type which
     has a parent, try finding that field in the parent now.  */

  if (parent_offset != -1)
    {
      int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
      int fld_offset = offset + bit_pos / 8;

      if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
                             fld_offset, field_type_p, byte_offset_p,
                             bit_offset_p, bit_size_p, index_p))
        return 1;
    }

  return 0;
}

/* Number of user-visible fields in record type TYPE.  */

static int
num_visible_fields (struct type *type)
{
  int n;

  n = 0;
  find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
  return n;
}

/* Look for a field NAME in ARG.  Adjust the address of ARG by OFFSET bytes,
   and search in it assuming it has (class) type TYPE.
   If found, return value, else return NULL.

   Searches recursively through wrapper fields (e.g., '_parent').

   In the case of homonyms in the tagged types, please refer to the
   long explanation in find_struct_field's function documentation.  */

static struct value *
ada_search_struct_field (const char *name, struct value *arg, int offset,
                         struct type *type)
{
  int i;
  int parent_offset = -1;

  type = ada_check_typedef (type);
  for (i = 0; i < TYPE_NFIELDS (type); i += 1)
    {
      const char *t_field_name = TYPE_FIELD_NAME (type, i);

      if (t_field_name == NULL)
        continue;

      else if (ada_is_parent_field (type, i))
        {
	  /* This is a field pointing us to the parent type of a tagged
	     type.  As hinted in this function's documentation, we give
	     preference to fields in the current record first, so what
	     we do here is just record the index of this field before
	     we skip it.  If it turns out we couldn't find our field
	     in the current record, then we'll get back to it and search
	     inside it whether the field might exist in the parent.  */

          parent_offset = i;
          continue;
        }

      else if (field_name_match (t_field_name, name))
        return ada_value_primitive_field (arg, offset, i, type);

      else if (ada_is_wrapper_field (type, i))
        {
          struct value *v =     /* Do not let indent join lines here.  */
            ada_search_struct_field (name, arg,
                                     offset + TYPE_FIELD_BITPOS (type, i) / 8,
                                     TYPE_FIELD_TYPE (type, i));

          if (v != NULL)
            return v;
        }

      else if (ada_is_variant_part (type, i))
        {
	  /* PNH: Do we ever get here?  See find_struct_field.  */
          int j;
          struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
									i));
          int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;

          for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
            {
              struct value *v = ada_search_struct_field /* Force line
							   break.  */
                (name, arg,
                 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
                 TYPE_FIELD_TYPE (field_type, j));

              if (v != NULL)
                return v;
            }
        }
    }

  /* Field not found so far.  If this is a tagged type which
     has a parent, try finding that field in the parent now.  */

  if (parent_offset != -1)
    {
      struct value *v = ada_search_struct_field (
	name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
	TYPE_FIELD_TYPE (type, parent_offset));

      if (v != NULL)
        return v;
    }

  return NULL;
}

static struct value *ada_index_struct_field_1 (int *, struct value *,
					       int, struct type *);


/* Return field #INDEX in ARG, where the index is that returned by
 * find_struct_field through its INDEX_P argument.  Adjust the address
 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
 * If found, return value, else return NULL.  */

static struct value *
ada_index_struct_field (int index, struct value *arg, int offset,
			struct type *type)
{
  return ada_index_struct_field_1 (&index, arg, offset, type);
}


/* Auxiliary function for ada_index_struct_field.  Like
 * ada_index_struct_field, but takes index from *INDEX_P and modifies
 * *INDEX_P.  */

static struct value *
ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
			  struct type *type)
{
  int i;
  type = ada_check_typedef (type);

  for (i = 0; i < TYPE_NFIELDS (type); i += 1)
    {
      if (TYPE_FIELD_NAME (type, i) == NULL)
        continue;
      else if (ada_is_wrapper_field (type, i))
        {
          struct value *v =     /* Do not let indent join lines here.  */
            ada_index_struct_field_1 (index_p, arg,
				      offset + TYPE_FIELD_BITPOS (type, i) / 8,
				      TYPE_FIELD_TYPE (type, i));

          if (v != NULL)
            return v;
        }

      else if (ada_is_variant_part (type, i))
        {
	  /* PNH: Do we ever get here?  See ada_search_struct_field,
	     find_struct_field.  */
	  error (_("Cannot assign this kind of variant record"));
        }
      else if (*index_p == 0)
        return ada_value_primitive_field (arg, offset, i, type);
      else
	*index_p -= 1;
    }
  return NULL;
}

/* Given ARG, a value of type (pointer or reference to a)*
   structure/union, extract the component named NAME from the ultimate
   target structure/union and return it as a value with its
   appropriate type.

   The routine searches for NAME among all members of the structure itself
   and (recursively) among all members of any wrapper members
   (e.g., '_parent').

   If NO_ERR, then simply return NULL in case of error, rather than 
   calling error.  */

struct value *
ada_value_struct_elt (struct value *arg, const char *name, int no_err)
{
  struct type *t, *t1;
  struct value *v;
  int check_tag;

  v = NULL;
  t1 = t = ada_check_typedef (value_type (arg));
  if (TYPE_CODE (t) == TYPE_CODE_REF)
    {
      t1 = TYPE_TARGET_TYPE (t);
      if (t1 == NULL)
	goto BadValue;
      t1 = ada_check_typedef (t1);
      if (TYPE_CODE (t1) == TYPE_CODE_PTR)
        {
          arg = coerce_ref (arg);
          t = t1;
        }
    }

  while (TYPE_CODE (t) == TYPE_CODE_PTR)
    {
      t1 = TYPE_TARGET_TYPE (t);
      if (t1 == NULL)
	goto BadValue;
      t1 = ada_check_typedef (t1);
      if (TYPE_CODE (t1) == TYPE_CODE_PTR)
        {
          arg = value_ind (arg);
          t = t1;
        }
      else
        break;
    }

  if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
    goto BadValue;

  if (t1 == t)
    v = ada_search_struct_field (name, arg, 0, t);
  else
    {
      int bit_offset, bit_size, byte_offset;
      struct type *field_type;
      CORE_ADDR address;

      if (TYPE_CODE (t) == TYPE_CODE_PTR)
	address = value_address (ada_value_ind (arg));
      else
	address = value_address (ada_coerce_ref (arg));

      /* Check to see if this is a tagged type.  We also need to handle
         the case where the type is a reference to a tagged type, but
         we have to be careful to exclude pointers to tagged types.
         The latter should be shown as usual (as a pointer), whereas
         a reference should mostly be transparent to the user.  */

      if (ada_is_tagged_type (t1, 0)
          || (TYPE_CODE (t1) == TYPE_CODE_REF
              && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
        {
          /* We first try to find the searched field in the current type.
	     If not found then let's look in the fixed type.  */

          if (!find_struct_field (name, t1, 0,
                                  &field_type, &byte_offset, &bit_offset,
                                  &bit_size, NULL))
	    check_tag = 1;
	  else
	    check_tag = 0;
        }
      else
	check_tag = 0;

      /* Convert to fixed type in all cases, so that we have proper
	 offsets to each field in unconstrained record types.  */
      t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
			      address, NULL, check_tag);

      if (find_struct_field (name, t1, 0,
                             &field_type, &byte_offset, &bit_offset,
                             &bit_size, NULL))
        {
          if (bit_size != 0)
            {
              if (TYPE_CODE (t) == TYPE_CODE_REF)
                arg = ada_coerce_ref (arg);
              else
                arg = ada_value_ind (arg);
              v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
                                                  bit_offset, bit_size,
                                                  field_type);
            }
          else
            v = value_at_lazy (field_type, address + byte_offset);
        }
    }

  if (v != NULL || no_err)
    return v;
  else
    error (_("There is no member named %s."), name);

 BadValue:
  if (no_err)
    return NULL;
  else
    error (_("Attempt to extract a component of "
	     "a value that is not a record."));
}

/* Return a string representation of type TYPE.  */

static std::string
type_as_string (struct type *type)
{
  string_file tmp_stream;

  type_print (type, "", &tmp_stream, -1);

  return std::move (tmp_stream.string ());
}

/* Given a type TYPE, look up the type of the component of type named NAME.
   If DISPP is non-null, add its byte displacement from the beginning of a
   structure (pointed to by a value) of type TYPE to *DISPP (does not
   work for packed fields).

   Matches any field whose name has NAME as a prefix, possibly
   followed by "___".

   TYPE can be either a struct or union.  If REFOK, TYPE may also 
   be a (pointer or reference)+ to a struct or union, and the
   ultimate target type will be searched.

   Looks recursively into variant clauses and parent types.

   In the case of homonyms in the tagged types, please refer to the
   long explanation in find_struct_field's function documentation.

   If NOERR is nonzero, return NULL if NAME is not suitably defined or
   TYPE is not a type of the right kind.  */

static struct type *
ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
                            int noerr)
{
  int i;
  int parent_offset = -1;

  if (name == NULL)
    goto BadName;

  if (refok && type != NULL)
    while (1)
      {
        type = ada_check_typedef (type);
        if (TYPE_CODE (type) != TYPE_CODE_PTR
            && TYPE_CODE (type) != TYPE_CODE_REF)
          break;
        type = TYPE_TARGET_TYPE (type);
      }

  if (type == NULL
      || (TYPE_CODE (type) != TYPE_CODE_STRUCT
          && TYPE_CODE (type) != TYPE_CODE_UNION))
    {
      if (noerr)
        return NULL;

      error (_("Type %s is not a structure or union type"),
	     type != NULL ? type_as_string (type).c_str () : _("(null)"));
    }

  type = to_static_fixed_type (type);

  for (i = 0; i < TYPE_NFIELDS (type); i += 1)
    {
      const char *t_field_name = TYPE_FIELD_NAME (type, i);
      struct type *t;

      if (t_field_name == NULL)
        continue;

      else if (ada_is_parent_field (type, i))
        {
	  /* This is a field pointing us to the parent type of a tagged
	     type.  As hinted in this function's documentation, we give
	     preference to fields in the current record first, so what
	     we do here is just record the index of this field before
	     we skip it.  If it turns out we couldn't find our field
	     in the current record, then we'll get back to it and search
	     inside it whether the field might exist in the parent.  */

          parent_offset = i;
          continue;
        }

      else if (field_name_match (t_field_name, name))
	return TYPE_FIELD_TYPE (type, i);

      else if (ada_is_wrapper_field (type, i))
        {
          t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
                                          0, 1);
          if (t != NULL)
	    return t;
        }

      else if (ada_is_variant_part (type, i))
        {
          int j;
          struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
									i));

          for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
            {
	      /* FIXME pnh 2008/01/26: We check for a field that is
	         NOT wrapped in a struct, since the compiler sometimes
		 generates these for unchecked variant types.  Revisit
	         if the compiler changes this practice.  */
	      const char *v_field_name = TYPE_FIELD_NAME (field_type, j);

	      if (v_field_name != NULL 
		  && field_name_match (v_field_name, name))
		t = TYPE_FIELD_TYPE (field_type, j);
	      else
		t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
								 j),
						name, 0, 1);

              if (t != NULL)
		return t;
            }
        }

    }

    /* Field not found so far.  If this is a tagged type which
       has a parent, try finding that field in the parent now.  */

    if (parent_offset != -1)
      {
        struct type *t;

        t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
                                        name, 0, 1);
        if (t != NULL)
	  return t;
      }

BadName:
  if (!noerr)
    {
      const char *name_str = name != NULL ? name : _("<null>");

      error (_("Type %s has no component named %s"),
	     type_as_string (type).c_str (), name_str);
    }

  return NULL;
}

/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
   within a value of type OUTER_TYPE, return true iff VAR_TYPE
   represents an unchecked union (that is, the variant part of a
   record that is named in an Unchecked_Union pragma).  */

static int
is_unchecked_variant (struct type *var_type, struct type *outer_type)
{
  const char *discrim_name = ada_variant_discrim_name (var_type);

  return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
}


/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
   within a value of type OUTER_TYPE that is stored in GDB at
   OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
   numbering from 0) is applicable.  Returns -1 if none are.  */

int
ada_which_variant_applies (struct type *var_type, struct type *outer_type,
                           const gdb_byte *outer_valaddr)
{
  int others_clause;
  int i;
  const char *discrim_name = ada_variant_discrim_name (var_type);
  struct value *outer;
  struct value *discrim;
  LONGEST discrim_val;

  /* Using plain value_from_contents_and_address here causes problems
     because we will end up trying to resolve a type that is currently
     being constructed.  */
  outer = value_from_contents_and_address_unresolved (outer_type,
						      outer_valaddr, 0);
  discrim = ada_value_struct_elt (outer, discrim_name, 1);
  if (discrim == NULL)
    return -1;
  discrim_val = value_as_long (discrim);

  others_clause = -1;
  for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
    {
      if (ada_is_others_clause (var_type, i))
        others_clause = i;
      else if (ada_in_variant (discrim_val, var_type, i))
        return i;
    }

  return others_clause;
}



                                /* Dynamic-Sized Records */

/* Strategy: The type ostensibly attached to a value with dynamic size
   (i.e., a size that is not statically recorded in the debugging
   data) does not accurately reflect the size or layout of the value.
   Our strategy is to convert these values to values with accurate,
   conventional types that are constructed on the fly.  */

/* There is a subtle and tricky problem here.  In general, we cannot
   determine the size of dynamic records without its data.  However,
   the 'struct value' data structure, which GDB uses to represent
   quantities in the inferior process (the target), requires the size
   of the type at the time of its allocation in order to reserve space
   for GDB's internal copy of the data.  That's why the
   'to_fixed_xxx_type' routines take (target) addresses as parameters,
   rather than struct value*s.

   However, GDB's internal history variables ($1, $2, etc.) are
   struct value*s containing internal copies of the data that are not, in
   general, the same as the data at their corresponding addresses in
   the target.  Fortunately, the types we give to these values are all
   conventional, fixed-size types (as per the strategy described
   above), so that we don't usually have to perform the
   'to_fixed_xxx_type' conversions to look at their values.
   Unfortunately, there is one exception: if one of the internal
   history variables is an array whose elements are unconstrained
   records, then we will need to create distinct fixed types for each
   element selected.  */

/* The upshot of all of this is that many routines take a (type, host
   address, target address) triple as arguments to represent a value.
   The host address, if non-null, is supposed to contain an internal
   copy of the relevant data; otherwise, the program is to consult the
   target at the target address.  */

/* Assuming that VAL0 represents a pointer value, the result of
   dereferencing it.  Differs from value_ind in its treatment of
   dynamic-sized types.  */

struct value *
ada_value_ind (struct value *val0)
{
  struct value *val = value_ind (val0);

  if (ada_is_tagged_type (value_type (val), 0))
    val = ada_tag_value_at_base_address (val);

  return ada_to_fixed_value (val);
}

/* The value resulting from dereferencing any "reference to"
   qualifiers on VAL0.  */

static struct value *
ada_coerce_ref (struct value *val0)
{
  if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
    {
      struct value *val = val0;

      val = coerce_ref (val);

      if (ada_is_tagged_type (value_type (val), 0))
	val = ada_tag_value_at_base_address (val);

      return ada_to_fixed_value (val);
    }
  else
    return val0;
}

/* Return OFF rounded upward if necessary to a multiple of
   ALIGNMENT (a power of 2).  */

static unsigned int
align_value (unsigned int off, unsigned int alignment)
{
  return (off + alignment - 1) & ~(alignment - 1);
}

/* Return the bit alignment required for field #F of template type TYPE.  */

static unsigned int
field_alignment (struct type *type, int f)
{
  const char *name = TYPE_FIELD_NAME (type, f);
  int len;
  int align_offset;

  /* The field name should never be null, unless the debugging information
     is somehow malformed.  In this case, we assume the field does not
     require any alignment.  */
  if (name == NULL)
    return 1;

  len = strlen (name);

  if (!isdigit (name[len - 1]))
    return 1;

  if (isdigit (name[len - 2]))
    align_offset = len - 2;
  else
    align_offset = len - 1;

  if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
    return TARGET_CHAR_BIT;

  return atoi (name + align_offset) * TARGET_CHAR_BIT;
}

/* Find a typedef or tag symbol named NAME.  Ignores ambiguity.  */

static struct symbol *
ada_find_any_type_symbol (const char *name)
{
  struct symbol *sym;

  sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
  if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
    return sym;

  sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
  return sym;
}

/* Find a type named NAME.  Ignores ambiguity.  This routine will look
   solely for types defined by debug info, it will not search the GDB
   primitive types.  */

static struct type *
ada_find_any_type (const char *name)
{
  struct symbol *sym = ada_find_any_type_symbol (name);

  if (sym != NULL)
    return SYMBOL_TYPE (sym);

  return NULL;
}

/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
   associated with NAME_SYM's name.  NAME_SYM may itself be a renaming
   symbol, in which case it is returned.  Otherwise, this looks for
   symbols whose name is that of NAME_SYM suffixed with  "___XR".
   Return symbol if found, and NULL otherwise.  */

struct symbol *
ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
{
  const char *name = SYMBOL_LINKAGE_NAME (name_sym);
  struct symbol *sym;

  if (strstr (name, "___XR") != NULL)
     return name_sym;

  sym = find_old_style_renaming_symbol (name, block);

  if (sym != NULL)
    return sym;

  /* Not right yet.  FIXME pnh 7/20/2007.  */
  sym = ada_find_any_type_symbol (name);
  if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
    return sym;
  else
    return NULL;
}

static struct symbol *
find_old_style_renaming_symbol (const char *name, const struct block *block)
{
  const struct symbol *function_sym = block_linkage_function (block);
  char *rename;

  if (function_sym != NULL)
    {
      /* If the symbol is defined inside a function, NAME is not fully
         qualified.  This means we need to prepend the function name
         as well as adding the ``___XR'' suffix to build the name of
         the associated renaming symbol.  */
      const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
      /* Function names sometimes contain suffixes used
         for instance to qualify nested subprograms.  When building
         the XR type name, we need to make sure that this suffix is
         not included.  So do not include any suffix in the function
         name length below.  */
      int function_name_len = ada_name_prefix_len (function_name);
      const int rename_len = function_name_len + 2      /*  "__" */
        + strlen (name) + 6 /* "___XR\0" */ ;

      /* Strip the suffix if necessary.  */
      ada_remove_trailing_digits (function_name, &function_name_len);
      ada_remove_po_subprogram_suffix (function_name, &function_name_len);
      ada_remove_Xbn_suffix (function_name, &function_name_len);

      /* Library-level functions are a special case, as GNAT adds
         a ``_ada_'' prefix to the function name to avoid namespace
         pollution.  However, the renaming symbols themselves do not
         have this prefix, so we need to skip this prefix if present.  */
      if (function_name_len > 5 /* "_ada_" */
          && strstr (function_name, "_ada_") == function_name)
        {
	  function_name += 5;
	  function_name_len -= 5;
        }

      rename = (char *) alloca (rename_len * sizeof (char));
      strncpy (rename, function_name, function_name_len);
      xsnprintf (rename + function_name_len, rename_len - function_name_len,
		 "__%s___XR", name);
    }
  else
    {
      const int rename_len = strlen (name) + 6;

      rename = (char *) alloca (rename_len * sizeof (char));
      xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
    }

  return ada_find_any_type_symbol (rename);
}

/* Because of GNAT encoding conventions, several GDB symbols may match a
   given type name.  If the type denoted by TYPE0 is to be preferred to
   that of TYPE1 for purposes of type printing, return non-zero;
   otherwise return 0.  */

int
ada_prefer_type (struct type *type0, struct type *type1)
{
  if (type1 == NULL)
    return 1;
  else if (type0 == NULL)
    return 0;
  else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
    return 1;
  else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
    return 0;
  else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
    return 1;
  else if (ada_is_constrained_packed_array_type (type0))
    return 1;
  else if (ada_is_array_descriptor_type (type0)
           && !ada_is_array_descriptor_type (type1))
    return 1;
  else
    {
      const char *type0_name = TYPE_NAME (type0);
      const char *type1_name = TYPE_NAME (type1);

      if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
	  && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
	return 1;
    }
  return 0;
}

/* The name of TYPE, which is its TYPE_NAME.  Null if TYPE is
   null.  */

const char *
ada_type_name (struct type *type)
{
  if (type == NULL)
    return NULL;
  return TYPE_NAME (type);
}

/* Search the list of "descriptive" types associated to TYPE for a type
   whose name is NAME.  */

static struct type *
find_parallel_type_by_descriptive_type (struct type *type, const char *name)
{
  struct type *result, *tmp;

  if (ada_ignore_descriptive_types_p)
    return NULL;

  /* If there no descriptive-type info, then there is no parallel type
     to be found.  */
  if (!HAVE_GNAT_AUX_INFO (type))
    return NULL;

  result = TYPE_DESCRIPTIVE_TYPE (type);
  while (result != NULL)
    {
      const char *result_name = ada_type_name (result);

      if (result_name == NULL)
        {
          warning (_("unexpected null name on descriptive type"));
          return NULL;
        }

      /* If the names match, stop.  */
      if (strcmp (result_name, name) == 0)
	break;

      /* Otherwise, look at the next item on the list, if any.  */
      if (HAVE_GNAT_AUX_INFO (result))
	tmp = TYPE_DESCRIPTIVE_TYPE (result);
      else
	tmp = NULL;

      /* If not found either, try after having resolved the typedef.  */
      if (tmp != NULL)
	result = tmp;
      else
	{
	  result = check_typedef (result);
	  if (HAVE_GNAT_AUX_INFO (result))
	    result = TYPE_DESCRIPTIVE_TYPE (result);
	  else
	    result = NULL;
	}
    }

  /* If we didn't find a match, see whether this is a packed array.  With
     older compilers, the descriptive type information is either absent or
     irrelevant when it comes to packed arrays so the above lookup fails.
     Fall back to using a parallel lookup by name in this case.  */
  if (result == NULL && ada_is_constrained_packed_array_type (type))
    return ada_find_any_type (name);

  return result;
}

/* Find a parallel type to TYPE with the specified NAME, using the
   descriptive type taken from the debugging information, if available,
   and otherwise using the (slower) name-based method.  */

static struct type *
ada_find_parallel_type_with_name (struct type *type, const char *name)
{
  struct type *result = NULL;

  if (HAVE_GNAT_AUX_INFO (type))
    result = find_parallel_type_by_descriptive_type (type, name);
  else
    result = ada_find_any_type (name);

  return result;
}

/* Same as above, but specify the name of the parallel type by appending
   SUFFIX to the name of TYPE.  */

struct type *
ada_find_parallel_type (struct type *type, const char *suffix)
{
  char *name;
  const char *type_name = ada_type_name (type);
  int len;

  if (type_name == NULL)
    return NULL;

  len = strlen (type_name);

  name = (char *) alloca (len + strlen (suffix) + 1);

  strcpy (name, type_name);
  strcpy (name + len, suffix);

  return ada_find_parallel_type_with_name (type, name);
}

/* If TYPE is a variable-size record type, return the corresponding template
   type describing its fields.  Otherwise, return NULL.  */

static struct type *
dynamic_template_type (struct type *type)
{
  type = ada_check_typedef (type);

  if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
      || ada_type_name (type) == NULL)
    return NULL;
  else
    {
      int len = strlen (ada_type_name (type));

      if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
        return type;
      else
        return ada_find_parallel_type (type, "___XVE");
    }
}

/* Assuming that TEMPL_TYPE is a union or struct type, returns
   non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size.  */

static int
is_dynamic_field (struct type *templ_type, int field_num)
{
  const char *name = TYPE_FIELD_NAME (templ_type, field_num);

  return name != NULL
    && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
    && strstr (name, "___XVL") != NULL;
}

/* The index of the variant field of TYPE, or -1 if TYPE does not
   represent a variant record type.  */

static int
variant_field_index (struct type *type)
{
  int f;

  if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
    return -1;

  for (f = 0; f < TYPE_NFIELDS (type); f += 1)
    {
      if (ada_is_variant_part (type, f))
        return f;
    }
  return -1;
}

/* A record type with no fields.  */

static struct type *
empty_record (struct type *templ)
{
  struct type *type = alloc_type_copy (templ);

  TYPE_CODE (type) = TYPE_CODE_STRUCT;
  TYPE_NFIELDS (type) = 0;
  TYPE_FIELDS (type) = NULL;
  INIT_CPLUS_SPECIFIC (type);
  TYPE_NAME (type) = "<empty>";
  TYPE_LENGTH (type) = 0;
  return type;
}

/* An ordinary record type (with fixed-length fields) that describes
   the value of type TYPE at VALADDR or ADDRESS (see comments at
   the beginning of this section) VAL according to GNAT conventions.
   DVAL0 should describe the (portion of a) record that contains any
   necessary discriminants.  It should be NULL if value_type (VAL) is
   an outer-level type (i.e., as opposed to a branch of a variant.)  A
   variant field (unless unchecked) is replaced by a particular branch
   of the variant.

   If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
   length are not statically known are discarded.  As a consequence,
   VALADDR, ADDRESS and DVAL0 are ignored.

   NOTE: Limitations: For now, we assume that dynamic fields and
   variants occupy whole numbers of bytes.  However, they need not be
   byte-aligned.  */

struct type *
ada_template_to_fixed_record_type_1 (struct type *type,
				     const gdb_byte *valaddr,
                                     CORE_ADDR address, struct value *dval0,
                                     int keep_dynamic_fields)
{
  struct value *mark = value_mark ();
  struct value *dval;
  struct type *rtype;
  int nfields, bit_len;
  int variant_field;
  long off;
  int fld_bit_len;
  int f;

  /* Compute the number of fields in this record type that are going
     to be processed: unless keep_dynamic_fields, this includes only
     fields whose position and length are static will be processed.  */
  if (keep_dynamic_fields)
    nfields = TYPE_NFIELDS (type);
  else
    {
      nfields = 0;
      while (nfields < TYPE_NFIELDS (type)
             && !ada_is_variant_part (type, nfields)
             && !is_dynamic_field (type, nfields))
        nfields++;
    }

  rtype = alloc_type_copy (type);
  TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
  INIT_CPLUS_SPECIFIC (rtype);
  TYPE_NFIELDS (rtype) = nfields;
  TYPE_FIELDS (rtype) = (struct field *)
    TYPE_ALLOC (rtype, nfields * sizeof (struct field));
  memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
  TYPE_NAME (rtype) = ada_type_name (type);
  TYPE_FIXED_INSTANCE (rtype) = 1;

  off = 0;
  bit_len = 0;
  variant_field = -1;

  for (f = 0; f < nfields; f += 1)
    {
      off = align_value (off, field_alignment (type, f))
	+ TYPE_FIELD_BITPOS (type, f);
      SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
      TYPE_FIELD_BITSIZE (rtype, f) = 0;

      if (ada_is_variant_part (type, f))
        {
          variant_field = f;
          fld_bit_len = 0;
        }
      else if (is_dynamic_field (type, f))
        {
	  const gdb_byte *field_valaddr = valaddr;
	  CORE_ADDR field_address = address;
	  struct type *field_type =
	    TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));

          if (dval0 == NULL)
	    {
	      /* rtype's length is computed based on the run-time
		 value of discriminants.  If the discriminants are not
		 initialized, the type size may be completely bogus and
		 GDB may fail to allocate a value for it.  So check the
		 size first before creating the value.  */
	      ada_ensure_varsize_limit (rtype);
	      /* Using plain value_from_contents_and_address here
		 causes problems because we will end up trying to
		 resolve a type that is currently being
		 constructed.  */
	      dval = value_from_contents_and_address_unresolved (rtype,
								 valaddr,
								 address);
	      rtype = value_type (dval);
	    }
          else
            dval = dval0;

	  /* If the type referenced by this field is an aligner type, we need
	     to unwrap that aligner type, because its size might not be set.
	     Keeping the aligner type would cause us to compute the wrong
	     size for this field, impacting the offset of the all the fields
	     that follow this one.  */
	  if (ada_is_aligner_type (field_type))
	    {
	      long field_offset = TYPE_FIELD_BITPOS (field_type, f);

	      field_valaddr = cond_offset_host (field_valaddr, field_offset);
	      field_address = cond_offset_target (field_address, field_offset);
	      field_type = ada_aligned_type (field_type);
	    }

	  field_valaddr = cond_offset_host (field_valaddr,
					    off / TARGET_CHAR_BIT);
	  field_address = cond_offset_target (field_address,
					      off / TARGET_CHAR_BIT);

	  /* Get the fixed type of the field.  Note that, in this case,
	     we do not want to get the real type out of the tag: if
	     the current field is the parent part of a tagged record,
	     we will get the tag of the object.  Clearly wrong: the real
	     type of the parent is not the real type of the child.  We
	     would end up in an infinite loop.	*/
	  field_type = ada_get_base_type (field_type);
	  field_type = ada_to_fixed_type (field_type, field_valaddr,
					  field_address, dval, 0);
	  /* If the field size is already larger than the maximum
	     object size, then the record itself will necessarily
	     be larger than the maximum object size.  We need to make
	     this check now, because the size might be so ridiculously
	     large (due to an uninitialized variable in the inferior)
	     that it would cause an overflow when adding it to the
	     record size.  */
	  ada_ensure_varsize_limit (field_type);

	  TYPE_FIELD_TYPE (rtype, f) = field_type;
          TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
	  /* The multiplication can potentially overflow.  But because
	     the field length has been size-checked just above, and
	     assuming that the maximum size is a reasonable value,
	     an overflow should not happen in practice.  So rather than
	     adding overflow recovery code to this already complex code,
	     we just assume that it's not going to happen.  */
          fld_bit_len =
            TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
        }
      else
        {
	  /* Note: If this field's type is a typedef, it is important
	     to preserve the typedef layer.

	     Otherwise, we might be transforming a typedef to a fat
	     pointer (encoding a pointer to an unconstrained array),
	     into a basic fat pointer (encoding an unconstrained
	     array).  As both types are implemented using the same
	     structure, the typedef is the only clue which allows us
	     to distinguish between the two options.  Stripping it
	     would prevent us from printing this field appropriately.  */
          TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
          TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
          if (TYPE_FIELD_BITSIZE (type, f) > 0)
            fld_bit_len =
              TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
          else
	    {
	      struct type *field_type = TYPE_FIELD_TYPE (type, f);

	      /* We need to be careful of typedefs when computing
		 the length of our field.  If this is a typedef,
		 get the length of the target type, not the length
		 of the typedef.  */
	      if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
		field_type = ada_typedef_target_type (field_type);

              fld_bit_len =
                TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
	    }
        }
      if (off + fld_bit_len > bit_len)
        bit_len = off + fld_bit_len;
      off += fld_bit_len;
      TYPE_LENGTH (rtype) =
        align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
    }

  /* We handle the variant part, if any, at the end because of certain
     odd cases in which it is re-ordered so as NOT to be the last field of
     the record.  This can happen in the presence of representation
     clauses.  */
  if (variant_field >= 0)
    {
      struct type *branch_type;

      off = TYPE_FIELD_BITPOS (rtype, variant_field);

      if (dval0 == NULL)
	{
	  /* Using plain value_from_contents_and_address here causes
	     problems because we will end up trying to resolve a type
	     that is currently being constructed.  */
	  dval = value_from_contents_and_address_unresolved (rtype, valaddr,
							     address);
	  rtype = value_type (dval);
	}
      else
        dval = dval0;

      branch_type =
        to_fixed_variant_branch_type
        (TYPE_FIELD_TYPE (type, variant_field),
         cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
         cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
      if (branch_type == NULL)
        {
          for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
            TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
          TYPE_NFIELDS (rtype) -= 1;
        }
      else
        {
          TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
          TYPE_FIELD_NAME (rtype, variant_field) = "S";
          fld_bit_len =
            TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
            TARGET_CHAR_BIT;
          if (off + fld_bit_len > bit_len)
            bit_len = off + fld_bit_len;
          TYPE_LENGTH (rtype) =
            align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
        }
    }

  /* According to exp_dbug.ads, the size of TYPE for variable-size records
     should contain the alignment of that record, which should be a strictly
     positive value.  If null or negative, then something is wrong, most
     probably in the debug info.  In that case, we don't round up the size
     of the resulting type.  If this record is not part of another structure,
     the current RTYPE length might be good enough for our purposes.  */
  if (TYPE_LENGTH (type) <= 0)
    {
      if (TYPE_NAME (rtype))
	warning (_("Invalid type size for `%s' detected: %d."),
		 TYPE_NAME (rtype), TYPE_LENGTH (type));
      else
	warning (_("Invalid type size for <unnamed> detected: %d."),
		 TYPE_LENGTH (type));
    }
  else
    {
      TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
                                         TYPE_LENGTH (type));
    }

  value_free_to_mark (mark);
  if (TYPE_LENGTH (rtype) > varsize_limit)
    error (_("record type with dynamic size is larger than varsize-limit"));
  return rtype;
}

/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
   of 1.  */

static struct type *
template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
                               CORE_ADDR address, struct value *dval0)
{
  return ada_template_to_fixed_record_type_1 (type, valaddr,
                                              address, dval0, 1);
}

/* An ordinary record type in which ___XVL-convention fields and
   ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
   static approximations, containing all possible fields.  Uses
   no runtime values.  Useless for use in values, but that's OK,
   since the results are used only for type determinations.   Works on both
   structs and unions.  Representation note: to save space, we memorize
   the result of this function in the TYPE_TARGET_TYPE of the
   template type.  */

static struct type *
template_to_static_fixed_type (struct type *type0)
{
  struct type *type;
  int nfields;
  int f;

  /* No need no do anything if the input type is already fixed.  */
  if (TYPE_FIXED_INSTANCE (type0))
    return type0;

  /* Likewise if we already have computed the static approximation.  */
  if (TYPE_TARGET_TYPE (type0) != NULL)
    return TYPE_TARGET_TYPE (type0);

  /* Don't clone TYPE0 until we are sure we are going to need a copy.  */
  type = type0;
  nfields = TYPE_NFIELDS (type0);

  /* Whether or not we cloned TYPE0, cache the result so that we don't do
     recompute all over next time.  */
  TYPE_TARGET_TYPE (type0) = type;

  for (f = 0; f < nfields; f += 1)
    {
      struct type *field_type = TYPE_FIELD_TYPE (type0, f);
      struct type *new_type;

      if (is_dynamic_field (type0, f))
	{
	  field_type = ada_check_typedef (field_type);
          new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
	}
      else
        new_type = static_unwrap_type (field_type);

      if (new_type != field_type)
	{
	  /* Clone TYPE0 only the first time we get a new field type.  */
	  if (type == type0)
	    {
	      TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
	      TYPE_CODE (type) = TYPE_CODE (type0);
	      INIT_CPLUS_SPECIFIC (type);
	      TYPE_NFIELDS (type) = nfields;
	      TYPE_FIELDS (type) = (struct field *)
		TYPE_ALLOC (type, nfields * sizeof (struct field));
	      memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
		      sizeof (struct field) * nfields);
	      TYPE_NAME (type) = ada_type_name (type0);
	      TYPE_FIXED_INSTANCE (type) = 1;
	      TYPE_LENGTH (type) = 0;
	    }
	  TYPE_FIELD_TYPE (type, f) = new_type;
	  TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
	}
    }

  return type;
}

/* Given an object of type TYPE whose contents are at VALADDR and
   whose address in memory is ADDRESS, returns a revision of TYPE,
   which should be a non-dynamic-sized record, in which the variant
   part, if any, is replaced with the appropriate branch.  Looks
   for discriminant values in DVAL0, which can be NULL if the record
   contains the necessary discriminant values.  */

static struct type *
to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
                                   CORE_ADDR address, struct value *dval0)
{
  struct value *mark = value_mark ();
  struct value *dval;
  struct type *rtype;
  struct type *branch_type;
  int nfields = TYPE_NFIELDS (type);
  int variant_field = variant_field_index (type);

  if (variant_field == -1)
    return type;

  if (dval0 == NULL)
    {
      dval = value_from_contents_and_address (type, valaddr, address);
      type = value_type (dval);
    }
  else
    dval = dval0;

  rtype = alloc_type_copy (type);
  TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
  INIT_CPLUS_SPECIFIC (rtype);
  TYPE_NFIELDS (rtype) = nfields;
  TYPE_FIELDS (rtype) =
    (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
  memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
          sizeof (struct field) * nfields);
  TYPE_NAME (rtype) = ada_type_name (type);
  TYPE_FIXED_INSTANCE (rtype) = 1;
  TYPE_LENGTH (rtype) = TYPE_LENGTH (type);

  branch_type = to_fixed_variant_branch_type
    (TYPE_FIELD_TYPE (type, variant_field),
     cond_offset_host (valaddr,
                       TYPE_FIELD_BITPOS (type, variant_field)
                       / TARGET_CHAR_BIT),
     cond_offset_target (address,
                         TYPE_FIELD_BITPOS (type, variant_field)
                         / TARGET_CHAR_BIT), dval);
  if (branch_type == NULL)
    {
      int f;

      for (f = variant_field + 1; f < nfields; f += 1)
        TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
      TYPE_NFIELDS (rtype) -= 1;
    }
  else
    {
      TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
      TYPE_FIELD_NAME (rtype, variant_field) = "S";
      TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
      TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
    }
  TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));

  value_free_to_mark (mark);
  return rtype;
}

/* An ordinary record type (with fixed-length fields) that describes
   the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
   beginning of this section].   Any necessary discriminants' values
   should be in DVAL, a record value; it may be NULL if the object
   at ADDR itself contains any necessary discriminant values.
   Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
   values from the record are needed.  Except in the case that DVAL,
   VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
   unchecked) is replaced by a particular branch of the variant.

   NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
   is questionable and may be removed.  It can arise during the
   processing of an unconstrained-array-of-record type where all the
   variant branches have exactly the same size.  This is because in
   such cases, the compiler does not bother to use the XVS convention
   when encoding the record.  I am currently dubious of this
   shortcut and suspect the compiler should be altered.  FIXME.  */

static struct type *
to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
                      CORE_ADDR address, struct value *dval)
{
  struct type *templ_type;

  if (TYPE_FIXED_INSTANCE (type0))
    return type0;

  templ_type = dynamic_template_type (type0);

  if (templ_type != NULL)
    return template_to_fixed_record_type (templ_type, valaddr, address, dval);
  else if (variant_field_index (type0) >= 0)
    {
      if (dval == NULL && valaddr == NULL && address == 0)
        return type0;
      return to_record_with_fixed_variant_part (type0, valaddr, address,
                                                dval);
    }
  else
    {
      TYPE_FIXED_INSTANCE (type0) = 1;
      return type0;
    }

}

/* An ordinary record type (with fixed-length fields) that describes
   the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
   union type.  Any necessary discriminants' values should be in DVAL,
   a record value.  That is, this routine selects the appropriate
   branch of the union at ADDR according to the discriminant value
   indicated in the union's type name.  Returns VAR_TYPE0 itself if
   it represents a variant subject to a pragma Unchecked_Union.  */

static struct type *
to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
                              CORE_ADDR address, struct value *dval)
{
  int which;
  struct type *templ_type;
  struct type *var_type;

  if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
    var_type = TYPE_TARGET_TYPE (var_type0);
  else
    var_type = var_type0;

  templ_type = ada_find_parallel_type (var_type, "___XVU");

  if (templ_type != NULL)
    var_type = templ_type;

  if (is_unchecked_variant (var_type, value_type (dval)))
      return var_type0;
  which =
    ada_which_variant_applies (var_type,
                               value_type (dval), value_contents (dval));

  if (which < 0)
    return empty_record (var_type);
  else if (is_dynamic_field (var_type, which))
    return to_fixed_record_type
      (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
       valaddr, address, dval);
  else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
    return
      to_fixed_record_type
      (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
  else
    return TYPE_FIELD_TYPE (var_type, which);
}

/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
   ENCODING_TYPE, a type following the GNAT conventions for discrete
   type encodings, only carries redundant information.  */

static int
ada_is_redundant_range_encoding (struct type *range_type,
				 struct type *encoding_type)
{
  const char *bounds_str;
  int n;
  LONGEST lo, hi;

  gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);

  if (TYPE_CODE (get_base_type (range_type))
      != TYPE_CODE (get_base_type (encoding_type)))
    {
      /* The compiler probably used a simple base type to describe
	 the range type instead of the range's actual base type,
	 expecting us to get the real base type from the encoding
	 anyway.  In this situation, the encoding cannot be ignored
	 as redundant.  */
      return 0;
    }

  if (is_dynamic_type (range_type))
    return 0;

  if (TYPE_NAME (encoding_type) == NULL)
    return 0;

  bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
  if (bounds_str == NULL)
    return 0;

  n = 8; /* Skip "___XDLU_".  */
  if (!ada_scan_number (bounds_str, n, &lo, &n))
    return 0;
  if (TYPE_LOW_BOUND (range_type) != lo)
    return 0;

  n += 2; /* Skip the "__" separator between the two bounds.  */
  if (!ada_scan_number (bounds_str, n, &hi, &n))
    return 0;
  if (TYPE_HIGH_BOUND (range_type) != hi)
    return 0;

  return 1;
}

/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
   a type following the GNAT encoding for describing array type
   indices, only carries redundant information.  */

static int
ada_is_redundant_index_type_desc (struct type *array_type,
				  struct type *desc_type)
{
  struct type *this_layer = check_typedef (array_type);
  int i;

  for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
    {
      if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
					    TYPE_FIELD_TYPE (desc_type, i)))
	return 0;
      this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
    }

  return 1;
}

/* Assuming that TYPE0 is an array type describing the type of a value
   at ADDR, and that DVAL describes a record containing any
   discriminants used in TYPE0, returns a type for the value that
   contains no dynamic components (that is, no components whose sizes
   are determined by run-time quantities).  Unless IGNORE_TOO_BIG is
   true, gives an error message if the resulting type's size is over
   varsize_limit.  */

static struct type *
to_fixed_array_type (struct type *type0, struct value *dval,
                     int ignore_too_big)
{
  struct type *index_type_desc;
  struct type *result;
  int constrained_packed_array_p;
  static const char *xa_suffix = "___XA";

  type0 = ada_check_typedef (type0);
  if (TYPE_FIXED_INSTANCE (type0))
    return type0;

  constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
  if (constrained_packed_array_p)
    type0 = decode_constrained_packed_array_type (type0);

  index_type_desc = ada_find_parallel_type (type0, xa_suffix);

  /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
     encoding suffixed with 'P' may still be generated.  If so,
     it should be used to find the XA type.  */

  if (index_type_desc == NULL)
    {
      const char *type_name = ada_type_name (type0);

      if (type_name != NULL)
	{
	  const int len = strlen (type_name);
	  char *name = (char *) alloca (len + strlen (xa_suffix));

	  if (type_name[len - 1] == 'P')
	    {
	      strcpy (name, type_name);
	      strcpy (name + len - 1, xa_suffix);
	      index_type_desc = ada_find_parallel_type_with_name (type0, name);
	    }
	}
    }

  ada_fixup_array_indexes_type (index_type_desc);
  if (index_type_desc != NULL
      && ada_is_redundant_index_type_desc (type0, index_type_desc))
    {
      /* Ignore this ___XA parallel type, as it does not bring any
	 useful information.  This allows us to avoid creating fixed
	 versions of the array's index types, which would be identical
	 to the original ones.  This, in turn, can also help avoid
	 the creation of fixed versions of the array itself.  */
      index_type_desc = NULL;
    }

  if (index_type_desc == NULL)
    {
      struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));

      /* NOTE: elt_type---the fixed version of elt_type0---should never
         depend on the contents of the array in properly constructed
         debugging data.  */
      /* Create a fixed version of the array element type.
         We're not providing the address of an element here,
         and thus the actual object value cannot be inspected to do
         the conversion.  This should not be a problem, since arrays of
         unconstrained objects are not allowed.  In particular, all
         the elements of an array of a tagged type should all be of
         the same type specified in the debugging info.  No need to
         consult the object tag.  */
      struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);

      /* Make sure we always create a new array type when dealing with
	 packed array types, since we're going to fix-up the array
	 type length and element bitsize a little further down.  */
      if (elt_type0 == elt_type && !constrained_packed_array_p)
        result = type0;
      else
        result = create_array_type (alloc_type_copy (type0),
                                    elt_type, TYPE_INDEX_TYPE (type0));
    }
  else
    {
      int i;
      struct type *elt_type0;

      elt_type0 = type0;
      for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
        elt_type0 = TYPE_TARGET_TYPE (elt_type0);

      /* NOTE: result---the fixed version of elt_type0---should never
         depend on the contents of the array in properly constructed
         debugging data.  */
      /* Create a fixed version of the array element type.
         We're not providing the address of an element here,
         and thus the actual object value cannot be inspected to do
         the conversion.  This should not be a problem, since arrays of
         unconstrained objects are not allowed.  In particular, all
         the elements of an array of a tagged type should all be of
         the same type specified in the debugging info.  No need to
         consult the object tag.  */
      result =
        ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);

      elt_type0 = type0;
      for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
        {
          struct type *range_type =
            to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);

          result = create_array_type (alloc_type_copy (elt_type0),
                                      result, range_type);
	  elt_type0 = TYPE_TARGET_TYPE (elt_type0);
        }
      if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
        error (_("array type with dynamic size is larger than varsize-limit"));
    }

  /* We want to preserve the type name.  This can be useful when
     trying to get the type name of a value that has already been
     printed (for instance, if the user did "print VAR; whatis $".  */
  TYPE_NAME (result) = TYPE_NAME (type0);

  if (constrained_packed_array_p)
    {
      /* So far, the resulting type has been created as if the original
	 type was a regular (non-packed) array type.  As a result, the
	 bitsize of the array elements needs to be set again, and the array
	 length needs to be recomputed based on that bitsize.  */
      int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
      int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);

      TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
      TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
      if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
        TYPE_LENGTH (result)++;
    }

  TYPE_FIXED_INSTANCE (result) = 1;
  return result;
}


/* A standard type (containing no dynamically sized components)
   corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
   DVAL describes a record containing any discriminants used in TYPE0,
   and may be NULL if there are none, or if the object of type TYPE at
   ADDRESS or in VALADDR contains these discriminants.
   
   If CHECK_TAG is not null, in the case of tagged types, this function
   attempts to locate the object's tag and use it to compute the actual
   type.  However, when ADDRESS is null, we cannot use it to determine the
   location of the tag, and therefore compute the tagged type's actual type.
   So we return the tagged type without consulting the tag.  */
   
static struct type *
ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
                   CORE_ADDR address, struct value *dval, int check_tag)
{
  type = ada_check_typedef (type);
  switch (TYPE_CODE (type))
    {
    default:
      return type;
    case TYPE_CODE_STRUCT:
      {
        struct type *static_type = to_static_fixed_type (type);
        struct type *fixed_record_type =
          to_fixed_record_type (type, valaddr, address, NULL);

        /* If STATIC_TYPE is a tagged type and we know the object's address,
           then we can determine its tag, and compute the object's actual
           type from there.  Note that we have to use the fixed record
           type (the parent part of the record may have dynamic fields
           and the way the location of _tag is expressed may depend on
           them).  */

        if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
          {
	    struct value *tag =
	      value_tag_from_contents_and_address
	      (fixed_record_type,
	       valaddr,
	       address);
	    struct type *real_type = type_from_tag (tag);
	    struct value *obj =
	      value_from_contents_and_address (fixed_record_type,
					       valaddr,
					       address);
            fixed_record_type = value_type (obj);
            if (real_type != NULL)
              return to_fixed_record_type
		(real_type, NULL,
		 value_address (ada_tag_value_at_base_address (obj)), NULL);
          }

        /* Check to see if there is a parallel ___XVZ variable.
           If there is, then it provides the actual size of our type.  */
        else if (ada_type_name (fixed_record_type) != NULL)
          {
            const char *name = ada_type_name (fixed_record_type);
            char *xvz_name
	      = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
	    bool xvz_found = false;
            LONGEST size;

            xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
	    TRY
	      {
		xvz_found = get_int_var_value (xvz_name, size);
	      }
	    CATCH (except, RETURN_MASK_ERROR)
	      {
		/* We found the variable, but somehow failed to read
		   its value.  Rethrow the same error, but with a little
		   bit more information, to help the user understand
		   what went wrong (Eg: the variable might have been
		   optimized out).  */
		throw_error (except.error,
			     _("unable to read value of %s (%s)"),
			     xvz_name, except.message);
	      }
	    END_CATCH

            if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
              {
                fixed_record_type = copy_type (fixed_record_type);
                TYPE_LENGTH (fixed_record_type) = size;

                /* The FIXED_RECORD_TYPE may have be a stub.  We have
                   observed this when the debugging info is STABS, and
                   apparently it is something that is hard to fix.

                   In practice, we don't need the actual type definition
                   at all, because the presence of the XVZ variable allows us
                   to assume that there must be a XVS type as well, which we
                   should be able to use later, when we need the actual type
                   definition.

                   In the meantime, pretend that the "fixed" type we are
                   returning is NOT a stub, because this can cause trouble
                   when using this type to create new types targeting it.
                   Indeed, the associated creation routines often check
                   whether the target type is a stub and will try to replace
                   it, thus using a type with the wrong size.  This, in turn,
                   might cause the new type to have the wrong size too.
                   Consider the case of an array, for instance, where the size
                   of the array is computed from the number of elements in
                   our array multiplied by the size of its element.  */
                TYPE_STUB (fixed_record_type) = 0;
              }
          }
        return fixed_record_type;
      }
    case TYPE_CODE_ARRAY:
      return to_fixed_array_type (type, dval, 1);
    case TYPE_CODE_UNION:
      if (dval == NULL)
        return type;
      else
        return to_fixed_variant_branch_type (type, valaddr, address, dval);
    }
}

/* The same as ada_to_fixed_type_1, except that it preserves the type
   if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.

   The typedef layer needs be preserved in order to differentiate between
   arrays and array pointers when both types are implemented using the same
   fat pointer.  In the array pointer case, the pointer is encoded as
   a typedef of the pointer type.  For instance, considering:

	  type String_Access is access String;
	  S1 : String_Access := null;

   To the debugger, S1 is defined as a typedef of type String.  But
   to the user, it is a pointer.  So if the user tries to print S1,
   we should not dereference the array, but print the array address
   instead.

   If we didn't preserve the typedef layer, we would lose the fact that
   the type is to be presented as a pointer (needs de-reference before
   being printed).  And we would also use the source-level type name.  */

struct type *
ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
                   CORE_ADDR address, struct value *dval, int check_tag)

{
  struct type *fixed_type =
    ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);

  /*  If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
      then preserve the typedef layer.

      Implementation note: We can only check the main-type portion of
      the TYPE and FIXED_TYPE, because eliminating the typedef layer
      from TYPE now returns a type that has the same instance flags
      as TYPE.  For instance, if TYPE is a "typedef const", and its
      target type is a "struct", then the typedef elimination will return
      a "const" version of the target type.  See check_typedef for more
      details about how the typedef layer elimination is done.

      brobecker/2010-11-19: It seems to me that the only case where it is
      useful to preserve the typedef layer is when dealing with fat pointers.
      Perhaps, we could add a check for that and preserve the typedef layer
      only in that situation.  But this seems unecessary so far, probably
      because we call check_typedef/ada_check_typedef pretty much everywhere.
      */
  if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
      && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
	  == TYPE_MAIN_TYPE (fixed_type)))
    return type;

  return fixed_type;
}

/* A standard (static-sized) type corresponding as well as possible to
   TYPE0, but based on no runtime data.  */

static struct type *
to_static_fixed_type (struct type *type0)
{
  struct type *type;

  if (type0 == NULL)
    return NULL;

  if (TYPE_FIXED_INSTANCE (type0))
    return type0;

  type0 = ada_check_typedef (type0);

  switch (TYPE_CODE (type0))
    {
    default:
      return type0;
    case TYPE_CODE_STRUCT:
      type = dynamic_template_type (type0);
      if (type != NULL)
        return template_to_static_fixed_type (type);
      else
        return template_to_static_fixed_type (type0);
    case TYPE_CODE_UNION:
      type = ada_find_parallel_type (type0, "___XVU");
      if (type != NULL)
        return template_to_static_fixed_type (type);
      else
        return template_to_static_fixed_type (type0);
    }
}

/* A static approximation of TYPE with all type wrappers removed.  */

static struct type *
static_unwrap_type (struct type *type)
{
  if (ada_is_aligner_type (type))
    {
      struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
      if (ada_type_name (type1) == NULL)
        TYPE_NAME (type1) = ada_type_name (type);

      return static_unwrap_type (type1);
    }
  else
    {
      struct type *raw_real_type = ada_get_base_type (type);

      if (raw_real_type == type)
        return type;
      else
        return to_static_fixed_type (raw_real_type);
    }
}

/* In some cases, incomplete and private types require
   cross-references that are not resolved as records (for example,
      type Foo;
      type FooP is access Foo;
      V: FooP;
      type Foo is array ...;
   ).  In these cases, since there is no mechanism for producing
   cross-references to such types, we instead substitute for FooP a
   stub enumeration type that is nowhere resolved, and whose tag is
   the name of the actual type.  Call these types "non-record stubs".  */

/* A type equivalent to TYPE that is not a non-record stub, if one
   exists, otherwise TYPE.  */

struct type *
ada_check_typedef (struct type *type)
{
  if (type == NULL)
    return NULL;

  /* If our type is an access to an unconstrained array, which is encoded
     as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
     We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
     what allows us to distinguish between fat pointers that represent
     array types, and fat pointers that represent array access types
     (in both cases, the compiler implements them as fat pointers).  */
  if (ada_is_access_to_unconstrained_array (type))
    return type;

  type = check_typedef (type);
  if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
      || !TYPE_STUB (type)
      || TYPE_NAME (type) == NULL)
    return type;
  else
    {
      const char *name = TYPE_NAME (type);
      struct type *type1 = ada_find_any_type (name);

      if (type1 == NULL)
        return type;

      /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
	 stubs pointing to arrays, as we don't create symbols for array
	 types, only for the typedef-to-array types).  If that's the case,
	 strip the typedef layer.  */
      if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
	type1 = ada_check_typedef (type1);

      return type1;
    }
}

/* A value representing the data at VALADDR/ADDRESS as described by
   type TYPE0, but with a standard (static-sized) type that correctly
   describes it.  If VAL0 is not NULL and TYPE0 already is a standard
   type, then return VAL0 [this feature is simply to avoid redundant
   creation of struct values].  */

static struct value *
ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
                           struct value *val0)
{
  struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);

  if (type == type0 && val0 != NULL)
    return val0;

  if (VALUE_LVAL (val0) != lval_memory)
    {
      /* Our value does not live in memory; it could be a convenience
	 variable, for instance.  Create a not_lval value using val0's
	 contents.  */
      return value_from_contents (type, value_contents (val0));
    }

  return value_from_contents_and_address (type, 0, address);
}

/* A value representing VAL, but with a standard (static-sized) type
   that correctly describes it.  Does not necessarily create a new
   value.  */

struct value *
ada_to_fixed_value (struct value *val)
{
  val = unwrap_value (val);
  val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
  return val;
}


/* Attributes */

/* Table mapping attribute numbers to names.
   NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h.  */

static const char *attribute_names[] = {
  "<?>",

  "first",
  "last",
  "length",
  "image",
  "max",
  "min",
  "modulus",
  "pos",
  "size",
  "tag",
  "val",
  0
};

const char *
ada_attribute_name (enum exp_opcode n)
{
  if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
    return attribute_names[n - OP_ATR_FIRST + 1];
  else
    return attribute_names[0];
}

/* Evaluate the 'POS attribute applied to ARG.  */

static LONGEST
pos_atr (struct value *arg)
{
  struct value *val = coerce_ref (arg);
  struct type *type = value_type (val);
  LONGEST result;

  if (!discrete_type_p (type))
    error (_("'POS only defined on discrete types"));

  if (!discrete_position (type, value_as_long (val), &result))
    error (_("enumeration value is invalid: can't find 'POS"));

  return result;
}

static struct value *
value_pos_atr (struct type *type, struct value *arg)
{
  return value_from_longest (type, pos_atr (arg));
}

/* Evaluate the TYPE'VAL attribute applied to ARG.  */

static struct value *
value_val_atr (struct type *type, struct value *arg)
{
  if (!discrete_type_p (type))
    error (_("'VAL only defined on discrete types"));
  if (!integer_type_p (value_type (arg)))
    error (_("'VAL requires integral argument"));

  if (TYPE_CODE (type) == TYPE_CODE_ENUM)
    {
      long pos = value_as_long (arg);

      if (pos < 0 || pos >= TYPE_NFIELDS (type))
        error (_("argument to 'VAL out of range"));
      return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
    }
  else
    return value_from_longest (type, value_as_long (arg));
}


                                /* Evaluation */

/* True if TYPE appears to be an Ada character type.
   [At the moment, this is true only for Character and Wide_Character;
   It is a heuristic test that could stand improvement].  */

int
ada_is_character_type (struct type *type)
{
  const char *name;

  /* If the type code says it's a character, then assume it really is,
     and don't check any further.  */
  if (TYPE_CODE (type) == TYPE_CODE_CHAR)
    return 1;
  
  /* Otherwise, assume it's a character type iff it is a discrete type
     with a known character type name.  */
  name = ada_type_name (type);
  return (name != NULL
          && (TYPE_CODE (type) == TYPE_CODE_INT
              || TYPE_CODE (type) == TYPE_CODE_RANGE)
          && (strcmp (name, "character") == 0
              || strcmp (name, "wide_character") == 0
              || strcmp (name, "wide_wide_character") == 0
              || strcmp (name, "unsigned char") == 0));
}

/* True if TYPE appears to be an Ada string type.  */

int
ada_is_string_type (struct type *type)
{
  type = ada_check_typedef (type);
  if (type != NULL
      && TYPE_CODE (type) != TYPE_CODE_PTR
      && (ada_is_simple_array_type (type)
          || ada_is_array_descriptor_type (type))
      && ada_array_arity (type) == 1)
    {
      struct type *elttype = ada_array_element_type (type, 1);

      return ada_is_character_type (elttype);
    }
  else
    return 0;
}

/* The compiler sometimes provides a parallel XVS type for a given
   PAD type.  Normally, it is safe to follow the PAD type directly,
   but older versions of the compiler have a bug that causes the offset
   of its "F" field to be wrong.  Following that field in that case
   would lead to incorrect results, but this can be worked around
   by ignoring the PAD type and using the associated XVS type instead.

   Set to True if the debugger should trust the contents of PAD types.
   Otherwise, ignore the PAD type if there is a parallel XVS type.  */
static int trust_pad_over_xvs = 1;

/* True if TYPE is a struct type introduced by the compiler to force the
   alignment of a value.  Such types have a single field with a
   distinctive name.  */

int
ada_is_aligner_type (struct type *type)
{
  type = ada_check_typedef (type);

  if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
    return 0;

  return (TYPE_CODE (type) == TYPE_CODE_STRUCT
          && TYPE_NFIELDS (type) == 1
          && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
}

/* If there is an ___XVS-convention type parallel to SUBTYPE, return
   the parallel type.  */

struct type *
ada_get_base_type (struct type *raw_type)
{
  struct type *real_type_namer;
  struct type *raw_real_type;

  if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
    return raw_type;

  if (ada_is_aligner_type (raw_type))
    /* The encoding specifies that we should always use the aligner type.
       So, even if this aligner type has an associated XVS type, we should
       simply ignore it.

       According to the compiler gurus, an XVS type parallel to an aligner
       type may exist because of a stabs limitation.  In stabs, aligner
       types are empty because the field has a variable-sized type, and
       thus cannot actually be used as an aligner type.  As a result,
       we need the associated parallel XVS type to decode the type.
       Since the policy in the compiler is to not change the internal
       representation based on the debugging info format, we sometimes
       end up having a redundant XVS type parallel to the aligner type.  */
    return raw_type;

  real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
  if (real_type_namer == NULL
      || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
      || TYPE_NFIELDS (real_type_namer) != 1)
    return raw_type;

  if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
    {
      /* This is an older encoding form where the base type needs to be
	 looked up by name.  We prefer the newer enconding because it is
	 more efficient.  */
      raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
      if (raw_real_type == NULL)
	return raw_type;
      else
	return raw_real_type;
    }

  /* The field in our XVS type is a reference to the base type.  */
  return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
}

/* The type of value designated by TYPE, with all aligners removed.  */

struct type *
ada_aligned_type (struct type *type)
{
  if (ada_is_aligner_type (type))
    return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
  else
    return ada_get_base_type (type);
}


/* The address of the aligned value in an object at address VALADDR
   having type TYPE.  Assumes ada_is_aligner_type (TYPE).  */

const gdb_byte *
ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
{
  if (ada_is_aligner_type (type))
    return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
                                   valaddr +
                                   TYPE_FIELD_BITPOS (type,
                                                      0) / TARGET_CHAR_BIT);
  else
    return valaddr;
}



/* The printed representation of an enumeration literal with encoded
   name NAME.  The value is good to the next call of ada_enum_name.  */
const char *
ada_enum_name (const char *name)
{
  static char *result;
  static size_t result_len = 0;
  const char *tmp;

  /* First, unqualify the enumeration name:
     1. Search for the last '.' character.  If we find one, then skip
     all the preceding characters, the unqualified name starts
     right after that dot.
     2. Otherwise, we may be debugging on a target where the compiler
     translates dots into "__".  Search forward for double underscores,
     but stop searching when we hit an overloading suffix, which is
     of the form "__" followed by digits.  */

  tmp = strrchr (name, '.');
  if (tmp != NULL)
    name = tmp + 1;
  else
    {
      while ((tmp = strstr (name, "__")) != NULL)
        {
          if (isdigit (tmp[2]))
            break;
          else
            name = tmp + 2;
        }
    }

  if (name[0] == 'Q')
    {
      int v;

      if (name[1] == 'U' || name[1] == 'W')
        {
          if (sscanf (name + 2, "%x", &v) != 1)
            return name;
        }
      else
        return name;

      GROW_VECT (result, result_len, 16);
      if (isascii (v) && isprint (v))
        xsnprintf (result, result_len, "'%c'", v);
      else if (name[1] == 'U')
        xsnprintf (result, result_len, "[\"%02x\"]", v);
      else
        xsnprintf (result, result_len, "[\"%04x\"]", v);

      return result;
    }
  else
    {
      tmp = strstr (name, "__");
      if (tmp == NULL)
	tmp = strstr (name, "$");
      if (tmp != NULL)
        {
          GROW_VECT (result, result_len, tmp - name + 1);
          strncpy (result, name, tmp - name);
          result[tmp - name] = '\0';
          return result;
        }

      return name;
    }
}

/* Evaluate the subexpression of EXP starting at *POS as for
   evaluate_type, updating *POS to point just past the evaluated
   expression.  */

static struct value *
evaluate_subexp_type (struct expression *exp, int *pos)
{
  return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
}

/* If VAL is wrapped in an aligner or subtype wrapper, return the
   value it wraps.  */

static struct value *
unwrap_value (struct value *val)
{
  struct type *type = ada_check_typedef (value_type (val));

  if (ada_is_aligner_type (type))
    {
      struct value *v = ada_value_struct_elt (val, "F", 0);
      struct type *val_type = ada_check_typedef (value_type (v));

      if (ada_type_name (val_type) == NULL)
        TYPE_NAME (val_type) = ada_type_name (type);

      return unwrap_value (v);
    }
  else
    {
      struct type *raw_real_type =
        ada_check_typedef (ada_get_base_type (type));

      /* If there is no parallel XVS or XVE type, then the value is
	 already unwrapped.  Return it without further modification.  */
      if ((type == raw_real_type)
	  && ada_find_parallel_type (type, "___XVE") == NULL)
	return val;

      return
        coerce_unspec_val_to_type
        (val, ada_to_fixed_type (raw_real_type, 0,
                                 value_address (val),
                                 NULL, 1));
    }
}

static struct value *
cast_from_fixed (struct type *type, struct value *arg)
{
  struct value *scale = ada_scaling_factor (value_type (arg));
  arg = value_cast (value_type (scale), arg);

  arg = value_binop (arg, scale, BINOP_MUL);
  return value_cast (type, arg);
}

static struct value *
cast_to_fixed (struct type *type, struct value *arg)
{
  if (type == value_type (arg))
    return arg;

  struct value *scale = ada_scaling_factor (type);
  if (ada_is_fixed_point_type (value_type (arg)))
    arg = cast_from_fixed (value_type (scale), arg);
  else
    arg = value_cast (value_type (scale), arg);

  arg = value_binop (arg, scale, BINOP_DIV);
  return value_cast (type, arg);
}

/* Given two array types T1 and T2, return nonzero iff both arrays
   contain the same number of elements.  */

static int
ada_same_array_size_p (struct type *t1, struct type *t2)
{
  LONGEST lo1, hi1, lo2, hi2;

  /* Get the array bounds in order to verify that the size of
     the two arrays match.  */
  if (!get_array_bounds (t1, &lo1, &hi1)
      || !get_array_bounds (t2, &lo2, &hi2))
    error (_("unable to determine array bounds"));

  /* To make things easier for size comparison, normalize a bit
     the case of empty arrays by making sure that the difference
     between upper bound and lower bound is always -1.  */
  if (lo1 > hi1)
    hi1 = lo1 - 1;
  if (lo2 > hi2)
    hi2 = lo2 - 1;

  return (hi1 - lo1 == hi2 - lo2);
}

/* Assuming that VAL is an array of integrals, and TYPE represents
   an array with the same number of elements, but with wider integral
   elements, return an array "casted" to TYPE.  In practice, this
   means that the returned array is built by casting each element
   of the original array into TYPE's (wider) element type.  */

static struct value *
ada_promote_array_of_integrals (struct type *type, struct value *val)
{
  struct type *elt_type = TYPE_TARGET_TYPE (type);
  LONGEST lo, hi;
  struct value *res;
  LONGEST i;

  /* Verify that both val and type are arrays of scalars, and
     that the size of val's elements is smaller than the size
     of type's element.  */
  gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
  gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
  gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
  gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
  gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
	      > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));

  if (!get_array_bounds (type, &lo, &hi))
    error (_("unable to determine array bounds"));

  res = allocate_value (type);

  /* Promote each array element.  */
  for (i = 0; i < hi - lo + 1; i++)
    {
      struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));

      memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
	      value_contents_all (elt), TYPE_LENGTH (elt_type));
    }

  return res;
}

/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
   return the converted value.  */

static struct value *
coerce_for_assign (struct type *type, struct value *val)
{
  struct type *type2 = value_type (val);

  if (type == type2)
    return val;

  type2 = ada_check_typedef (type2);
  type = ada_check_typedef (type);

  if (TYPE_CODE (type2) == TYPE_CODE_PTR
      && TYPE_CODE (type) == TYPE_CODE_ARRAY)
    {
      val = ada_value_ind (val);
      type2 = value_type (val);
    }

  if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
      && TYPE_CODE (type) == TYPE_CODE_ARRAY)
    {
      if (!ada_same_array_size_p (type, type2))
	error (_("cannot assign arrays of different length"));

      if (is_integral_type (TYPE_TARGET_TYPE (type))
	  && is_integral_type (TYPE_TARGET_TYPE (type2))
	  && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
	       < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
	{
	  /* Allow implicit promotion of the array elements to
	     a wider type.  */
	  return ada_promote_array_of_integrals (type, val);
	}

      if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
          != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
        error (_("Incompatible types in assignment"));
      deprecated_set_value_type (val, type);
    }
  return val;
}

static struct value *
ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
{
  struct value *val;
  struct type *type1, *type2;
  LONGEST v, v1, v2;

  arg1 = coerce_ref (arg1);
  arg2 = coerce_ref (arg2);
  type1 = get_base_type (ada_check_typedef (value_type (arg1)));
  type2 = get_base_type (ada_check_typedef (value_type (arg2)));

  if (TYPE_CODE (type1) != TYPE_CODE_INT
      || TYPE_CODE (type2) != TYPE_CODE_INT)
    return value_binop (arg1, arg2, op);

  switch (op)
    {
    case BINOP_MOD:
    case BINOP_DIV:
    case BINOP_REM:
      break;
    default:
      return value_binop (arg1, arg2, op);
    }

  v2 = value_as_long (arg2);
  if (v2 == 0)
    error (_("second operand of %s must not be zero."), op_string (op));

  if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
    return value_binop (arg1, arg2, op);

  v1 = value_as_long (arg1);
  switch (op)
    {
    case BINOP_DIV:
      v = v1 / v2;
      if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
        v += v > 0 ? -1 : 1;
      break;
    case BINOP_REM:
      v = v1 % v2;
      if (v * v1 < 0)
        v -= v2;
      break;
    default:
      /* Should not reach this point.  */
      v = 0;
    }

  val = allocate_value (type1);
  store_unsigned_integer (value_contents_raw (val),
                          TYPE_LENGTH (value_type (val)),
			  gdbarch_byte_order (get_type_arch (type1)), v);
  return val;
}

static int
ada_value_equal (struct value *arg1, struct value *arg2)
{
  if (ada_is_direct_array_type (value_type (arg1))
      || ada_is_direct_array_type (value_type (arg2)))
    {
      struct type *arg1_type, *arg2_type;

      /* Automatically dereference any array reference before
         we attempt to perform the comparison.  */
      arg1 = ada_coerce_ref (arg1);
      arg2 = ada_coerce_ref (arg2);

      arg1 = ada_coerce_to_simple_array (arg1);
      arg2 = ada_coerce_to_simple_array (arg2);

      arg1_type = ada_check_typedef (value_type (arg1));
      arg2_type = ada_check_typedef (value_type (arg2));

      if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
          || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
        error (_("Attempt to compare array with non-array"));
      /* FIXME: The following works only for types whose
         representations use all bits (no padding or undefined bits)
         and do not have user-defined equality.  */
      return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
	      && memcmp (value_contents (arg1), value_contents (arg2),
			 TYPE_LENGTH (arg1_type)) == 0);
    }
  return value_equal (arg1, arg2);
}

/* Total number of component associations in the aggregate starting at
   index PC in EXP.  Assumes that index PC is the start of an
   OP_AGGREGATE.  */

static int
num_component_specs (struct expression *exp, int pc)
{
  int n, m, i;

  m = exp->elts[pc + 1].longconst;
  pc += 3;
  n = 0;
  for (i = 0; i < m; i += 1)
    {
      switch (exp->elts[pc].opcode) 
	{
	default:
	  n += 1;
	  break;
	case OP_CHOICES:
	  n += exp->elts[pc + 1].longconst;
	  break;
	}
      ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
    }
  return n;
}

/* Assign the result of evaluating EXP starting at *POS to the INDEXth 
   component of LHS (a simple array or a record), updating *POS past
   the expression, assuming that LHS is contained in CONTAINER.  Does
   not modify the inferior's memory, nor does it modify LHS (unless
   LHS == CONTAINER).  */

static void
assign_component (struct value *container, struct value *lhs, LONGEST index,
		  struct expression *exp, int *pos)
{
  struct value *mark = value_mark ();
  struct value *elt;
  struct type *lhs_type = check_typedef (value_type (lhs));

  if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
    {
      struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
      struct value *index_val = value_from_longest (index_type, index);

      elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
    }
  else
    {
      elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
      elt = ada_to_fixed_value (elt);
    }

  if (exp->elts[*pos].opcode == OP_AGGREGATE)
    assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
  else
    value_assign_to_component (container, elt, 
			       ada_evaluate_subexp (NULL, exp, pos, 
						    EVAL_NORMAL));

  value_free_to_mark (mark);
}

/* Assuming that LHS represents an lvalue having a record or array
   type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
   of that aggregate's value to LHS, advancing *POS past the
   aggregate.  NOSIDE is as for evaluate_subexp.  CONTAINER is an
   lvalue containing LHS (possibly LHS itself).  Does not modify
   the inferior's memory, nor does it modify the contents of 
   LHS (unless == CONTAINER).  Returns the modified CONTAINER.  */

static struct value *
assign_aggregate (struct value *container, 
		  struct value *lhs, struct expression *exp, 
		  int *pos, enum noside noside)
{
  struct type *lhs_type;
  int n = exp->elts[*pos+1].longconst;
  LONGEST low_index, high_index;
  int num_specs;
  LONGEST *indices;
  int max_indices, num_indices;
  int i;

  *pos += 3;
  if (noside != EVAL_NORMAL)
    {
      for (i = 0; i < n; i += 1)
	ada_evaluate_subexp (NULL, exp, pos, noside);
      return container;
    }

  container = ada_coerce_ref (container);
  if (ada_is_direct_array_type (value_type (container)))
    container = ada_coerce_to_simple_array (container);
  lhs = ada_coerce_ref (lhs);
  if (!deprecated_value_modifiable (lhs))
    error (_("Left operand of assignment is not a modifiable lvalue."));

  lhs_type = check_typedef (value_type (lhs));
  if (ada_is_direct_array_type (lhs_type))
    {
      lhs = ada_coerce_to_simple_array (lhs);
      lhs_type = check_typedef (value_type (lhs));
      low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
      high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
    }
  else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
    {
      low_index = 0;
      high_index = num_visible_fields (lhs_type) - 1;
    }
  else
    error (_("Left-hand side must be array or record."));

  num_specs = num_component_specs (exp, *pos - 3);
  max_indices = 4 * num_specs + 4;
  indices = XALLOCAVEC (LONGEST, max_indices);
  indices[0] = indices[1] = low_index - 1;
  indices[2] = indices[3] = high_index + 1;
  num_indices = 4;

  for (i = 0; i < n; i += 1)
    {
      switch (exp->elts[*pos].opcode)
	{
	  case OP_CHOICES:
	    aggregate_assign_from_choices (container, lhs, exp, pos, indices, 
					   &num_indices, max_indices,
					   low_index, high_index);
	    break;
	  case OP_POSITIONAL:
	    aggregate_assign_positional (container, lhs, exp, pos, indices,
					 &num_indices, max_indices,
					 low_index, high_index);
	    break;
	  case OP_OTHERS:
	    if (i != n-1)
	      error (_("Misplaced 'others' clause"));
	    aggregate_assign_others (container, lhs, exp, pos, indices, 
				     num_indices, low_index, high_index);
	    break;
	  default:
	    error (_("Internal error: bad aggregate clause"));
	}
    }

  return container;
}
	      
/* Assign into the component of LHS indexed by the OP_POSITIONAL
   construct at *POS, updating *POS past the construct, given that
   the positions are relative to lower bound LOW, where HIGH is the 
   upper bound.  Record the position in INDICES[0 .. MAX_INDICES-1]
   updating *NUM_INDICES as needed.  CONTAINER is as for
   assign_aggregate.  */
static void
aggregate_assign_positional (struct value *container,
			     struct value *lhs, struct expression *exp,
			     int *pos, LONGEST *indices, int *num_indices,
			     int max_indices, LONGEST low, LONGEST high) 
{
  LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
  
  if (ind - 1 == high)
    warning (_("Extra components in aggregate ignored."));
  if (ind <= high)
    {
      add_component_interval (ind, ind, indices, num_indices, max_indices);
      *pos += 3;
      assign_component (container, lhs, ind, exp, pos);
    }
  else
    ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
}

/* Assign into the components of LHS indexed by the OP_CHOICES
   construct at *POS, updating *POS past the construct, given that
   the allowable indices are LOW..HIGH.  Record the indices assigned
   to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
   needed.  CONTAINER is as for assign_aggregate.  */
static void
aggregate_assign_from_choices (struct value *container,
			       struct value *lhs, struct expression *exp,
			       int *pos, LONGEST *indices, int *num_indices,
			       int max_indices, LONGEST low, LONGEST high) 
{
  int j;
  int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
  int choice_pos, expr_pc;
  int is_array = ada_is_direct_array_type (value_type (lhs));

  choice_pos = *pos += 3;

  for (j = 0; j < n_choices; j += 1)
    ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
  expr_pc = *pos;
  ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
  
  for (j = 0; j < n_choices; j += 1)
    {
      LONGEST lower, upper;
      enum exp_opcode op = exp->elts[choice_pos].opcode;

      if (op == OP_DISCRETE_RANGE)
	{
	  choice_pos += 1;
	  lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
						      EVAL_NORMAL));
	  upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos, 
						      EVAL_NORMAL));
	}
      else if (is_array)
	{
	  lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos, 
						      EVAL_NORMAL));
	  upper = lower;
	}
      else
	{
	  int ind;
	  const char *name;

	  switch (op)
	    {
	    case OP_NAME:
	      name = &exp->elts[choice_pos + 2].string;
	      break;
	    case OP_VAR_VALUE:
	      name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
	      break;
	    default:
	      error (_("Invalid record component association."));
	    }
	  ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
	  ind = 0;
	  if (! find_struct_field (name, value_type (lhs), 0, 
				   NULL, NULL, NULL, NULL, &ind))
	    error (_("Unknown component name: %s."), name);
	  lower = upper = ind;
	}

      if (lower <= upper && (lower < low || upper > high))
	error (_("Index in component association out of bounds."));

      add_component_interval (lower, upper, indices, num_indices,
			      max_indices);
      while (lower <= upper)
	{
	  int pos1;

	  pos1 = expr_pc;
	  assign_component (container, lhs, lower, exp, &pos1);
	  lower += 1;
	}
    }
}

/* Assign the value of the expression in the OP_OTHERS construct in
   EXP at *POS into the components of LHS indexed from LOW .. HIGH that
   have not been previously assigned.  The index intervals already assigned
   are in INDICES[0 .. NUM_INDICES-1].  Updates *POS to after the 
   OP_OTHERS clause.  CONTAINER is as for assign_aggregate.  */
static void
aggregate_assign_others (struct value *container,
			 struct value *lhs, struct expression *exp,
			 int *pos, LONGEST *indices, int num_indices,
			 LONGEST low, LONGEST high) 
{
  int i;
  int expr_pc = *pos + 1;
  
  for (i = 0; i < num_indices - 2; i += 2)
    {
      LONGEST ind;

      for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
	{
	  int localpos;

	  localpos = expr_pc;
	  assign_component (container, lhs, ind, exp, &localpos);
	}
    }
  ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
}

/* Add the interval [LOW .. HIGH] to the sorted set of intervals 
   [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
   modifying *SIZE as needed.  It is an error if *SIZE exceeds
   MAX_SIZE.  The resulting intervals do not overlap.  */
static void
add_component_interval (LONGEST low, LONGEST high, 
			LONGEST* indices, int *size, int max_size)
{
  int i, j;

  for (i = 0; i < *size; i += 2) {
    if (high >= indices[i] && low <= indices[i + 1])
      {
	int kh;

	for (kh = i + 2; kh < *size; kh += 2)
	  if (high < indices[kh])
	    break;
	if (low < indices[i])
	  indices[i] = low;
	indices[i + 1] = indices[kh - 1];
	if (high > indices[i + 1])
	  indices[i + 1] = high;
	memcpy (indices + i + 2, indices + kh, *size - kh);
	*size -= kh - i - 2;
	return;
      }
    else if (high < indices[i])
      break;
  }
	
  if (*size == max_size)
    error (_("Internal error: miscounted aggregate components."));
  *size += 2;
  for (j = *size-1; j >= i+2; j -= 1)
    indices[j] = indices[j - 2];
  indices[i] = low;
  indices[i + 1] = high;
}

/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
   is different.  */

static struct value *
ada_value_cast (struct type *type, struct value *arg2)
{
  if (type == ada_check_typedef (value_type (arg2)))
    return arg2;

  if (ada_is_fixed_point_type (type))
    return cast_to_fixed (type, arg2);

  if (ada_is_fixed_point_type (value_type (arg2)))
    return cast_from_fixed (type, arg2);

  return value_cast (type, arg2);
}

/*  Evaluating Ada expressions, and printing their result.
    ------------------------------------------------------

    1. Introduction:
    ----------------

    We usually evaluate an Ada expression in order to print its value.
    We also evaluate an expression in order to print its type, which
    happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
    but we'll focus mostly on the EVAL_NORMAL phase.  In practice, the
    EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
    the evaluation compared to the EVAL_NORMAL, but is otherwise very
    similar.

    Evaluating expressions is a little more complicated for Ada entities
    than it is for entities in languages such as C.  The main reason for
    this is that Ada provides types whose definition might be dynamic.
    One example of such types is variant records.  Or another example
    would be an array whose bounds can only be known at run time.

    The following description is a general guide as to what should be
    done (and what should NOT be done) in order to evaluate an expression
    involving such types, and when.  This does not cover how the semantic
    information is encoded by GNAT as this is covered separatly.  For the
    document used as the reference for the GNAT encoding, see exp_dbug.ads
    in the GNAT sources.

    Ideally, we should embed each part of this description next to its
    associated code.  Unfortunately, the amount of code is so vast right
    now that it's hard to see whether the code handling a particular
    situation might be duplicated or not.  One day, when the code is
    cleaned up, this guide might become redundant with the comments
    inserted in the code, and we might want to remove it.

    2. ``Fixing'' an Entity, the Simple Case:
    -----------------------------------------

    When evaluating Ada expressions, the tricky issue is that they may
    reference entities whose type contents and size are not statically
    known.  Consider for instance a variant record:

       type Rec (Empty : Boolean := True) is record
          case Empty is
             when True => null;
             when False => Value : Integer;
          end case;
       end record;
       Yes : Rec := (Empty => False, Value => 1);
       No  : Rec := (empty => True);

    The size and contents of that record depends on the value of the
    descriminant (Rec.Empty).  At this point, neither the debugging
    information nor the associated type structure in GDB are able to
    express such dynamic types.  So what the debugger does is to create
    "fixed" versions of the type that applies to the specific object.
    We also informally refer to this opperation as "fixing" an object,
    which means creating its associated fixed type.

    Example: when printing the value of variable "Yes" above, its fixed
    type would look like this:

       type Rec is record
          Empty : Boolean;
          Value : Integer;
       end record;

    On the other hand, if we printed the value of "No", its fixed type
    would become:

       type Rec is record
          Empty : Boolean;
       end record;

    Things become a little more complicated when trying to fix an entity
    with a dynamic type that directly contains another dynamic type,
    such as an array of variant records, for instance.  There are
    two possible cases: Arrays, and records.

    3. ``Fixing'' Arrays:
    ---------------------

    The type structure in GDB describes an array in terms of its bounds,
    and the type of its elements.  By design, all elements in the array
    have the same type and we cannot represent an array of variant elements
    using the current type structure in GDB.  When fixing an array,
    we cannot fix the array element, as we would potentially need one
    fixed type per element of the array.  As a result, the best we can do
    when fixing an array is to produce an array whose bounds and size
    are correct (allowing us to read it from memory), but without having
    touched its element type.  Fixing each element will be done later,
    when (if) necessary.

    Arrays are a little simpler to handle than records, because the same
    amount of memory is allocated for each element of the array, even if
    the amount of space actually used by each element differs from element
    to element.  Consider for instance the following array of type Rec:

       type Rec_Array is array (1 .. 2) of Rec;

    The actual amount of memory occupied by each element might be different
    from element to element, depending on the value of their discriminant.
    But the amount of space reserved for each element in the array remains
    fixed regardless.  So we simply need to compute that size using
    the debugging information available, from which we can then determine
    the array size (we multiply the number of elements of the array by
    the size of each element).

    The simplest case is when we have an array of a constrained element
    type. For instance, consider the following type declarations:

        type Bounded_String (Max_Size : Integer) is
           Length : Integer;
           Buffer : String (1 .. Max_Size);
        end record;
        type Bounded_String_Array is array (1 ..2) of Bounded_String (80);

    In this case, the compiler describes the array as an array of
    variable-size elements (identified by its XVS suffix) for which
    the size can be read in the parallel XVZ variable.

    In the case of an array of an unconstrained element type, the compiler
    wraps the array element inside a private PAD type.  This type should not
    be shown to the user, and must be "unwrap"'ed before printing.  Note
    that we also use the adjective "aligner" in our code to designate
    these wrapper types.

    In some cases, the size allocated for each element is statically
    known.  In that case, the PAD type already has the correct size,
    and the array element should remain unfixed.

    But there are cases when this size is not statically known.
    For instance, assuming that "Five" is an integer variable:

        type Dynamic is array (1 .. Five) of Integer;
        type Wrapper (Has_Length : Boolean := False) is record
           Data : Dynamic;
           case Has_Length is
              when True => Length : Integer;
              when False => null;
           end case;
        end record;
        type Wrapper_Array is array (1 .. 2) of Wrapper;

        Hello : Wrapper_Array := (others => (Has_Length => True,
                                             Data => (others => 17),
                                             Length => 1));


    The debugging info would describe variable Hello as being an
    array of a PAD type.  The size of that PAD type is not statically
    known, but can be determined using a parallel XVZ variable.
    In that case, a copy of the PAD type with the correct size should
    be used for the fixed array.

    3. ``Fixing'' record type objects:
    ----------------------------------

    Things are slightly different from arrays in the case of dynamic
    record types.  In this case, in order to compute the associated
    fixed type, we need to determine the size and offset of each of
    its components.  This, in turn, requires us to compute the fixed
    type of each of these components.

    Consider for instance the example:

        type Bounded_String (Max_Size : Natural) is record
           Str : String (1 .. Max_Size);
           Length : Natural;
        end record;
        My_String : Bounded_String (Max_Size => 10);

    In that case, the position of field "Length" depends on the size
    of field Str, which itself depends on the value of the Max_Size
    discriminant.  In order to fix the type of variable My_String,
    we need to fix the type of field Str.  Therefore, fixing a variant
    record requires us to fix each of its components.

    However, if a component does not have a dynamic size, the component
    should not be fixed.  In particular, fields that use a PAD type
    should not fixed.  Here is an example where this might happen
    (assuming type Rec above):

       type Container (Big : Boolean) is record
          First : Rec;
          After : Integer;
          case Big is
             when True => Another : Integer;
             when False => null;
          end case;
       end record;
       My_Container : Container := (Big => False,
                                    First => (Empty => True),
                                    After => 42);

    In that example, the compiler creates a PAD type for component First,
    whose size is constant, and then positions the component After just
    right after it.  The offset of component After is therefore constant
    in this case.

    The debugger computes the position of each field based on an algorithm
    that uses, among other things, the actual position and size of the field
    preceding it.  Let's now imagine that the user is trying to print
    the value of My_Container.  If the type fixing was recursive, we would
    end up computing the offset of field After based on the size of the
    fixed version of field First.  And since in our example First has
    only one actual field, the size of the fixed type is actually smaller
    than the amount of space allocated to that field, and thus we would
    compute the wrong offset of field After.

    To make things more complicated, we need to watch out for dynamic
    components of variant records (identified by the ___XVL suffix in
    the component name).  Even if the target type is a PAD type, the size
    of that type might not be statically known.  So the PAD type needs
    to be unwrapped and the resulting type needs to be fixed.  Otherwise,
    we might end up with the wrong size for our component.  This can be
    observed with the following type declarations:

        type Octal is new Integer range 0 .. 7;
        type Octal_Array is array (Positive range <>) of Octal;
        pragma Pack (Octal_Array);

        type Octal_Buffer (Size : Positive) is record
           Buffer : Octal_Array (1 .. Size);
           Length : Integer;
        end record;

    In that case, Buffer is a PAD type whose size is unset and needs
    to be computed by fixing the unwrapped type.

    4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
    ----------------------------------------------------------

    Lastly, when should the sub-elements of an entity that remained unfixed
    thus far, be actually fixed?

    The answer is: Only when referencing that element.  For instance
    when selecting one component of a record, this specific component
    should be fixed at that point in time.  Or when printing the value
    of a record, each component should be fixed before its value gets
    printed.  Similarly for arrays, the element of the array should be
    fixed when printing each element of the array, or when extracting
    one element out of that array.  On the other hand, fixing should
    not be performed on the elements when taking a slice of an array!

    Note that one of the side effects of miscomputing the offset and
    size of each field is that we end up also miscomputing the size
    of the containing type.  This can have adverse results when computing
    the value of an entity.  GDB fetches the value of an entity based
    on the size of its type, and thus a wrong size causes GDB to fetch
    the wrong amount of memory.  In the case where the computed size is
    too small, GDB fetches too little data to print the value of our
    entity.  Results in this case are unpredictable, as we usually read
    past the buffer containing the data =:-o.  */

/* Evaluate a subexpression of EXP, at index *POS, and return a value
   for that subexpression cast to TO_TYPE.  Advance *POS over the
   subexpression.  */

static value *
ada_evaluate_subexp_for_cast (expression *exp, int *pos,
			      enum noside noside, struct type *to_type)
{
  int pc = *pos;

  if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
      || exp->elts[pc].opcode == OP_VAR_VALUE)
    {
      (*pos) += 4;

      value *val;
      if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
        {
          if (noside == EVAL_AVOID_SIDE_EFFECTS)
            return value_zero (to_type, not_lval);

          val = evaluate_var_msym_value (noside,
                                         exp->elts[pc + 1].objfile,
                                         exp->elts[pc + 2].msymbol);
        }
      else
        val = evaluate_var_value (noside,
                                  exp->elts[pc + 1].block,
                                  exp->elts[pc + 2].symbol);

      if (noside == EVAL_SKIP)
        return eval_skip_value (exp);

      val = ada_value_cast (to_type, val);

      /* Follow the Ada language semantics that do not allow taking
	 an address of the result of a cast (view conversion in Ada).  */
      if (VALUE_LVAL (val) == lval_memory)
        {
          if (value_lazy (val))
            value_fetch_lazy (val);
          VALUE_LVAL (val) = not_lval;
        }
      return val;
    }

  value *val = evaluate_subexp (to_type, exp, pos, noside);
  if (noside == EVAL_SKIP)
    return eval_skip_value (exp);
  return ada_value_cast (to_type, val);
}

/* Implement the evaluate_exp routine in the exp_descriptor structure
   for the Ada language.  */

static struct value *
ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
                     int *pos, enum noside noside)
{
  enum exp_opcode op;
  int tem;
  int pc;
  int preeval_pos;
  struct value *arg1 = NULL, *arg2 = NULL, *arg3;
  struct type *type;
  int nargs, oplen;
  struct value **argvec;

  pc = *pos;
  *pos += 1;
  op = exp->elts[pc].opcode;

  switch (op)
    {
    default:
      *pos -= 1;
      arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);

      if (noside == EVAL_NORMAL)
	arg1 = unwrap_value (arg1);

      /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
         then we need to perform the conversion manually, because
         evaluate_subexp_standard doesn't do it.  This conversion is
         necessary in Ada because the different kinds of float/fixed
         types in Ada have different representations.

         Similarly, we need to perform the conversion from OP_LONG
         ourselves.  */
      if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
        arg1 = ada_value_cast (expect_type, arg1);

      return arg1;

    case OP_STRING:
      {
        struct value *result;

        *pos -= 1;
        result = evaluate_subexp_standard (expect_type, exp, pos, noside);
        /* The result type will have code OP_STRING, bashed there from 
           OP_ARRAY.  Bash it back.  */
        if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
          TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
        return result;
      }

    case UNOP_CAST:
      (*pos) += 2;
      type = exp->elts[pc + 1].type;
      return ada_evaluate_subexp_for_cast (exp, pos, noside, type);

    case UNOP_QUAL:
      (*pos) += 2;
      type = exp->elts[pc + 1].type;
      return ada_evaluate_subexp (type, exp, pos, noside);

    case BINOP_ASSIGN:
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      if (exp->elts[*pos].opcode == OP_AGGREGATE)
	{
	  arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
	  if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
	    return arg1;
	  return ada_value_assign (arg1, arg1);
	}
      /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
         except if the lhs of our assignment is a convenience variable.
         In the case of assigning to a convenience variable, the lhs
         should be exactly the result of the evaluation of the rhs.  */
      type = value_type (arg1);
      if (VALUE_LVAL (arg1) == lval_internalvar)
         type = NULL;
      arg2 = evaluate_subexp (type, exp, pos, noside);
      if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
        return arg1;
      if (ada_is_fixed_point_type (value_type (arg1)))
        arg2 = cast_to_fixed (value_type (arg1), arg2);
      else if (ada_is_fixed_point_type (value_type (arg2)))
        error
          (_("Fixed-point values must be assigned to fixed-point variables"));
      else
        arg2 = coerce_for_assign (value_type (arg1), arg2);
      return ada_value_assign (arg1, arg2);

    case BINOP_ADD:
      arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
      arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
      if (noside == EVAL_SKIP)
        goto nosideret;
      if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
        return (value_from_longest
                 (value_type (arg1),
                  value_as_long (arg1) + value_as_long (arg2)));
      if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
        return (value_from_longest
                 (value_type (arg2),
                  value_as_long (arg1) + value_as_long (arg2)));
      if ((ada_is_fixed_point_type (value_type (arg1))
           || ada_is_fixed_point_type (value_type (arg2)))
          && value_type (arg1) != value_type (arg2))
        error (_("Operands of fixed-point addition must have the same type"));
      /* Do the addition, and cast the result to the type of the first
         argument.  We cannot cast the result to a reference type, so if
         ARG1 is a reference type, find its underlying type.  */
      type = value_type (arg1);
      while (TYPE_CODE (type) == TYPE_CODE_REF)
        type = TYPE_TARGET_TYPE (type);
      binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
      return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));

    case BINOP_SUB:
      arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
      arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
      if (noside == EVAL_SKIP)
        goto nosideret;
      if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
        return (value_from_longest
                 (value_type (arg1),
                  value_as_long (arg1) - value_as_long (arg2)));
      if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
        return (value_from_longest
                 (value_type (arg2),
                  value_as_long (arg1) - value_as_long (arg2)));
      if ((ada_is_fixed_point_type (value_type (arg1))
           || ada_is_fixed_point_type (value_type (arg2)))
          && value_type (arg1) != value_type (arg2))
        error (_("Operands of fixed-point subtraction "
		 "must have the same type"));
      /* Do the substraction, and cast the result to the type of the first
         argument.  We cannot cast the result to a reference type, so if
         ARG1 is a reference type, find its underlying type.  */
      type = value_type (arg1);
      while (TYPE_CODE (type) == TYPE_CODE_REF)
        type = TYPE_TARGET_TYPE (type);
      binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
      return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));

    case BINOP_MUL:
    case BINOP_DIV:
    case BINOP_REM:
    case BINOP_MOD:
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      if (noside == EVAL_SKIP)
        goto nosideret;
      else if (noside == EVAL_AVOID_SIDE_EFFECTS)
        {
          binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
          return value_zero (value_type (arg1), not_lval);
        }
      else
        {
          type = builtin_type (exp->gdbarch)->builtin_double;
          if (ada_is_fixed_point_type (value_type (arg1)))
            arg1 = cast_from_fixed (type, arg1);
          if (ada_is_fixed_point_type (value_type (arg2)))
            arg2 = cast_from_fixed (type, arg2);
          binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
          return ada_value_binop (arg1, arg2, op);
        }

    case BINOP_EQUAL:
    case BINOP_NOTEQUAL:
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
      if (noside == EVAL_SKIP)
        goto nosideret;
      if (noside == EVAL_AVOID_SIDE_EFFECTS)
        tem = 0;
      else
	{
	  binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
	  tem = ada_value_equal (arg1, arg2);
	}
      if (op == BINOP_NOTEQUAL)
        tem = !tem;
      type = language_bool_type (exp->language_defn, exp->gdbarch);
      return value_from_longest (type, (LONGEST) tem);

    case UNOP_NEG:
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      if (noside == EVAL_SKIP)
        goto nosideret;
      else if (ada_is_fixed_point_type (value_type (arg1)))
        return value_cast (value_type (arg1), value_neg (arg1));
      else
	{
	  unop_promote (exp->language_defn, exp->gdbarch, &arg1);
	  return value_neg (arg1);
	}

    case BINOP_LOGICAL_AND:
    case BINOP_LOGICAL_OR:
    case UNOP_LOGICAL_NOT:
      {
        struct value *val;

        *pos -= 1;
        val = evaluate_subexp_standard (expect_type, exp, pos, noside);
	type = language_bool_type (exp->language_defn, exp->gdbarch);
        return value_cast (type, val);
      }

    case BINOP_BITWISE_AND:
    case BINOP_BITWISE_IOR:
    case BINOP_BITWISE_XOR:
      {
        struct value *val;

        arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
        *pos = pc;
        val = evaluate_subexp_standard (expect_type, exp, pos, noside);

        return value_cast (value_type (arg1), val);
      }

    case OP_VAR_VALUE:
      *pos -= 1;

      if (noside == EVAL_SKIP)
        {
          *pos += 4;
          goto nosideret;
        }

      if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
        /* Only encountered when an unresolved symbol occurs in a
           context other than a function call, in which case, it is
           invalid.  */
        error (_("Unexpected unresolved symbol, %s, during evaluation"),
               SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));

      if (noside == EVAL_AVOID_SIDE_EFFECTS)
        {
          type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
          /* Check to see if this is a tagged type.  We also need to handle
             the case where the type is a reference to a tagged type, but
             we have to be careful to exclude pointers to tagged types.
             The latter should be shown as usual (as a pointer), whereas
             a reference should mostly be transparent to the user.  */
          if (ada_is_tagged_type (type, 0)
              || (TYPE_CODE (type) == TYPE_CODE_REF
                  && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
	    {
	      /* Tagged types are a little special in the fact that the real
		 type is dynamic and can only be determined by inspecting the
		 object's tag.  This means that we need to get the object's
		 value first (EVAL_NORMAL) and then extract the actual object
		 type from its tag.

		 Note that we cannot skip the final step where we extract
		 the object type from its tag, because the EVAL_NORMAL phase
		 results in dynamic components being resolved into fixed ones.
		 This can cause problems when trying to print the type
		 description of tagged types whose parent has a dynamic size:
		 We use the type name of the "_parent" component in order
		 to print the name of the ancestor type in the type description.
		 If that component had a dynamic size, the resolution into
		 a fixed type would result in the loss of that type name,
		 thus preventing us from printing the name of the ancestor
		 type in the type description.  */
	      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);

	      if (TYPE_CODE (type) != TYPE_CODE_REF)
		{
		  struct type *actual_type;

		  actual_type = type_from_tag (ada_value_tag (arg1));
		  if (actual_type == NULL)
		    /* If, for some reason, we were unable to determine
		       the actual type from the tag, then use the static
		       approximation that we just computed as a fallback.
		       This can happen if the debugging information is
		       incomplete, for instance.  */
		    actual_type = type;
		  return value_zero (actual_type, not_lval);
		}
	      else
		{
		  /* In the case of a ref, ada_coerce_ref takes care
		     of determining the actual type.  But the evaluation
		     should return a ref as it should be valid to ask
		     for its address; so rebuild a ref after coerce.  */
		  arg1 = ada_coerce_ref (arg1);
		  return value_ref (arg1, TYPE_CODE_REF);
		}
	    }

	  /* Records and unions for which GNAT encodings have been
	     generated need to be statically fixed as well.
	     Otherwise, non-static fixing produces a type where
	     all dynamic properties are removed, which prevents "ptype"
	     from being able to completely describe the type.
	     For instance, a case statement in a variant record would be
	     replaced by the relevant components based on the actual
	     value of the discriminants.  */
	  if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
	       && dynamic_template_type (type) != NULL)
	      || (TYPE_CODE (type) == TYPE_CODE_UNION
		  && ada_find_parallel_type (type, "___XVU") != NULL))
	    {
	      *pos += 4;
	      return value_zero (to_static_fixed_type (type), not_lval);
	    }
        }

      arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
      return ada_to_fixed_value (arg1);

    case OP_FUNCALL:
      (*pos) += 2;

      /* Allocate arg vector, including space for the function to be
         called in argvec[0] and a terminating NULL.  */
      nargs = longest_to_int (exp->elts[pc + 1].longconst);
      argvec = XALLOCAVEC (struct value *, nargs + 2);

      if (exp->elts[*pos].opcode == OP_VAR_VALUE
          && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
        error (_("Unexpected unresolved symbol, %s, during evaluation"),
               SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
      else
        {
          for (tem = 0; tem <= nargs; tem += 1)
            argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
          argvec[tem] = 0;

          if (noside == EVAL_SKIP)
            goto nosideret;
        }

      if (ada_is_constrained_packed_array_type
	  (desc_base_type (value_type (argvec[0]))))
        argvec[0] = ada_coerce_to_simple_array (argvec[0]);
      else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
               && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
        /* This is a packed array that has already been fixed, and
	   therefore already coerced to a simple array.  Nothing further
	   to do.  */
        ;
      else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
	{
	  /* Make sure we dereference references so that all the code below
	     feels like it's really handling the referenced value.  Wrapping
	     types (for alignment) may be there, so make sure we strip them as
	     well.  */
	  argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
	}
      else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
	       && VALUE_LVAL (argvec[0]) == lval_memory)
	argvec[0] = value_addr (argvec[0]);

      type = ada_check_typedef (value_type (argvec[0]));

      /* Ada allows us to implicitly dereference arrays when subscripting
	 them.  So, if this is an array typedef (encoding use for array
	 access types encoded as fat pointers), strip it now.  */
      if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
	type = ada_typedef_target_type (type);

      if (TYPE_CODE (type) == TYPE_CODE_PTR)
        {
          switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
            {
            case TYPE_CODE_FUNC:
              type = ada_check_typedef (TYPE_TARGET_TYPE (type));
              break;
            case TYPE_CODE_ARRAY:
              break;
            case TYPE_CODE_STRUCT:
              if (noside != EVAL_AVOID_SIDE_EFFECTS)
                argvec[0] = ada_value_ind (argvec[0]);
              type = ada_check_typedef (TYPE_TARGET_TYPE (type));
              break;
            default:
              error (_("cannot subscript or call something of type `%s'"),
                     ada_type_name (value_type (argvec[0])));
              break;
            }
        }

      switch (TYPE_CODE (type))
        {
        case TYPE_CODE_FUNC:
          if (noside == EVAL_AVOID_SIDE_EFFECTS)
	    {
	      if (TYPE_TARGET_TYPE (type) == NULL)
		error_call_unknown_return_type (NULL);
	      return allocate_value (TYPE_TARGET_TYPE (type));
	    }
	  return call_function_by_hand (argvec[0], NULL,
					gdb::make_array_view (argvec + 1,
							      nargs));
	case TYPE_CODE_INTERNAL_FUNCTION:
	  if (noside == EVAL_AVOID_SIDE_EFFECTS)
	    /* We don't know anything about what the internal
	       function might return, but we have to return
	       something.  */
	    return value_zero (builtin_type (exp->gdbarch)->builtin_int,
			       not_lval);
	  else
	    return call_internal_function (exp->gdbarch, exp->language_defn,
					   argvec[0], nargs, argvec + 1);

        case TYPE_CODE_STRUCT:
          {
            int arity;

            arity = ada_array_arity (type);
            type = ada_array_element_type (type, nargs);
            if (type == NULL)
              error (_("cannot subscript or call a record"));
            if (arity != nargs)
              error (_("wrong number of subscripts; expecting %d"), arity);
            if (noside == EVAL_AVOID_SIDE_EFFECTS)
              return value_zero (ada_aligned_type (type), lval_memory);
            return
              unwrap_value (ada_value_subscript
                            (argvec[0], nargs, argvec + 1));
          }
        case TYPE_CODE_ARRAY:
          if (noside == EVAL_AVOID_SIDE_EFFECTS)
            {
              type = ada_array_element_type (type, nargs);
              if (type == NULL)
                error (_("element type of array unknown"));
              else
                return value_zero (ada_aligned_type (type), lval_memory);
            }
          return
            unwrap_value (ada_value_subscript
                          (ada_coerce_to_simple_array (argvec[0]),
                           nargs, argvec + 1));
        case TYPE_CODE_PTR:     /* Pointer to array */
          if (noside == EVAL_AVOID_SIDE_EFFECTS)
            {
	      type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
              type = ada_array_element_type (type, nargs);
              if (type == NULL)
                error (_("element type of array unknown"));
              else
                return value_zero (ada_aligned_type (type), lval_memory);
            }
          return
            unwrap_value (ada_value_ptr_subscript (argvec[0],
						   nargs, argvec + 1));

        default:
          error (_("Attempt to index or call something other than an "
		   "array or function"));
        }

    case TERNOP_SLICE:
      {
        struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
        struct value *low_bound_val =
          evaluate_subexp (NULL_TYPE, exp, pos, noside);
        struct value *high_bound_val =
          evaluate_subexp (NULL_TYPE, exp, pos, noside);
        LONGEST low_bound;
        LONGEST high_bound;

        low_bound_val = coerce_ref (low_bound_val);
        high_bound_val = coerce_ref (high_bound_val);
        low_bound = value_as_long (low_bound_val);
        high_bound = value_as_long (high_bound_val);

        if (noside == EVAL_SKIP)
          goto nosideret;

        /* If this is a reference to an aligner type, then remove all
           the aligners.  */
        if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
            && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
          TYPE_TARGET_TYPE (value_type (array)) =
            ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));

        if (ada_is_constrained_packed_array_type (value_type (array)))
          error (_("cannot slice a packed array"));

        /* If this is a reference to an array or an array lvalue,
           convert to a pointer.  */
        if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
            || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
                && VALUE_LVAL (array) == lval_memory))
          array = value_addr (array);

        if (noside == EVAL_AVOID_SIDE_EFFECTS
            && ada_is_array_descriptor_type (ada_check_typedef
                                             (value_type (array))))
          return empty_array (ada_type_of_array (array, 0), low_bound);

        array = ada_coerce_to_simple_array_ptr (array);

        /* If we have more than one level of pointer indirection,
           dereference the value until we get only one level.  */
        while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
               && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
                     == TYPE_CODE_PTR))
          array = value_ind (array);

        /* Make sure we really do have an array type before going further,
           to avoid a SEGV when trying to get the index type or the target
           type later down the road if the debug info generated by
           the compiler is incorrect or incomplete.  */
        if (!ada_is_simple_array_type (value_type (array)))
          error (_("cannot take slice of non-array"));

        if (TYPE_CODE (ada_check_typedef (value_type (array)))
            == TYPE_CODE_PTR)
          {
            struct type *type0 = ada_check_typedef (value_type (array));

            if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
              return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
            else
              {
                struct type *arr_type0 =
                  to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);

                return ada_value_slice_from_ptr (array, arr_type0,
                                                 longest_to_int (low_bound),
                                                 longest_to_int (high_bound));
              }
          }
        else if (noside == EVAL_AVOID_SIDE_EFFECTS)
          return array;
        else if (high_bound < low_bound)
          return empty_array (value_type (array), low_bound);
        else
          return ada_value_slice (array, longest_to_int (low_bound),
				  longest_to_int (high_bound));
      }

    case UNOP_IN_RANGE:
      (*pos) += 2;
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      type = check_typedef (exp->elts[pc + 1].type);

      if (noside == EVAL_SKIP)
        goto nosideret;

      switch (TYPE_CODE (type))
        {
        default:
          lim_warning (_("Membership test incompletely implemented; "
			 "always returns true"));
	  type = language_bool_type (exp->language_defn, exp->gdbarch);
	  return value_from_longest (type, (LONGEST) 1);

        case TYPE_CODE_RANGE:
	  arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
	  arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
	  binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
	  binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
	  type = language_bool_type (exp->language_defn, exp->gdbarch);
	  return
	    value_from_longest (type,
                                (value_less (arg1, arg3)
                                 || value_equal (arg1, arg3))
                                && (value_less (arg2, arg1)
                                    || value_equal (arg2, arg1)));
        }

    case BINOP_IN_BOUNDS:
      (*pos) += 2;
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);

      if (noside == EVAL_SKIP)
        goto nosideret;

      if (noside == EVAL_AVOID_SIDE_EFFECTS)
	{
	  type = language_bool_type (exp->language_defn, exp->gdbarch);
	  return value_zero (type, not_lval);
	}

      tem = longest_to_int (exp->elts[pc + 1].longconst);

      type = ada_index_type (value_type (arg2), tem, "range");
      if (!type)
	type = value_type (arg1);

      arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
      arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));

      binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
      binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
      type = language_bool_type (exp->language_defn, exp->gdbarch);
      return
        value_from_longest (type,
                            (value_less (arg1, arg3)
                             || value_equal (arg1, arg3))
                            && (value_less (arg2, arg1)
                                || value_equal (arg2, arg1)));

    case TERNOP_IN_RANGE:
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);

      if (noside == EVAL_SKIP)
        goto nosideret;

      binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
      binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
      type = language_bool_type (exp->language_defn, exp->gdbarch);
      return
        value_from_longest (type,
                            (value_less (arg1, arg3)
                             || value_equal (arg1, arg3))
                            && (value_less (arg2, arg1)
                                || value_equal (arg2, arg1)));

    case OP_ATR_FIRST:
    case OP_ATR_LAST:
    case OP_ATR_LENGTH:
      {
        struct type *type_arg;

        if (exp->elts[*pos].opcode == OP_TYPE)
          {
            evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
            arg1 = NULL;
            type_arg = check_typedef (exp->elts[pc + 2].type);
          }
        else
          {
            arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
            type_arg = NULL;
          }

        if (exp->elts[*pos].opcode != OP_LONG)
          error (_("Invalid operand to '%s"), ada_attribute_name (op));
        tem = longest_to_int (exp->elts[*pos + 2].longconst);
        *pos += 4;

        if (noside == EVAL_SKIP)
          goto nosideret;

        if (type_arg == NULL)
          {
            arg1 = ada_coerce_ref (arg1);

            if (ada_is_constrained_packed_array_type (value_type (arg1)))
              arg1 = ada_coerce_to_simple_array (arg1);

            if (op == OP_ATR_LENGTH)
	      type = builtin_type (exp->gdbarch)->builtin_int;
	    else
	      {
		type = ada_index_type (value_type (arg1), tem,
				       ada_attribute_name (op));
		if (type == NULL)
		  type = builtin_type (exp->gdbarch)->builtin_int;
	      }

            if (noside == EVAL_AVOID_SIDE_EFFECTS)
              return allocate_value (type);

            switch (op)
              {
              default:          /* Should never happen.  */
                error (_("unexpected attribute encountered"));
              case OP_ATR_FIRST:
                return value_from_longest
			(type, ada_array_bound (arg1, tem, 0));
              case OP_ATR_LAST:
                return value_from_longest
			(type, ada_array_bound (arg1, tem, 1));
              case OP_ATR_LENGTH:
                return value_from_longest
			(type, ada_array_length (arg1, tem));
              }
          }
        else if (discrete_type_p (type_arg))
          {
            struct type *range_type;
            const char *name = ada_type_name (type_arg);

            range_type = NULL;
            if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
              range_type = to_fixed_range_type (type_arg, NULL);
            if (range_type == NULL)
              range_type = type_arg;
            switch (op)
              {
              default:
                error (_("unexpected attribute encountered"));
              case OP_ATR_FIRST:
		return value_from_longest 
		  (range_type, ada_discrete_type_low_bound (range_type));
              case OP_ATR_LAST:
                return value_from_longest
		  (range_type, ada_discrete_type_high_bound (range_type));
              case OP_ATR_LENGTH:
                error (_("the 'length attribute applies only to array types"));
              }
          }
        else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
          error (_("unimplemented type attribute"));
        else
          {
            LONGEST low, high;

            if (ada_is_constrained_packed_array_type (type_arg))
              type_arg = decode_constrained_packed_array_type (type_arg);

	    if (op == OP_ATR_LENGTH)
	      type = builtin_type (exp->gdbarch)->builtin_int;
	    else
	      {
		type = ada_index_type (type_arg, tem, ada_attribute_name (op));
		if (type == NULL)
		  type = builtin_type (exp->gdbarch)->builtin_int;
	      }

            if (noside == EVAL_AVOID_SIDE_EFFECTS)
              return allocate_value (type);

            switch (op)
              {
              default:
                error (_("unexpected attribute encountered"));
              case OP_ATR_FIRST:
                low = ada_array_bound_from_type (type_arg, tem, 0);
                return value_from_longest (type, low);
              case OP_ATR_LAST:
                high = ada_array_bound_from_type (type_arg, tem, 1);
                return value_from_longest (type, high);
              case OP_ATR_LENGTH:
                low = ada_array_bound_from_type (type_arg, tem, 0);
                high = ada_array_bound_from_type (type_arg, tem, 1);
                return value_from_longest (type, high - low + 1);
              }
          }
      }

    case OP_ATR_TAG:
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      if (noside == EVAL_SKIP)
        goto nosideret;

      if (noside == EVAL_AVOID_SIDE_EFFECTS)
        return value_zero (ada_tag_type (arg1), not_lval);

      return ada_value_tag (arg1);

    case OP_ATR_MIN:
    case OP_ATR_MAX:
      evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      if (noside == EVAL_SKIP)
        goto nosideret;
      else if (noside == EVAL_AVOID_SIDE_EFFECTS)
        return value_zero (value_type (arg1), not_lval);
      else
	{
	  binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
	  return value_binop (arg1, arg2,
			      op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
	}

    case OP_ATR_MODULUS:
      {
        struct type *type_arg = check_typedef (exp->elts[pc + 2].type);

        evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
        if (noside == EVAL_SKIP)
          goto nosideret;

        if (!ada_is_modular_type (type_arg))
          error (_("'modulus must be applied to modular type"));

        return value_from_longest (TYPE_TARGET_TYPE (type_arg),
                                   ada_modulus (type_arg));
      }


    case OP_ATR_POS:
      evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      if (noside == EVAL_SKIP)
        goto nosideret;
      type = builtin_type (exp->gdbarch)->builtin_int;
      if (noside == EVAL_AVOID_SIDE_EFFECTS)
	return value_zero (type, not_lval);
      else
	return value_pos_atr (type, arg1);

    case OP_ATR_SIZE:
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      type = value_type (arg1);

      /* If the argument is a reference, then dereference its type, since
         the user is really asking for the size of the actual object,
         not the size of the pointer.  */
      if (TYPE_CODE (type) == TYPE_CODE_REF)
        type = TYPE_TARGET_TYPE (type);

      if (noside == EVAL_SKIP)
        goto nosideret;
      else if (noside == EVAL_AVOID_SIDE_EFFECTS)
        return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
      else
        return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
                                   TARGET_CHAR_BIT * TYPE_LENGTH (type));

    case OP_ATR_VAL:
      evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      type = exp->elts[pc + 2].type;
      if (noside == EVAL_SKIP)
        goto nosideret;
      else if (noside == EVAL_AVOID_SIDE_EFFECTS)
        return value_zero (type, not_lval);
      else
        return value_val_atr (type, arg1);

    case BINOP_EXP:
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      if (noside == EVAL_SKIP)
        goto nosideret;
      else if (noside == EVAL_AVOID_SIDE_EFFECTS)
        return value_zero (value_type (arg1), not_lval);
      else
	{
	  /* For integer exponentiation operations,
	     only promote the first argument.  */
	  if (is_integral_type (value_type (arg2)))
	    unop_promote (exp->language_defn, exp->gdbarch, &arg1);
	  else
	    binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);

	  return value_binop (arg1, arg2, op);
	}

    case UNOP_PLUS:
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      if (noside == EVAL_SKIP)
        goto nosideret;
      else
        return arg1;

    case UNOP_ABS:
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      if (noside == EVAL_SKIP)
        goto nosideret;
      unop_promote (exp->language_defn, exp->gdbarch, &arg1);
      if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
        return value_neg (arg1);
      else
        return arg1;

    case UNOP_IND:
      preeval_pos = *pos;
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      if (noside == EVAL_SKIP)
        goto nosideret;
      type = ada_check_typedef (value_type (arg1));
      if (noside == EVAL_AVOID_SIDE_EFFECTS)
        {
          if (ada_is_array_descriptor_type (type))
            /* GDB allows dereferencing GNAT array descriptors.  */
            {
              struct type *arrType = ada_type_of_array (arg1, 0);

              if (arrType == NULL)
                error (_("Attempt to dereference null array pointer."));
              return value_at_lazy (arrType, 0);
            }
          else if (TYPE_CODE (type) == TYPE_CODE_PTR
                   || TYPE_CODE (type) == TYPE_CODE_REF
                   /* In C you can dereference an array to get the 1st elt.  */
                   || TYPE_CODE (type) == TYPE_CODE_ARRAY)
            {
            /* As mentioned in the OP_VAR_VALUE case, tagged types can
               only be determined by inspecting the object's tag.
               This means that we need to evaluate completely the
               expression in order to get its type.  */

	      if ((TYPE_CODE (type) == TYPE_CODE_REF
		   || TYPE_CODE (type) == TYPE_CODE_PTR)
		  && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
		{
		  arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
					  EVAL_NORMAL);
		  type = value_type (ada_value_ind (arg1));
		}
	      else
		{
		  type = to_static_fixed_type
		    (ada_aligned_type
		     (ada_check_typedef (TYPE_TARGET_TYPE (type))));
		}
	      ada_ensure_varsize_limit (type);
              return value_zero (type, lval_memory);
            }
          else if (TYPE_CODE (type) == TYPE_CODE_INT)
	    {
	      /* GDB allows dereferencing an int.  */
	      if (expect_type == NULL)
		return value_zero (builtin_type (exp->gdbarch)->builtin_int,
				   lval_memory);
	      else
		{
		  expect_type = 
		    to_static_fixed_type (ada_aligned_type (expect_type));
		  return value_zero (expect_type, lval_memory);
		}
	    }
          else
            error (_("Attempt to take contents of a non-pointer value."));
        }
      arg1 = ada_coerce_ref (arg1);     /* FIXME: What is this for??  */
      type = ada_check_typedef (value_type (arg1));

      if (TYPE_CODE (type) == TYPE_CODE_INT)
          /* GDB allows dereferencing an int.  If we were given
             the expect_type, then use that as the target type.
             Otherwise, assume that the target type is an int.  */
        {
          if (expect_type != NULL)
	    return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
					      arg1));
	  else
	    return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
				  (CORE_ADDR) value_as_address (arg1));
        }

      if (ada_is_array_descriptor_type (type))
        /* GDB allows dereferencing GNAT array descriptors.  */
        return ada_coerce_to_simple_array (arg1);
      else
        return ada_value_ind (arg1);

    case STRUCTOP_STRUCT:
      tem = longest_to_int (exp->elts[pc + 1].longconst);
      (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
      preeval_pos = *pos;
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      if (noside == EVAL_SKIP)
        goto nosideret;
      if (noside == EVAL_AVOID_SIDE_EFFECTS)
        {
          struct type *type1 = value_type (arg1);

          if (ada_is_tagged_type (type1, 1))
            {
              type = ada_lookup_struct_elt_type (type1,
                                                 &exp->elts[pc + 2].string,
                                                 1, 1);

	      /* If the field is not found, check if it exists in the
		 extension of this object's type. This means that we
		 need to evaluate completely the expression.  */

              if (type == NULL)
		{
		  arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
					  EVAL_NORMAL);
		  arg1 = ada_value_struct_elt (arg1,
					       &exp->elts[pc + 2].string,
					       0);
		  arg1 = unwrap_value (arg1);
		  type = value_type (ada_to_fixed_value (arg1));
		}
            }
          else
            type =
              ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
                                          0);

          return value_zero (ada_aligned_type (type), lval_memory);
        }
      else
	{
	  arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
	  arg1 = unwrap_value (arg1);
	  return ada_to_fixed_value (arg1);
	}

    case OP_TYPE:
      /* The value is not supposed to be used.  This is here to make it
         easier to accommodate expressions that contain types.  */
      (*pos) += 2;
      if (noside == EVAL_SKIP)
        goto nosideret;
      else if (noside == EVAL_AVOID_SIDE_EFFECTS)
        return allocate_value (exp->elts[pc + 1].type);
      else
        error (_("Attempt to use a type name as an expression"));

    case OP_AGGREGATE:
    case OP_CHOICES:
    case OP_OTHERS:
    case OP_DISCRETE_RANGE:
    case OP_POSITIONAL:
    case OP_NAME:
      if (noside == EVAL_NORMAL)
	switch (op) 
	  {
	  case OP_NAME:
	    error (_("Undefined name, ambiguous name, or renaming used in "
		     "component association: %s."), &exp->elts[pc+2].string);
	  case OP_AGGREGATE:
	    error (_("Aggregates only allowed on the right of an assignment"));
	  default:
	    internal_error (__FILE__, __LINE__,
			    _("aggregate apparently mangled"));
	  }

      ada_forward_operator_length (exp, pc, &oplen, &nargs);
      *pos += oplen - 1;
      for (tem = 0; tem < nargs; tem += 1) 
	ada_evaluate_subexp (NULL, exp, pos, noside);
      goto nosideret;
    }

nosideret:
  return eval_skip_value (exp);
}


                                /* Fixed point */

/* If TYPE encodes an Ada fixed-point type, return the suffix of the
   type name that encodes the 'small and 'delta information.
   Otherwise, return NULL.  */

static const char *
fixed_type_info (struct type *type)
{
  const char *name = ada_type_name (type);
  enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);

  if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
    {
      const char *tail = strstr (name, "___XF_");

      if (tail == NULL)
        return NULL;
      else
        return tail + 5;
    }
  else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
    return fixed_type_info (TYPE_TARGET_TYPE (type));
  else
    return NULL;
}

/* Returns non-zero iff TYPE represents an Ada fixed-point type.  */

int
ada_is_fixed_point_type (struct type *type)
{
  return fixed_type_info (type) != NULL;
}

/* Return non-zero iff TYPE represents a System.Address type.  */

int
ada_is_system_address_type (struct type *type)
{
  return (TYPE_NAME (type)
          && strcmp (TYPE_NAME (type), "system__address") == 0);
}

/* Assuming that TYPE is the representation of an Ada fixed-point
   type, return the target floating-point type to be used to represent
   of this type during internal computation.  */

static struct type *
ada_scaling_type (struct type *type)
{
  return builtin_type (get_type_arch (type))->builtin_long_double;
}

/* Assuming that TYPE is the representation of an Ada fixed-point
   type, return its delta, or NULL if the type is malformed and the
   delta cannot be determined.  */

struct value *
ada_delta (struct type *type)
{
  const char *encoding = fixed_type_info (type);
  struct type *scale_type = ada_scaling_type (type);

  long long num, den;

  if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
    return nullptr;
  else
    return value_binop (value_from_longest (scale_type, num),
			value_from_longest (scale_type, den), BINOP_DIV);
}

/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
   factor ('SMALL value) associated with the type.  */

struct value *
ada_scaling_factor (struct type *type)
{
  const char *encoding = fixed_type_info (type);
  struct type *scale_type = ada_scaling_type (type);

  long long num0, den0, num1, den1;
  int n;

  n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
	      &num0, &den0, &num1, &den1);

  if (n < 2)
    return value_from_longest (scale_type, 1);
  else if (n == 4)
    return value_binop (value_from_longest (scale_type, num1),
			value_from_longest (scale_type, den1), BINOP_DIV);
  else
    return value_binop (value_from_longest (scale_type, num0),
			value_from_longest (scale_type, den0), BINOP_DIV);
}



                                /* Range types */

/* Scan STR beginning at position K for a discriminant name, and
   return the value of that discriminant field of DVAL in *PX.  If
   PNEW_K is not null, put the position of the character beyond the
   name scanned in *PNEW_K.  Return 1 if successful; return 0 and do
   not alter *PX and *PNEW_K if unsuccessful.  */

static int
scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
                    int *pnew_k)
{
  static char *bound_buffer = NULL;
  static size_t bound_buffer_len = 0;
  const char *pstart, *pend, *bound;
  struct value *bound_val;

  if (dval == NULL || str == NULL || str[k] == '\0')
    return 0;

  pstart = str + k;
  pend = strstr (pstart, "__");
  if (pend == NULL)
    {
      bound = pstart;
      k += strlen (bound);
    }
  else
    {
      int len = pend - pstart;

      /* Strip __ and beyond.  */
      GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
      strncpy (bound_buffer, pstart, len);
      bound_buffer[len] = '\0';

      bound = bound_buffer;
      k = pend - str;
    }

  bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
  if (bound_val == NULL)
    return 0;

  *px = value_as_long (bound_val);
  if (pnew_k != NULL)
    *pnew_k = k;
  return 1;
}

/* Value of variable named NAME in the current environment.  If
   no such variable found, then if ERR_MSG is null, returns 0, and
   otherwise causes an error with message ERR_MSG.  */

static struct value *
get_var_value (const char *name, const char *err_msg)
{
  lookup_name_info lookup_name (name, symbol_name_match_type::FULL);

  std::vector<struct block_symbol> syms;
  int nsyms = ada_lookup_symbol_list_worker (lookup_name,
					     get_selected_block (0),
					     VAR_DOMAIN, &syms, 1);

  if (nsyms != 1)
    {
      if (err_msg == NULL)
        return 0;
      else
        error (("%s"), err_msg);
    }

  return value_of_variable (syms[0].symbol, syms[0].block);
}

/* Value of integer variable named NAME in the current environment.
   If no such variable is found, returns false.  Otherwise, sets VALUE
   to the variable's value and returns true.  */

bool
get_int_var_value (const char *name, LONGEST &value)
{
  struct value *var_val = get_var_value (name, 0);

  if (var_val == 0)
    return false;

  value = value_as_long (var_val);
  return true;
}


/* Return a range type whose base type is that of the range type named
   NAME in the current environment, and whose bounds are calculated
   from NAME according to the GNAT range encoding conventions.
   Extract discriminant values, if needed, from DVAL.  ORIG_TYPE is the
   corresponding range type from debug information; fall back to using it
   if symbol lookup fails.  If a new type must be created, allocate it
   like ORIG_TYPE was.  The bounds information, in general, is encoded
   in NAME, the base type given in the named range type.  */

static struct type *
to_fixed_range_type (struct type *raw_type, struct value *dval)
{
  const char *name;
  struct type *base_type;
  const char *subtype_info;

  gdb_assert (raw_type != NULL);
  gdb_assert (TYPE_NAME (raw_type) != NULL);

  if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
    base_type = TYPE_TARGET_TYPE (raw_type);
  else
    base_type = raw_type;

  name = TYPE_NAME (raw_type);
  subtype_info = strstr (name, "___XD");
  if (subtype_info == NULL)
    {
      LONGEST L = ada_discrete_type_low_bound (raw_type);
      LONGEST U = ada_discrete_type_high_bound (raw_type);

      if (L < INT_MIN || U > INT_MAX)
	return raw_type;
      else
	return create_static_range_type (alloc_type_copy (raw_type), raw_type,
					 L, U);
    }
  else
    {
      static char *name_buf = NULL;
      static size_t name_len = 0;
      int prefix_len = subtype_info - name;
      LONGEST L, U;
      struct type *type;
      const char *bounds_str;
      int n;

      GROW_VECT (name_buf, name_len, prefix_len + 5);
      strncpy (name_buf, name, prefix_len);
      name_buf[prefix_len] = '\0';

      subtype_info += 5;
      bounds_str = strchr (subtype_info, '_');
      n = 1;

      if (*subtype_info == 'L')
        {
          if (!ada_scan_number (bounds_str, n, &L, &n)
              && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
            return raw_type;
          if (bounds_str[n] == '_')
            n += 2;
          else if (bounds_str[n] == '.')     /* FIXME? SGI Workshop kludge.  */
            n += 1;
          subtype_info += 1;
        }
      else
        {
          strcpy (name_buf + prefix_len, "___L");
          if (!get_int_var_value (name_buf, L))
            {
              lim_warning (_("Unknown lower bound, using 1."));
              L = 1;
            }
        }

      if (*subtype_info == 'U')
        {
          if (!ada_scan_number (bounds_str, n, &U, &n)
              && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
            return raw_type;
        }
      else
        {
          strcpy (name_buf + prefix_len, "___U");
          if (!get_int_var_value (name_buf, U))
            {
              lim_warning (_("Unknown upper bound, using %ld."), (long) L);
              U = L;
            }
        }

      type = create_static_range_type (alloc_type_copy (raw_type),
				       base_type, L, U);
      /* create_static_range_type alters the resulting type's length
         to match the size of the base_type, which is not what we want.
         Set it back to the original range type's length.  */
      TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
      TYPE_NAME (type) = name;
      return type;
    }
}

/* True iff NAME is the name of a range type.  */

int
ada_is_range_type_name (const char *name)
{
  return (name != NULL && strstr (name, "___XD"));
}


                                /* Modular types */

/* True iff TYPE is an Ada modular type.  */

int
ada_is_modular_type (struct type *type)
{
  struct type *subranged_type = get_base_type (type);

  return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
          && TYPE_CODE (subranged_type) == TYPE_CODE_INT
          && TYPE_UNSIGNED (subranged_type));
}

/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE.  */

ULONGEST
ada_modulus (struct type *type)
{
  return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
}


/* Ada exception catchpoint support:
   ---------------------------------

   We support 3 kinds of exception catchpoints:
     . catchpoints on Ada exceptions
     . catchpoints on unhandled Ada exceptions
     . catchpoints on failed assertions

   Exceptions raised during failed assertions, or unhandled exceptions
   could perfectly be caught with the general catchpoint on Ada exceptions.
   However, we can easily differentiate these two special cases, and having
   the option to distinguish these two cases from the rest can be useful
   to zero-in on certain situations.

   Exception catchpoints are a specialized form of breakpoint,
   since they rely on inserting breakpoints inside known routines
   of the GNAT runtime.  The implementation therefore uses a standard
   breakpoint structure of the BP_BREAKPOINT type, but with its own set
   of breakpoint_ops.

   Support in the runtime for exception catchpoints have been changed
   a few times already, and these changes affect the implementation
   of these catchpoints.  In order to be able to support several
   variants of the runtime, we use a sniffer that will determine
   the runtime variant used by the program being debugged.  */

/* Ada's standard exceptions.

   The Ada 83 standard also defined Numeric_Error.  But there so many
   situations where it was unclear from the Ada 83 Reference Manual
   (RM) whether Constraint_Error or Numeric_Error should be raised,
   that the ARG (Ada Rapporteur Group) eventually issued a Binding
   Interpretation saying that anytime the RM says that Numeric_Error
   should be raised, the implementation may raise Constraint_Error.
   Ada 95 went one step further and pretty much removed Numeric_Error
   from the list of standard exceptions (it made it a renaming of
   Constraint_Error, to help preserve compatibility when compiling
   an Ada83 compiler). As such, we do not include Numeric_Error from
   this list of standard exceptions.  */

static const char *standard_exc[] = {
  "constraint_error",
  "program_error",
  "storage_error",
  "tasking_error"
};

typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);

/* A structure that describes how to support exception catchpoints
   for a given executable.  */

struct exception_support_info
{
   /* The name of the symbol to break on in order to insert
      a catchpoint on exceptions.  */
   const char *catch_exception_sym;

   /* The name of the symbol to break on in order to insert
      a catchpoint on unhandled exceptions.  */
   const char *catch_exception_unhandled_sym;

   /* The name of the symbol to break on in order to insert
      a catchpoint on failed assertions.  */
   const char *catch_assert_sym;

   /* The name of the symbol to break on in order to insert
      a catchpoint on exception handling.  */
   const char *catch_handlers_sym;

   /* Assuming that the inferior just triggered an unhandled exception
      catchpoint, this function is responsible for returning the address
      in inferior memory where the name of that exception is stored.
      Return zero if the address could not be computed.  */
   ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
};

static CORE_ADDR ada_unhandled_exception_name_addr (void);
static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);

/* The following exception support info structure describes how to
   implement exception catchpoints with the latest version of the
   Ada runtime (as of 2007-03-06).  */

static const struct exception_support_info default_exception_support_info =
{
  "__gnat_debug_raise_exception", /* catch_exception_sym */
  "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
  "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
  "__gnat_begin_handler", /* catch_handlers_sym */
  ada_unhandled_exception_name_addr
};

/* The following exception support info structure describes how to
   implement exception catchpoints with a slightly older version
   of the Ada runtime.  */

static const struct exception_support_info exception_support_info_fallback =
{
  "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
  "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
  "system__assertions__raise_assert_failure",  /* catch_assert_sym */
  "__gnat_begin_handler", /* catch_handlers_sym */
  ada_unhandled_exception_name_addr_from_raise
};

/* Return nonzero if we can detect the exception support routines
   described in EINFO.

   This function errors out if an abnormal situation is detected
   (for instance, if we find the exception support routines, but
   that support is found to be incomplete).  */

static int
ada_has_this_exception_support (const struct exception_support_info *einfo)
{
  struct symbol *sym;

  /* The symbol we're looking up is provided by a unit in the GNAT runtime
     that should be compiled with debugging information.  As a result, we
     expect to find that symbol in the symtabs.  */

  sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
  if (sym == NULL)
    {
      /* Perhaps we did not find our symbol because the Ada runtime was
	 compiled without debugging info, or simply stripped of it.
	 It happens on some GNU/Linux distributions for instance, where
	 users have to install a separate debug package in order to get
	 the runtime's debugging info.  In that situation, let the user
	 know why we cannot insert an Ada exception catchpoint.

	 Note: Just for the purpose of inserting our Ada exception
	 catchpoint, we could rely purely on the associated minimal symbol.
	 But we would be operating in degraded mode anyway, since we are
	 still lacking the debugging info needed later on to extract
	 the name of the exception being raised (this name is printed in
	 the catchpoint message, and is also used when trying to catch
	 a specific exception).  We do not handle this case for now.  */
      struct bound_minimal_symbol msym
	= lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);

      if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
	error (_("Your Ada runtime appears to be missing some debugging "
		 "information.\nCannot insert Ada exception catchpoint "
		 "in this configuration."));

      return 0;
    }

  /* Make sure that the symbol we found corresponds to a function.  */

  if (SYMBOL_CLASS (sym) != LOC_BLOCK)
    error (_("Symbol \"%s\" is not a function (class = %d)"),
           SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));

  return 1;
}

/* Inspect the Ada runtime and determine which exception info structure
   should be used to provide support for exception catchpoints.

   This function will always set the per-inferior exception_info,
   or raise an error.  */

static void
ada_exception_support_info_sniffer (void)
{
  struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());

  /* If the exception info is already known, then no need to recompute it.  */
  if (data->exception_info != NULL)
    return;

  /* Check the latest (default) exception support info.  */
  if (ada_has_this_exception_support (&default_exception_support_info))
    {
      data->exception_info = &default_exception_support_info;
      return;
    }

  /* Try our fallback exception suport info.  */
  if (ada_has_this_exception_support (&exception_support_info_fallback))
    {
      data->exception_info = &exception_support_info_fallback;
      return;
    }

  /* Sometimes, it is normal for us to not be able to find the routine
     we are looking for.  This happens when the program is linked with
     the shared version of the GNAT runtime, and the program has not been
     started yet.  Inform the user of these two possible causes if
     applicable.  */

  if (ada_update_initial_language (language_unknown) != language_ada)
    error (_("Unable to insert catchpoint.  Is this an Ada main program?"));

  /* If the symbol does not exist, then check that the program is
     already started, to make sure that shared libraries have been
     loaded.  If it is not started, this may mean that the symbol is
     in a shared library.  */

  if (inferior_ptid.pid () == 0)
    error (_("Unable to insert catchpoint. Try to start the program first."));

  /* At this point, we know that we are debugging an Ada program and
     that the inferior has been started, but we still are not able to
     find the run-time symbols.  That can mean that we are in
     configurable run time mode, or that a-except as been optimized
     out by the linker...  In any case, at this point it is not worth
     supporting this feature.  */

  error (_("Cannot insert Ada exception catchpoints in this configuration."));
}

/* True iff FRAME is very likely to be that of a function that is
   part of the runtime system.  This is all very heuristic, but is
   intended to be used as advice as to what frames are uninteresting
   to most users.  */

static int
is_known_support_routine (struct frame_info *frame)
{
  enum language func_lang;
  int i;
  const char *fullname;

  /* If this code does not have any debugging information (no symtab),
     This cannot be any user code.  */

  symtab_and_line sal = find_frame_sal (frame);
  if (sal.symtab == NULL)
    return 1;

  /* If there is a symtab, but the associated source file cannot be
     located, then assume this is not user code:  Selecting a frame
     for which we cannot display the code would not be very helpful
     for the user.  This should also take care of case such as VxWorks
     where the kernel has some debugging info provided for a few units.  */

  fullname = symtab_to_fullname (sal.symtab);
  if (access (fullname, R_OK) != 0)
    return 1;

  /* Check the unit filename againt the Ada runtime file naming.
     We also check the name of the objfile against the name of some
     known system libraries that sometimes come with debugging info
     too.  */

  for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
    {
      re_comp (known_runtime_file_name_patterns[i]);
      if (re_exec (lbasename (sal.symtab->filename)))
        return 1;
      if (SYMTAB_OBJFILE (sal.symtab) != NULL
          && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
        return 1;
    }

  /* Check whether the function is a GNAT-generated entity.  */

  gdb::unique_xmalloc_ptr<char> func_name
    = find_frame_funname (frame, &func_lang, NULL);
  if (func_name == NULL)
    return 1;

  for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
    {
      re_comp (known_auxiliary_function_name_patterns[i]);
      if (re_exec (func_name.get ()))
	return 1;
    }

  return 0;
}

/* Find the first frame that contains debugging information and that is not
   part of the Ada run-time, starting from FI and moving upward.  */

void
ada_find_printable_frame (struct frame_info *fi)
{
  for (; fi != NULL; fi = get_prev_frame (fi))
    {
      if (!is_known_support_routine (fi))
        {
          select_frame (fi);
          break;
        }
    }

}

/* Assuming that the inferior just triggered an unhandled exception
   catchpoint, return the address in inferior memory where the name
   of the exception is stored.
   
   Return zero if the address could not be computed.  */

static CORE_ADDR
ada_unhandled_exception_name_addr (void)
{
  return parse_and_eval_address ("e.full_name");
}

/* Same as ada_unhandled_exception_name_addr, except that this function
   should be used when the inferior uses an older version of the runtime,
   where the exception name needs to be extracted from a specific frame
   several frames up in the callstack.  */

static CORE_ADDR
ada_unhandled_exception_name_addr_from_raise (void)
{
  int frame_level;
  struct frame_info *fi;
  struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());

  /* To determine the name of this exception, we need to select
     the frame corresponding to RAISE_SYM_NAME.  This frame is
     at least 3 levels up, so we simply skip the first 3 frames
     without checking the name of their associated function.  */
  fi = get_current_frame ();
  for (frame_level = 0; frame_level < 3; frame_level += 1)
    if (fi != NULL)
      fi = get_prev_frame (fi); 

  while (fi != NULL)
    {
      enum language func_lang;

      gdb::unique_xmalloc_ptr<char> func_name
	= find_frame_funname (fi, &func_lang, NULL);
      if (func_name != NULL)
	{
          if (strcmp (func_name.get (),
		      data->exception_info->catch_exception_sym) == 0)
	    break; /* We found the frame we were looking for...  */
	}
      fi = get_prev_frame (fi);
    }

  if (fi == NULL)
    return 0;

  select_frame (fi);
  return parse_and_eval_address ("id.full_name");
}

/* Assuming the inferior just triggered an Ada exception catchpoint
   (of any type), return the address in inferior memory where the name
   of the exception is stored, if applicable.

   Assumes the selected frame is the current frame.

   Return zero if the address could not be computed, or if not relevant.  */

static CORE_ADDR
ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
                           struct breakpoint *b)
{
  struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());

  switch (ex)
    {
      case ada_catch_exception:
        return (parse_and_eval_address ("e.full_name"));
        break;

      case ada_catch_exception_unhandled:
        return data->exception_info->unhandled_exception_name_addr ();
        break;

      case ada_catch_handlers:
        return 0;  /* The runtimes does not provide access to the exception
		      name.  */
        break;

      case ada_catch_assert:
        return 0;  /* Exception name is not relevant in this case.  */
        break;

      default:
        internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
        break;
    }

  return 0; /* Should never be reached.  */
}

/* Assuming the inferior is stopped at an exception catchpoint,
   return the message which was associated to the exception, if
   available.  Return NULL if the message could not be retrieved.

   Note: The exception message can be associated to an exception
   either through the use of the Raise_Exception function, or
   more simply (Ada 2005 and later), via:

       raise Exception_Name with "exception message";

   */

static gdb::unique_xmalloc_ptr<char>
ada_exception_message_1 (void)
{
  struct value *e_msg_val;
  int e_msg_len;

  /* For runtimes that support this feature, the exception message
     is passed as an unbounded string argument called "message".  */
  e_msg_val = parse_and_eval ("message");
  if (e_msg_val == NULL)
    return NULL; /* Exception message not supported.  */

  e_msg_val = ada_coerce_to_simple_array (e_msg_val);
  gdb_assert (e_msg_val != NULL);
  e_msg_len = TYPE_LENGTH (value_type (e_msg_val));

  /* If the message string is empty, then treat it as if there was
     no exception message.  */
  if (e_msg_len <= 0)
    return NULL;

  gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
  read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
  e_msg.get ()[e_msg_len] = '\0';

  return e_msg;
}

/* Same as ada_exception_message_1, except that all exceptions are
   contained here (returning NULL instead).  */

static gdb::unique_xmalloc_ptr<char>
ada_exception_message (void)
{
  gdb::unique_xmalloc_ptr<char> e_msg;

  TRY
    {
      e_msg = ada_exception_message_1 ();
    }
  CATCH (e, RETURN_MASK_ERROR)
    {
      e_msg.reset (nullptr);
    }
  END_CATCH

  return e_msg;
}

/* Same as ada_exception_name_addr_1, except that it intercepts and contains
   any error that ada_exception_name_addr_1 might cause to be thrown.
   When an error is intercepted, a warning with the error message is printed,
   and zero is returned.  */

static CORE_ADDR
ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
                         struct breakpoint *b)
{
  CORE_ADDR result = 0;

  TRY
    {
      result = ada_exception_name_addr_1 (ex, b);
    }

  CATCH (e, RETURN_MASK_ERROR)
    {
      warning (_("failed to get exception name: %s"), e.message);
      return 0;
    }
  END_CATCH

  return result;
}

static std::string ada_exception_catchpoint_cond_string
  (const char *excep_string,
   enum ada_exception_catchpoint_kind ex);

/* Ada catchpoints.

   In the case of catchpoints on Ada exceptions, the catchpoint will
   stop the target on every exception the program throws.  When a user
   specifies the name of a specific exception, we translate this
   request into a condition expression (in text form), and then parse
   it into an expression stored in each of the catchpoint's locations.
   We then use this condition to check whether the exception that was
   raised is the one the user is interested in.  If not, then the
   target is resumed again.  We store the name of the requested
   exception, in order to be able to re-set the condition expression
   when symbols change.  */

/* An instance of this type is used to represent an Ada catchpoint
   breakpoint location.  */

class ada_catchpoint_location : public bp_location
{
public:
  ada_catchpoint_location (breakpoint *owner)
    : bp_location (owner)
  {}

  /* The condition that checks whether the exception that was raised
     is the specific exception the user specified on catchpoint
     creation.  */
  expression_up excep_cond_expr;
};

/* An instance of this type is used to represent an Ada catchpoint.  */

struct ada_catchpoint : public breakpoint
{
  /* The name of the specific exception the user specified.  */
  std::string excep_string;
};

/* Parse the exception condition string in the context of each of the
   catchpoint's locations, and store them for later evaluation.  */

static void
create_excep_cond_exprs (struct ada_catchpoint *c,
                         enum ada_exception_catchpoint_kind ex)
{
  struct bp_location *bl;

  /* Nothing to do if there's no specific exception to catch.  */
  if (c->excep_string.empty ())
    return;

  /* Same if there are no locations... */
  if (c->loc == NULL)
    return;

  /* Compute the condition expression in text form, from the specific
     expection we want to catch.  */
  std::string cond_string
    = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);

  /* Iterate over all the catchpoint's locations, and parse an
     expression for each.  */
  for (bl = c->loc; bl != NULL; bl = bl->next)
    {
      struct ada_catchpoint_location *ada_loc
	= (struct ada_catchpoint_location *) bl;
      expression_up exp;

      if (!bl->shlib_disabled)
	{
	  const char *s;

	  s = cond_string.c_str ();
	  TRY
	    {
	      exp = parse_exp_1 (&s, bl->address,
				 block_for_pc (bl->address),
				 0);
	    }
	  CATCH (e, RETURN_MASK_ERROR)
	    {
	      warning (_("failed to reevaluate internal exception condition "
			 "for catchpoint %d: %s"),
		       c->number, e.message);
	    }
	  END_CATCH
	}

      ada_loc->excep_cond_expr = std::move (exp);
    }
}

/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
   structure for all exception catchpoint kinds.  */

static struct bp_location *
allocate_location_exception (enum ada_exception_catchpoint_kind ex,
			     struct breakpoint *self)
{
  return new ada_catchpoint_location (self);
}

/* Implement the RE_SET method in the breakpoint_ops structure for all
   exception catchpoint kinds.  */

static void
re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
{
  struct ada_catchpoint *c = (struct ada_catchpoint *) b;

  /* Call the base class's method.  This updates the catchpoint's
     locations.  */
  bkpt_breakpoint_ops.re_set (b);

  /* Reparse the exception conditional expressions.  One for each
     location.  */
  create_excep_cond_exprs (c, ex);
}

/* Returns true if we should stop for this breakpoint hit.  If the
   user specified a specific exception, we only want to cause a stop
   if the program thrown that exception.  */

static int
should_stop_exception (const struct bp_location *bl)
{
  struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
  const struct ada_catchpoint_location *ada_loc
    = (const struct ada_catchpoint_location *) bl;
  int stop;

  /* With no specific exception, should always stop.  */
  if (c->excep_string.empty ())
    return 1;

  if (ada_loc->excep_cond_expr == NULL)
    {
      /* We will have a NULL expression if back when we were creating
	 the expressions, this location's had failed to parse.  */
      return 1;
    }

  stop = 1;
  TRY
    {
      struct value *mark;

      mark = value_mark ();
      stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
      value_free_to_mark (mark);
    }
  CATCH (ex, RETURN_MASK_ALL)
    {
      exception_fprintf (gdb_stderr, ex,
			 _("Error in testing exception condition:\n"));
    }
  END_CATCH

  return stop;
}

/* Implement the CHECK_STATUS method in the breakpoint_ops structure
   for all exception catchpoint kinds.  */

static void
check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
{
  bs->stop = should_stop_exception (bs->bp_location_at);
}

/* Implement the PRINT_IT method in the breakpoint_ops structure
   for all exception catchpoint kinds.  */

static enum print_stop_action
print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
{
  struct ui_out *uiout = current_uiout;
  struct breakpoint *b = bs->breakpoint_at;

  annotate_catchpoint (b->number);

  if (uiout->is_mi_like_p ())
    {
      uiout->field_string ("reason",
			   async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
      uiout->field_string ("disp", bpdisp_text (b->disposition));
    }

  uiout->text (b->disposition == disp_del
	       ? "\nTemporary catchpoint " : "\nCatchpoint ");
  uiout->field_int ("bkptno", b->number);
  uiout->text (", ");

  /* ada_exception_name_addr relies on the selected frame being the
     current frame.  Need to do this here because this function may be
     called more than once when printing a stop, and below, we'll
     select the first frame past the Ada run-time (see
     ada_find_printable_frame).  */
  select_frame (get_current_frame ());

  switch (ex)
    {
      case ada_catch_exception:
      case ada_catch_exception_unhandled:
      case ada_catch_handlers:
	{
	  const CORE_ADDR addr = ada_exception_name_addr (ex, b);
	  char exception_name[256];

	  if (addr != 0)
	    {
	      read_memory (addr, (gdb_byte *) exception_name,
			   sizeof (exception_name) - 1);
	      exception_name [sizeof (exception_name) - 1] = '\0';
	    }
	  else
	    {
	      /* For some reason, we were unable to read the exception
		 name.  This could happen if the Runtime was compiled
		 without debugging info, for instance.  In that case,
		 just replace the exception name by the generic string
		 "exception" - it will read as "an exception" in the
		 notification we are about to print.  */
	      memcpy (exception_name, "exception", sizeof ("exception"));
	    }
	  /* In the case of unhandled exception breakpoints, we print
	     the exception name as "unhandled EXCEPTION_NAME", to make
	     it clearer to the user which kind of catchpoint just got
	     hit.  We used ui_out_text to make sure that this extra
	     info does not pollute the exception name in the MI case.  */
	  if (ex == ada_catch_exception_unhandled)
	    uiout->text ("unhandled ");
	  uiout->field_string ("exception-name", exception_name);
	}
	break;
      case ada_catch_assert:
	/* In this case, the name of the exception is not really
	   important.  Just print "failed assertion" to make it clearer
	   that his program just hit an assertion-failure catchpoint.
	   We used ui_out_text because this info does not belong in
	   the MI output.  */
	uiout->text ("failed assertion");
	break;
    }

  gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
  if (exception_message != NULL)
    {
      uiout->text (" (");
      uiout->field_string ("exception-message", exception_message.get ());
      uiout->text (")");
    }

  uiout->text (" at ");
  ada_find_printable_frame (get_current_frame ());

  return PRINT_SRC_AND_LOC;
}

/* Implement the PRINT_ONE method in the breakpoint_ops structure
   for all exception catchpoint kinds.  */

static void
print_one_exception (enum ada_exception_catchpoint_kind ex,
                     struct breakpoint *b, struct bp_location **last_loc)
{ 
  struct ui_out *uiout = current_uiout;
  struct ada_catchpoint *c = (struct ada_catchpoint *) b;
  struct value_print_options opts;

  get_user_print_options (&opts);
  if (opts.addressprint)
    {
      annotate_field (4);
      uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
    }

  annotate_field (5);
  *last_loc = b->loc;
  switch (ex)
    {
      case ada_catch_exception:
        if (!c->excep_string.empty ())
          {
	    std::string msg = string_printf (_("`%s' Ada exception"),
					     c->excep_string.c_str ());

            uiout->field_string ("what", msg);
          }
        else
          uiout->field_string ("what", "all Ada exceptions");
        
        break;

      case ada_catch_exception_unhandled:
        uiout->field_string ("what", "unhandled Ada exceptions");
        break;
      
      case ada_catch_handlers:
        if (!c->excep_string.empty ())
          {
	    uiout->field_fmt ("what",
			      _("`%s' Ada exception handlers"),
			      c->excep_string.c_str ());
          }
        else
	  uiout->field_string ("what", "all Ada exceptions handlers");
        break;

      case ada_catch_assert:
        uiout->field_string ("what", "failed Ada assertions");
        break;

      default:
        internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
        break;
    }
}

/* Implement the PRINT_MENTION method in the breakpoint_ops structure
   for all exception catchpoint kinds.  */

static void
print_mention_exception (enum ada_exception_catchpoint_kind ex,
                         struct breakpoint *b)
{
  struct ada_catchpoint *c = (struct ada_catchpoint *) b;
  struct ui_out *uiout = current_uiout;

  uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
                                                 : _("Catchpoint "));
  uiout->field_int ("bkptno", b->number);
  uiout->text (": ");

  switch (ex)
    {
      case ada_catch_exception:
        if (!c->excep_string.empty ())
	  {
	    std::string info = string_printf (_("`%s' Ada exception"),
					      c->excep_string.c_str ());
	    uiout->text (info.c_str ());
	  }
        else
          uiout->text (_("all Ada exceptions"));
        break;

      case ada_catch_exception_unhandled:
        uiout->text (_("unhandled Ada exceptions"));
        break;

      case ada_catch_handlers:
        if (!c->excep_string.empty ())
	  {
	    std::string info
	      = string_printf (_("`%s' Ada exception handlers"),
			       c->excep_string.c_str ());
	    uiout->text (info.c_str ());
	  }
        else
          uiout->text (_("all Ada exceptions handlers"));
        break;

      case ada_catch_assert:
        uiout->text (_("failed Ada assertions"));
        break;

      default:
        internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
        break;
    }
}

/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
   for all exception catchpoint kinds.  */

static void
print_recreate_exception (enum ada_exception_catchpoint_kind ex,
			  struct breakpoint *b, struct ui_file *fp)
{
  struct ada_catchpoint *c = (struct ada_catchpoint *) b;

  switch (ex)
    {
      case ada_catch_exception:
	fprintf_filtered (fp, "catch exception");
	if (!c->excep_string.empty ())
	  fprintf_filtered (fp, " %s", c->excep_string.c_str ());
	break;

      case ada_catch_exception_unhandled:
	fprintf_filtered (fp, "catch exception unhandled");
	break;

      case ada_catch_handlers:
	fprintf_filtered (fp, "catch handlers");
	break;

      case ada_catch_assert:
	fprintf_filtered (fp, "catch assert");
	break;

      default:
	internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
    }
  print_recreate_thread (b, fp);
}

/* Virtual table for "catch exception" breakpoints.  */

static struct bp_location *
allocate_location_catch_exception (struct breakpoint *self)
{
  return allocate_location_exception (ada_catch_exception, self);
}

static void
re_set_catch_exception (struct breakpoint *b)
{
  re_set_exception (ada_catch_exception, b);
}

static void
check_status_catch_exception (bpstat bs)
{
  check_status_exception (ada_catch_exception, bs);
}

static enum print_stop_action
print_it_catch_exception (bpstat bs)
{
  return print_it_exception (ada_catch_exception, bs);
}

static void
print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
{
  print_one_exception (ada_catch_exception, b, last_loc);
}

static void
print_mention_catch_exception (struct breakpoint *b)
{
  print_mention_exception (ada_catch_exception, b);
}

static void
print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
{
  print_recreate_exception (ada_catch_exception, b, fp);
}

static struct breakpoint_ops catch_exception_breakpoint_ops;

/* Virtual table for "catch exception unhandled" breakpoints.  */

static struct bp_location *
allocate_location_catch_exception_unhandled (struct breakpoint *self)
{
  return allocate_location_exception (ada_catch_exception_unhandled, self);
}

static void
re_set_catch_exception_unhandled (struct breakpoint *b)
{
  re_set_exception (ada_catch_exception_unhandled, b);
}

static void
check_status_catch_exception_unhandled (bpstat bs)
{
  check_status_exception (ada_catch_exception_unhandled, bs);
}

static enum print_stop_action
print_it_catch_exception_unhandled (bpstat bs)
{
  return print_it_exception (ada_catch_exception_unhandled, bs);
}

static void
print_one_catch_exception_unhandled (struct breakpoint *b,
				     struct bp_location **last_loc)
{
  print_one_exception (ada_catch_exception_unhandled, b, last_loc);
}

static void
print_mention_catch_exception_unhandled (struct breakpoint *b)
{
  print_mention_exception (ada_catch_exception_unhandled, b);
}

static void
print_recreate_catch_exception_unhandled (struct breakpoint *b,
					  struct ui_file *fp)
{
  print_recreate_exception (ada_catch_exception_unhandled, b, fp);
}

static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;

/* Virtual table for "catch assert" breakpoints.  */

static struct bp_location *
allocate_location_catch_assert (struct breakpoint *self)
{
  return allocate_location_exception (ada_catch_assert, self);
}

static void
re_set_catch_assert (struct breakpoint *b)
{
  re_set_exception (ada_catch_assert, b);
}

static void
check_status_catch_assert (bpstat bs)
{
  check_status_exception (ada_catch_assert, bs);
}

static enum print_stop_action
print_it_catch_assert (bpstat bs)
{
  return print_it_exception (ada_catch_assert, bs);
}

static void
print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
{
  print_one_exception (ada_catch_assert, b, last_loc);
}

static void
print_mention_catch_assert (struct breakpoint *b)
{
  print_mention_exception (ada_catch_assert, b);
}

static void
print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
{
  print_recreate_exception (ada_catch_assert, b, fp);
}

static struct breakpoint_ops catch_assert_breakpoint_ops;

/* Virtual table for "catch handlers" breakpoints.  */

static struct bp_location *
allocate_location_catch_handlers (struct breakpoint *self)
{
  return allocate_location_exception (ada_catch_handlers, self);
}

static void
re_set_catch_handlers (struct breakpoint *b)
{
  re_set_exception (ada_catch_handlers, b);
}

static void
check_status_catch_handlers (bpstat bs)
{
  check_status_exception (ada_catch_handlers, bs);
}

static enum print_stop_action
print_it_catch_handlers (bpstat bs)
{
  return print_it_exception (ada_catch_handlers, bs);
}

static void
print_one_catch_handlers (struct breakpoint *b,
			  struct bp_location **last_loc)
{
  print_one_exception (ada_catch_handlers, b, last_loc);
}

static void
print_mention_catch_handlers (struct breakpoint *b)
{
  print_mention_exception (ada_catch_handlers, b);
}

static void
print_recreate_catch_handlers (struct breakpoint *b,
			       struct ui_file *fp)
{
  print_recreate_exception (ada_catch_handlers, b, fp);
}

static struct breakpoint_ops catch_handlers_breakpoint_ops;

/* Split the arguments specified in a "catch exception" command.  
   Set EX to the appropriate catchpoint type.
   Set EXCEP_STRING to the name of the specific exception if
   specified by the user.
   IS_CATCH_HANDLERS_CMD: True if the arguments are for a
   "catch handlers" command.  False otherwise.
   If a condition is found at the end of the arguments, the condition
   expression is stored in COND_STRING (memory must be deallocated
   after use).  Otherwise COND_STRING is set to NULL.  */

static void
catch_ada_exception_command_split (const char *args,
				   bool is_catch_handlers_cmd,
                                   enum ada_exception_catchpoint_kind *ex,
				   std::string *excep_string,
				   std::string *cond_string)
{
  std::string exception_name;

  exception_name = extract_arg (&args);
  if (exception_name == "if")
    {
      /* This is not an exception name; this is the start of a condition
	 expression for a catchpoint on all exceptions.  So, "un-get"
	 this token, and set exception_name to NULL.  */
      exception_name.clear ();
      args -= 2;
    }

  /* Check to see if we have a condition.  */

  args = skip_spaces (args);
  if (startswith (args, "if")
      && (isspace (args[2]) || args[2] == '\0'))
    {
      args += 2;
      args = skip_spaces (args);

      if (args[0] == '\0')
        error (_("Condition missing after `if' keyword"));
      *cond_string = args;

      args += strlen (args);
    }

  /* Check that we do not have any more arguments.  Anything else
     is unexpected.  */

  if (args[0] != '\0')
    error (_("Junk at end of expression"));

  if (is_catch_handlers_cmd)
    {
      /* Catch handling of exceptions.  */
      *ex = ada_catch_handlers;
      *excep_string = exception_name;
    }
  else if (exception_name.empty ())
    {
      /* Catch all exceptions.  */
      *ex = ada_catch_exception;
      excep_string->clear ();
    }
  else if (exception_name == "unhandled")
    {
      /* Catch unhandled exceptions.  */
      *ex = ada_catch_exception_unhandled;
      excep_string->clear ();
    }
  else
    {
      /* Catch a specific exception.  */
      *ex = ada_catch_exception;
      *excep_string = exception_name;
    }
}

/* Return the name of the symbol on which we should break in order to
   implement a catchpoint of the EX kind.  */

static const char *
ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
{
  struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());

  gdb_assert (data->exception_info != NULL);

  switch (ex)
    {
      case ada_catch_exception:
        return (data->exception_info->catch_exception_sym);
        break;
      case ada_catch_exception_unhandled:
        return (data->exception_info->catch_exception_unhandled_sym);
        break;
      case ada_catch_assert:
        return (data->exception_info->catch_assert_sym);
        break;
      case ada_catch_handlers:
        return (data->exception_info->catch_handlers_sym);
        break;
      default:
        internal_error (__FILE__, __LINE__,
                        _("unexpected catchpoint kind (%d)"), ex);
    }
}

/* Return the breakpoint ops "virtual table" used for catchpoints
   of the EX kind.  */

static const struct breakpoint_ops *
ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
{
  switch (ex)
    {
      case ada_catch_exception:
        return (&catch_exception_breakpoint_ops);
        break;
      case ada_catch_exception_unhandled:
        return (&catch_exception_unhandled_breakpoint_ops);
        break;
      case ada_catch_assert:
        return (&catch_assert_breakpoint_ops);
        break;
      case ada_catch_handlers:
        return (&catch_handlers_breakpoint_ops);
        break;
      default:
        internal_error (__FILE__, __LINE__,
                        _("unexpected catchpoint kind (%d)"), ex);
    }
}

/* Return the condition that will be used to match the current exception
   being raised with the exception that the user wants to catch.  This
   assumes that this condition is used when the inferior just triggered
   an exception catchpoint.
   EX: the type of catchpoints used for catching Ada exceptions.  */

static std::string
ada_exception_catchpoint_cond_string (const char *excep_string,
                                      enum ada_exception_catchpoint_kind ex)
{
  int i;
  bool is_standard_exc = false;
  std::string result;

  if (ex == ada_catch_handlers)
    {
      /* For exception handlers catchpoints, the condition string does
         not use the same parameter as for the other exceptions.  */
      result = ("long_integer (GNAT_GCC_exception_Access"
		"(gcc_exception).all.occurrence.id)");
    }
  else
    result = "long_integer (e)";

  /* The standard exceptions are a special case.  They are defined in
     runtime units that have been compiled without debugging info; if
     EXCEP_STRING is the not-fully-qualified name of a standard
     exception (e.g. "constraint_error") then, during the evaluation
     of the condition expression, the symbol lookup on this name would
     *not* return this standard exception.  The catchpoint condition
     may then be set only on user-defined exceptions which have the
     same not-fully-qualified name (e.g. my_package.constraint_error).

     To avoid this unexcepted behavior, these standard exceptions are
     systematically prefixed by "standard".  This means that "catch
     exception constraint_error" is rewritten into "catch exception
     standard.constraint_error".

     If an exception named contraint_error is defined in another package of
     the inferior program, then the only way to specify this exception as a
     breakpoint condition is to use its fully-qualified named:
     e.g. my_package.constraint_error.  */

  for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
    {
      if (strcmp (standard_exc [i], excep_string) == 0)
	{
	  is_standard_exc = true;
	  break;
	}
    }

  result += " = ";

  if (is_standard_exc)
    string_appendf (result, "long_integer (&standard.%s)", excep_string);
  else
    string_appendf (result, "long_integer (&%s)", excep_string);

  return result;
}

/* Return the symtab_and_line that should be used to insert an exception
   catchpoint of the TYPE kind.

   ADDR_STRING returns the name of the function where the real
   breakpoint that implements the catchpoints is set, depending on the
   type of catchpoint we need to create.  */

static struct symtab_and_line
ada_exception_sal (enum ada_exception_catchpoint_kind ex,
		   std::string *addr_string, const struct breakpoint_ops **ops)
{
  const char *sym_name;
  struct symbol *sym;

  /* First, find out which exception support info to use.  */
  ada_exception_support_info_sniffer ();

  /* Then lookup the function on which we will break in order to catch
     the Ada exceptions requested by the user.  */
  sym_name = ada_exception_sym_name (ex);
  sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);

  if (sym == NULL)
    error (_("Catchpoint symbol not found: %s"), sym_name);

  if (SYMBOL_CLASS (sym) != LOC_BLOCK)
    error (_("Unable to insert catchpoint. %s is not a function."), sym_name);

  /* Set ADDR_STRING.  */
  *addr_string = sym_name;

  /* Set OPS.  */
  *ops = ada_exception_breakpoint_ops (ex);

  return find_function_start_sal (sym, 1);
}

/* Create an Ada exception catchpoint.

   EX_KIND is the kind of exception catchpoint to be created.

   If EXCEPT_STRING is empty, this catchpoint is expected to trigger
   for all exceptions.  Otherwise, EXCEPT_STRING indicates the name
   of the exception to which this catchpoint applies.

   COND_STRING, if not empty, is the catchpoint condition.

   TEMPFLAG, if nonzero, means that the underlying breakpoint
   should be temporary.

   FROM_TTY is the usual argument passed to all commands implementations.  */

void
create_ada_exception_catchpoint (struct gdbarch *gdbarch,
				 enum ada_exception_catchpoint_kind ex_kind,
				 const std::string &excep_string,
				 const std::string &cond_string,
				 int tempflag,
				 int disabled,
				 int from_tty)
{
  std::string addr_string;
  const struct breakpoint_ops *ops = NULL;
  struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);

  std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
  init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
				 ops, tempflag, disabled, from_tty);
  c->excep_string = excep_string;
  create_excep_cond_exprs (c.get (), ex_kind);
  if (!cond_string.empty ())
    set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
  install_breakpoint (0, std::move (c), 1);
}

/* Implement the "catch exception" command.  */

static void
catch_ada_exception_command (const char *arg_entry, int from_tty,
			     struct cmd_list_element *command)
{
  const char *arg = arg_entry;
  struct gdbarch *gdbarch = get_current_arch ();
  int tempflag;
  enum ada_exception_catchpoint_kind ex_kind;
  std::string excep_string;
  std::string cond_string;

  tempflag = get_cmd_context (command) == CATCH_TEMPORARY;

  if (!arg)
    arg = "";
  catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
				     &cond_string);
  create_ada_exception_catchpoint (gdbarch, ex_kind,
				   excep_string, cond_string,
				   tempflag, 1 /* enabled */,
				   from_tty);
}

/* Implement the "catch handlers" command.  */

static void
catch_ada_handlers_command (const char *arg_entry, int from_tty,
			    struct cmd_list_element *command)
{
  const char *arg = arg_entry;
  struct gdbarch *gdbarch = get_current_arch ();
  int tempflag;
  enum ada_exception_catchpoint_kind ex_kind;
  std::string excep_string;
  std::string cond_string;

  tempflag = get_cmd_context (command) == CATCH_TEMPORARY;

  if (!arg)
    arg = "";
  catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
				     &cond_string);
  create_ada_exception_catchpoint (gdbarch, ex_kind,
				   excep_string, cond_string,
				   tempflag, 1 /* enabled */,
				   from_tty);
}

/* Split the arguments specified in a "catch assert" command.

   ARGS contains the command's arguments (or the empty string if
   no arguments were passed).

   If ARGS contains a condition, set COND_STRING to that condition
   (the memory needs to be deallocated after use).  */

static void
catch_ada_assert_command_split (const char *args, std::string &cond_string)
{
  args = skip_spaces (args);

  /* Check whether a condition was provided.  */
  if (startswith (args, "if")
      && (isspace (args[2]) || args[2] == '\0'))
    {
      args += 2;
      args = skip_spaces (args);
      if (args[0] == '\0')
        error (_("condition missing after `if' keyword"));
      cond_string.assign (args);
    }

  /* Otherwise, there should be no other argument at the end of
     the command.  */
  else if (args[0] != '\0')
    error (_("Junk at end of arguments."));
}

/* Implement the "catch assert" command.  */

static void
catch_assert_command (const char *arg_entry, int from_tty,
		      struct cmd_list_element *command)
{
  const char *arg = arg_entry;
  struct gdbarch *gdbarch = get_current_arch ();
  int tempflag;
  std::string cond_string;

  tempflag = get_cmd_context (command) == CATCH_TEMPORARY;

  if (!arg)
    arg = "";
  catch_ada_assert_command_split (arg, cond_string);
  create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
				   "", cond_string,
				   tempflag, 1 /* enabled */,
				   from_tty);
}

/* Return non-zero if the symbol SYM is an Ada exception object.  */

static int
ada_is_exception_sym (struct symbol *sym)
{
  const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));

  return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
          && SYMBOL_CLASS (sym) != LOC_BLOCK
          && SYMBOL_CLASS (sym) != LOC_CONST
          && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
          && type_name != NULL && strcmp (type_name, "exception") == 0);
}

/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
   Ada exception object.  This matches all exceptions except the ones
   defined by the Ada language.  */

static int
ada_is_non_standard_exception_sym (struct symbol *sym)
{
  int i;

  if (!ada_is_exception_sym (sym))
    return 0;

  for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
    if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
      return 0;  /* A standard exception.  */

  /* Numeric_Error is also a standard exception, so exclude it.
     See the STANDARD_EXC description for more details as to why
     this exception is not listed in that array.  */
  if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
    return 0;

  return 1;
}

/* A helper function for std::sort, comparing two struct ada_exc_info
   objects.

   The comparison is determined first by exception name, and then
   by exception address.  */

bool
ada_exc_info::operator< (const ada_exc_info &other) const
{
  int result;

  result = strcmp (name, other.name);
  if (result < 0)
    return true;
  if (result == 0 && addr < other.addr)
    return true;
  return false;
}

bool
ada_exc_info::operator== (const ada_exc_info &other) const
{
  return addr == other.addr && strcmp (name, other.name) == 0;
}

/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
   routine, but keeping the first SKIP elements untouched.

   All duplicates are also removed.  */

static void
sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
				      int skip)
{
  std::sort (exceptions->begin () + skip, exceptions->end ());
  exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
		     exceptions->end ());
}

/* Add all exceptions defined by the Ada standard whose name match
   a regular expression.

   If PREG is not NULL, then this regexp_t object is used to
   perform the symbol name matching.  Otherwise, no name-based
   filtering is performed.

   EXCEPTIONS is a vector of exceptions to which matching exceptions
   gets pushed.  */

static void
ada_add_standard_exceptions (compiled_regex *preg,
			     std::vector<ada_exc_info> *exceptions)
{
  int i;

  for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
    {
      if (preg == NULL
	  || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
	{
	  struct bound_minimal_symbol msymbol
	    = ada_lookup_simple_minsym (standard_exc[i]);

	  if (msymbol.minsym != NULL)
	    {
	      struct ada_exc_info info
		= {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};

	      exceptions->push_back (info);
	    }
	}
    }
}

/* Add all Ada exceptions defined locally and accessible from the given
   FRAME.

   If PREG is not NULL, then this regexp_t object is used to
   perform the symbol name matching.  Otherwise, no name-based
   filtering is performed.

   EXCEPTIONS is a vector of exceptions to which matching exceptions
   gets pushed.  */

static void
ada_add_exceptions_from_frame (compiled_regex *preg,
			       struct frame_info *frame,
			       std::vector<ada_exc_info> *exceptions)
{
  const struct block *block = get_frame_block (frame, 0);

  while (block != 0)
    {
      struct block_iterator iter;
      struct symbol *sym;

      ALL_BLOCK_SYMBOLS (block, iter, sym)
	{
	  switch (SYMBOL_CLASS (sym))
	    {
	    case LOC_TYPEDEF:
	    case LOC_BLOCK:
	    case LOC_CONST:
	      break;
	    default:
	      if (ada_is_exception_sym (sym))
		{
		  struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
					      SYMBOL_VALUE_ADDRESS (sym)};

		  exceptions->push_back (info);
		}
	    }
	}
      if (BLOCK_FUNCTION (block) != NULL)
	break;
      block = BLOCK_SUPERBLOCK (block);
    }
}

/* Return true if NAME matches PREG or if PREG is NULL.  */

static bool
name_matches_regex (const char *name, compiled_regex *preg)
{
  return (preg == NULL
	  || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
}

/* Add all exceptions defined globally whose name name match
   a regular expression, excluding standard exceptions.

   The reason we exclude standard exceptions is that they need
   to be handled separately: Standard exceptions are defined inside
   a runtime unit which is normally not compiled with debugging info,
   and thus usually do not show up in our symbol search.  However,
   if the unit was in fact built with debugging info, we need to
   exclude them because they would duplicate the entry we found
   during the special loop that specifically searches for those
   standard exceptions.

   If PREG is not NULL, then this regexp_t object is used to
   perform the symbol name matching.  Otherwise, no name-based
   filtering is performed.

   EXCEPTIONS is a vector of exceptions to which matching exceptions
   gets pushed.  */

static void
ada_add_global_exceptions (compiled_regex *preg,
			   std::vector<ada_exc_info> *exceptions)
{
  /* In Ada, the symbol "search name" is a linkage name, whereas the
     regular expression used to do the matching refers to the natural
     name.  So match against the decoded name.  */
  expand_symtabs_matching (NULL,
			   lookup_name_info::match_any (),
			   [&] (const char *search_name)
			   {
			     const char *decoded = ada_decode (search_name);
			     return name_matches_regex (decoded, preg);
			   },
			   NULL,
			   VARIABLES_DOMAIN);

  for (objfile *objfile : current_program_space->objfiles ())
    {
      for (compunit_symtab *s : objfile->compunits ())
	{
	  const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
	  int i;

	  for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
	    {
	      struct block *b = BLOCKVECTOR_BLOCK (bv, i);
	      struct block_iterator iter;
	      struct symbol *sym;

	      ALL_BLOCK_SYMBOLS (b, iter, sym)
		if (ada_is_non_standard_exception_sym (sym)
		    && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
		  {
		    struct ada_exc_info info
		      = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};

		    exceptions->push_back (info);
		  }
	    }
	}
    }
}

/* Implements ada_exceptions_list with the regular expression passed
   as a regex_t, rather than a string.

   If not NULL, PREG is used to filter out exceptions whose names
   do not match.  Otherwise, all exceptions are listed.  */

static std::vector<ada_exc_info>
ada_exceptions_list_1 (compiled_regex *preg)
{
  std::vector<ada_exc_info> result;
  int prev_len;

  /* First, list the known standard exceptions.  These exceptions
     need to be handled separately, as they are usually defined in
     runtime units that have been compiled without debugging info.  */

  ada_add_standard_exceptions (preg, &result);

  /* Next, find all exceptions whose scope is local and accessible
     from the currently selected frame.  */

  if (has_stack_frames ())
    {
      prev_len = result.size ();
      ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
				     &result);
      if (result.size () > prev_len)
	sort_remove_dups_ada_exceptions_list (&result, prev_len);
    }

  /* Add all exceptions whose scope is global.  */

  prev_len = result.size ();
  ada_add_global_exceptions (preg, &result);
  if (result.size () > prev_len)
    sort_remove_dups_ada_exceptions_list (&result, prev_len);

  return result;
}

/* Return a vector of ada_exc_info.

   If REGEXP is NULL, all exceptions are included in the result.
   Otherwise, it should contain a valid regular expression,
   and only the exceptions whose names match that regular expression
   are included in the result.

   The exceptions are sorted in the following order:
     - Standard exceptions (defined by the Ada language), in
       alphabetical order;
     - Exceptions only visible from the current frame, in
       alphabetical order;
     - Exceptions whose scope is global, in alphabetical order.  */

std::vector<ada_exc_info>
ada_exceptions_list (const char *regexp)
{
  if (regexp == NULL)
    return ada_exceptions_list_1 (NULL);

  compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
  return ada_exceptions_list_1 (&reg);
}

/* Implement the "info exceptions" command.  */

static void
info_exceptions_command (const char *regexp, int from_tty)
{
  struct gdbarch *gdbarch = get_current_arch ();

  std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);

  if (regexp != NULL)
    printf_filtered
      (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
  else
    printf_filtered (_("All defined Ada exceptions:\n"));

  for (const ada_exc_info &info : exceptions)
    printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
}

                                /* Operators */
/* Information about operators given special treatment in functions
   below.  */
/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>).  */

#define ADA_OPERATORS \
    OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
    OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
    OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
    OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
    OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
    OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
    OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
    OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
    OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
    OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
    OP_DEFN (OP_ATR_POS, 1, 2, 0) \
    OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
    OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
    OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
    OP_DEFN (UNOP_QUAL, 3, 1, 0) \
    OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
    OP_DEFN (OP_OTHERS, 1, 1, 0) \
    OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
    OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)

static void
ada_operator_length (const struct expression *exp, int pc, int *oplenp,
		     int *argsp)
{
  switch (exp->elts[pc - 1].opcode)
    {
    default:
      operator_length_standard (exp, pc, oplenp, argsp);
      break;

#define OP_DEFN(op, len, args, binop) \
    case op: *oplenp = len; *argsp = args; break;
      ADA_OPERATORS;
#undef OP_DEFN

    case OP_AGGREGATE:
      *oplenp = 3;
      *argsp = longest_to_int (exp->elts[pc - 2].longconst);
      break;

    case OP_CHOICES:
      *oplenp = 3;
      *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
      break;
    }
}

/* Implementation of the exp_descriptor method operator_check.  */

static int
ada_operator_check (struct expression *exp, int pos,
		    int (*objfile_func) (struct objfile *objfile, void *data),
		    void *data)
{
  const union exp_element *const elts = exp->elts;
  struct type *type = NULL;

  switch (elts[pos].opcode)
    {
      case UNOP_IN_RANGE:
      case UNOP_QUAL:
	type = elts[pos + 1].type;
	break;

      default:
	return operator_check_standard (exp, pos, objfile_func, data);
    }

  /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL.  */

  if (type && TYPE_OBJFILE (type)
      && (*objfile_func) (TYPE_OBJFILE (type), data))
    return 1;

  return 0;
}

static const char *
ada_op_name (enum exp_opcode opcode)
{
  switch (opcode)
    {
    default:
      return op_name_standard (opcode);

#define OP_DEFN(op, len, args, binop) case op: return #op;
      ADA_OPERATORS;
#undef OP_DEFN

    case OP_AGGREGATE:
      return "OP_AGGREGATE";
    case OP_CHOICES:
      return "OP_CHOICES";
    case OP_NAME:
      return "OP_NAME";
    }
}

/* As for operator_length, but assumes PC is pointing at the first
   element of the operator, and gives meaningful results only for the 
   Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise.  */

static void
ada_forward_operator_length (struct expression *exp, int pc,
                             int *oplenp, int *argsp)
{
  switch (exp->elts[pc].opcode)
    {
    default:
      *oplenp = *argsp = 0;
      break;

#define OP_DEFN(op, len, args, binop) \
    case op: *oplenp = len; *argsp = args; break;
      ADA_OPERATORS;
#undef OP_DEFN

    case OP_AGGREGATE:
      *oplenp = 3;
      *argsp = longest_to_int (exp->elts[pc + 1].longconst);
      break;

    case OP_CHOICES:
      *oplenp = 3;
      *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
      break;

    case OP_STRING:
    case OP_NAME:
      {
	int len = longest_to_int (exp->elts[pc + 1].longconst);

	*oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
	*argsp = 0;
	break;
      }
    }
}

static int
ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
{
  enum exp_opcode op = exp->elts[elt].opcode;
  int oplen, nargs;
  int pc = elt;
  int i;

  ada_forward_operator_length (exp, elt, &oplen, &nargs);

  switch (op)
    {
      /* Ada attributes ('Foo).  */
    case OP_ATR_FIRST:
    case OP_ATR_LAST:
    case OP_ATR_LENGTH:
    case OP_ATR_IMAGE:
    case OP_ATR_MAX:
    case OP_ATR_MIN:
    case OP_ATR_MODULUS:
    case OP_ATR_POS:
    case OP_ATR_SIZE:
    case OP_ATR_TAG:
    case OP_ATR_VAL:
      break;

    case UNOP_IN_RANGE:
    case UNOP_QUAL:
      /* XXX: gdb_sprint_host_address, type_sprint */
      fprintf_filtered (stream, _("Type @"));
      gdb_print_host_address (exp->elts[pc + 1].type, stream);
      fprintf_filtered (stream, " (");
      type_print (exp->elts[pc + 1].type, NULL, stream, 0);
      fprintf_filtered (stream, ")");
      break;
    case BINOP_IN_BOUNDS:
      fprintf_filtered (stream, " (%d)",
			longest_to_int (exp->elts[pc + 2].longconst));
      break;
    case TERNOP_IN_RANGE:
      break;

    case OP_AGGREGATE:
    case OP_OTHERS:
    case OP_DISCRETE_RANGE:
    case OP_POSITIONAL:
    case OP_CHOICES:
      break;

    case OP_NAME:
    case OP_STRING:
      {
	char *name = &exp->elts[elt + 2].string;
	int len = longest_to_int (exp->elts[elt + 1].longconst);

	fprintf_filtered (stream, "Text: `%.*s'", len, name);
	break;
      }

    default:
      return dump_subexp_body_standard (exp, stream, elt);
    }

  elt += oplen;
  for (i = 0; i < nargs; i += 1)
    elt = dump_subexp (exp, stream, elt);

  return elt;
}

/* The Ada extension of print_subexp (q.v.).  */

static void
ada_print_subexp (struct expression *exp, int *pos,
                  struct ui_file *stream, enum precedence prec)
{
  int oplen, nargs, i;
  int pc = *pos;
  enum exp_opcode op = exp->elts[pc].opcode;

  ada_forward_operator_length (exp, pc, &oplen, &nargs);

  *pos += oplen;
  switch (op)
    {
    default:
      *pos -= oplen;
      print_subexp_standard (exp, pos, stream, prec);
      return;

    case OP_VAR_VALUE:
      fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
      return;

    case BINOP_IN_BOUNDS:
      /* XXX: sprint_subexp */
      print_subexp (exp, pos, stream, PREC_SUFFIX);
      fputs_filtered (" in ", stream);
      print_subexp (exp, pos, stream, PREC_SUFFIX);
      fputs_filtered ("'range", stream);
      if (exp->elts[pc + 1].longconst > 1)
        fprintf_filtered (stream, "(%ld)",
                          (long) exp->elts[pc + 1].longconst);
      return;

    case TERNOP_IN_RANGE:
      if (prec >= PREC_EQUAL)
        fputs_filtered ("(", stream);
      /* XXX: sprint_subexp */
      print_subexp (exp, pos, stream, PREC_SUFFIX);
      fputs_filtered (" in ", stream);
      print_subexp (exp, pos, stream, PREC_EQUAL);
      fputs_filtered (" .. ", stream);
      print_subexp (exp, pos, stream, PREC_EQUAL);
      if (prec >= PREC_EQUAL)
        fputs_filtered (")", stream);
      return;

    case OP_ATR_FIRST:
    case OP_ATR_LAST:
    case OP_ATR_LENGTH:
    case OP_ATR_IMAGE:
    case OP_ATR_MAX:
    case OP_ATR_MIN:
    case OP_ATR_MODULUS:
    case OP_ATR_POS:
    case OP_ATR_SIZE:
    case OP_ATR_TAG:
    case OP_ATR_VAL:
      if (exp->elts[*pos].opcode == OP_TYPE)
        {
          if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
            LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
			   &type_print_raw_options);
          *pos += 3;
        }
      else
        print_subexp (exp, pos, stream, PREC_SUFFIX);
      fprintf_filtered (stream, "'%s", ada_attribute_name (op));
      if (nargs > 1)
        {
          int tem;

          for (tem = 1; tem < nargs; tem += 1)
            {
              fputs_filtered ((tem == 1) ? " (" : ", ", stream);
              print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
            }
          fputs_filtered (")", stream);
        }
      return;

    case UNOP_QUAL:
      type_print (exp->elts[pc + 1].type, "", stream, 0);
      fputs_filtered ("'(", stream);
      print_subexp (exp, pos, stream, PREC_PREFIX);
      fputs_filtered (")", stream);
      return;

    case UNOP_IN_RANGE:
      /* XXX: sprint_subexp */
      print_subexp (exp, pos, stream, PREC_SUFFIX);
      fputs_filtered (" in ", stream);
      LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
		     &type_print_raw_options);
      return;

    case OP_DISCRETE_RANGE:
      print_subexp (exp, pos, stream, PREC_SUFFIX);
      fputs_filtered ("..", stream);
      print_subexp (exp, pos, stream, PREC_SUFFIX);
      return;

    case OP_OTHERS:
      fputs_filtered ("others => ", stream);
      print_subexp (exp, pos, stream, PREC_SUFFIX);
      return;

    case OP_CHOICES:
      for (i = 0; i < nargs-1; i += 1)
	{
	  if (i > 0)
	    fputs_filtered ("|", stream);
	  print_subexp (exp, pos, stream, PREC_SUFFIX);
	}
      fputs_filtered (" => ", stream);
      print_subexp (exp, pos, stream, PREC_SUFFIX);
      return;
      
    case OP_POSITIONAL:
      print_subexp (exp, pos, stream, PREC_SUFFIX);
      return;

    case OP_AGGREGATE:
      fputs_filtered ("(", stream);
      for (i = 0; i < nargs; i += 1)
	{
	  if (i > 0)
	    fputs_filtered (", ", stream);
	  print_subexp (exp, pos, stream, PREC_SUFFIX);
	}
      fputs_filtered (")", stream);
      return;
    }
}

/* Table mapping opcodes into strings for printing operators
   and precedences of the operators.  */

static const struct op_print ada_op_print_tab[] = {
  {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
  {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
  {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
  {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
  {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
  {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
  {"=", BINOP_EQUAL, PREC_EQUAL, 0},
  {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
  {"<=", BINOP_LEQ, PREC_ORDER, 0},
  {">=", BINOP_GEQ, PREC_ORDER, 0},
  {">", BINOP_GTR, PREC_ORDER, 0},
  {"<", BINOP_LESS, PREC_ORDER, 0},
  {">>", BINOP_RSH, PREC_SHIFT, 0},
  {"<<", BINOP_LSH, PREC_SHIFT, 0},
  {"+", BINOP_ADD, PREC_ADD, 0},
  {"-", BINOP_SUB, PREC_ADD, 0},
  {"&", BINOP_CONCAT, PREC_ADD, 0},
  {"*", BINOP_MUL, PREC_MUL, 0},
  {"/", BINOP_DIV, PREC_MUL, 0},
  {"rem", BINOP_REM, PREC_MUL, 0},
  {"mod", BINOP_MOD, PREC_MUL, 0},
  {"**", BINOP_EXP, PREC_REPEAT, 0},
  {"@", BINOP_REPEAT, PREC_REPEAT, 0},
  {"-", UNOP_NEG, PREC_PREFIX, 0},
  {"+", UNOP_PLUS, PREC_PREFIX, 0},
  {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
  {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
  {"abs ", UNOP_ABS, PREC_PREFIX, 0},
  {".all", UNOP_IND, PREC_SUFFIX, 1},
  {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
  {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
  {NULL, OP_NULL, PREC_SUFFIX, 0}
};

enum ada_primitive_types {
  ada_primitive_type_int,
  ada_primitive_type_long,
  ada_primitive_type_short,
  ada_primitive_type_char,
  ada_primitive_type_float,
  ada_primitive_type_double,
  ada_primitive_type_void,
  ada_primitive_type_long_long,
  ada_primitive_type_long_double,
  ada_primitive_type_natural,
  ada_primitive_type_positive,
  ada_primitive_type_system_address,
  ada_primitive_type_storage_offset,
  nr_ada_primitive_types
};

static void
ada_language_arch_info (struct gdbarch *gdbarch,
			struct language_arch_info *lai)
{
  const struct builtin_type *builtin = builtin_type (gdbarch);

  lai->primitive_type_vector
    = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
			      struct type *);

  lai->primitive_type_vector [ada_primitive_type_int]
    = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
			 0, "integer");
  lai->primitive_type_vector [ada_primitive_type_long]
    = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
			 0, "long_integer");
  lai->primitive_type_vector [ada_primitive_type_short]
    = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
			 0, "short_integer");
  lai->string_char_type
    = lai->primitive_type_vector [ada_primitive_type_char]
    = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
  lai->primitive_type_vector [ada_primitive_type_float]
    = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
		       "float", gdbarch_float_format (gdbarch));
  lai->primitive_type_vector [ada_primitive_type_double]
    = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
		       "long_float", gdbarch_double_format (gdbarch));
  lai->primitive_type_vector [ada_primitive_type_long_long]
    = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
			 0, "long_long_integer");
  lai->primitive_type_vector [ada_primitive_type_long_double]
    = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
		       "long_long_float", gdbarch_long_double_format (gdbarch));
  lai->primitive_type_vector [ada_primitive_type_natural]
    = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
			 0, "natural");
  lai->primitive_type_vector [ada_primitive_type_positive]
    = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
			 0, "positive");
  lai->primitive_type_vector [ada_primitive_type_void]
    = builtin->builtin_void;

  lai->primitive_type_vector [ada_primitive_type_system_address]
    = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
				      "void"));
  TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
    = "system__address";

  /* Create the equivalent of the System.Storage_Elements.Storage_Offset
     type.  This is a signed integral type whose size is the same as
     the size of addresses.  */
  {
    unsigned int addr_length = TYPE_LENGTH
      (lai->primitive_type_vector [ada_primitive_type_system_address]);

    lai->primitive_type_vector [ada_primitive_type_storage_offset]
      = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
			   "storage_offset");
  }

  lai->bool_type_symbol = NULL;
  lai->bool_type_default = builtin->builtin_bool;
}

				/* Language vector */

/* Not really used, but needed in the ada_language_defn.  */

static void
emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
{
  ada_emit_char (c, type, stream, quoter, 1);
}

static int
parse (struct parser_state *ps)
{
  warnings_issued = 0;
  return ada_parse (ps);
}

static const struct exp_descriptor ada_exp_descriptor = {
  ada_print_subexp,
  ada_operator_length,
  ada_operator_check,
  ada_op_name,
  ada_dump_subexp_body,
  ada_evaluate_subexp
};

/* symbol_name_matcher_ftype adapter for wild_match.  */

static bool
do_wild_match (const char *symbol_search_name,
	       const lookup_name_info &lookup_name,
	       completion_match_result *comp_match_res)
{
  return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
}

/* symbol_name_matcher_ftype adapter for full_match.  */

static bool
do_full_match (const char *symbol_search_name,
	       const lookup_name_info &lookup_name,
	       completion_match_result *comp_match_res)
{
  return full_match (symbol_search_name, ada_lookup_name (lookup_name));
}

/* symbol_name_matcher_ftype for exact (verbatim) matches.  */

static bool
do_exact_match (const char *symbol_search_name,
		const lookup_name_info &lookup_name,
		completion_match_result *comp_match_res)
{
  return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
}

/* Build the Ada lookup name for LOOKUP_NAME.  */

ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
{
  const std::string &user_name = lookup_name.name ();

  if (user_name[0] == '<')
    {
      if (user_name.back () == '>')
	m_encoded_name = user_name.substr (1, user_name.size () - 2);
      else
	m_encoded_name = user_name.substr (1, user_name.size () - 1);
      m_encoded_p = true;
      m_verbatim_p = true;
      m_wild_match_p = false;
      m_standard_p = false;
    }
  else
    {
      m_verbatim_p = false;

      m_encoded_p = user_name.find ("__") != std::string::npos;

      if (!m_encoded_p)
	{
	  const char *folded = ada_fold_name (user_name.c_str ());
	  const char *encoded = ada_encode_1 (folded, false);
	  if (encoded != NULL)
	    m_encoded_name = encoded;
	  else
	    m_encoded_name = user_name;
	}
      else
	m_encoded_name = user_name;

      /* Handle the 'package Standard' special case.  See description
	 of m_standard_p.  */
      if (startswith (m_encoded_name.c_str (), "standard__"))
	{
	  m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
	  m_standard_p = true;
	}
      else
	m_standard_p = false;

      /* If the name contains a ".", then the user is entering a fully
	 qualified entity name, and the match must not be done in wild
	 mode.  Similarly, if the user wants to complete what looks
	 like an encoded name, the match must not be done in wild
	 mode.  Also, in the standard__ special case always do
	 non-wild matching.  */
      m_wild_match_p
	= (lookup_name.match_type () != symbol_name_match_type::FULL
	   && !m_encoded_p
	   && !m_standard_p
	   && user_name.find ('.') == std::string::npos);
    }
}

/* symbol_name_matcher_ftype method for Ada.  This only handles
   completion mode.  */

static bool
ada_symbol_name_matches (const char *symbol_search_name,
			 const lookup_name_info &lookup_name,
			 completion_match_result *comp_match_res)
{
  return lookup_name.ada ().matches (symbol_search_name,
				     lookup_name.match_type (),
				     comp_match_res);
}

/* A name matcher that matches the symbol name exactly, with
   strcmp.  */

static bool
literal_symbol_name_matcher (const char *symbol_search_name,
			     const lookup_name_info &lookup_name,
			     completion_match_result *comp_match_res)
{
  const std::string &name = lookup_name.name ();

  int cmp = (lookup_name.completion_mode ()
	     ? strncmp (symbol_search_name, name.c_str (), name.size ())
	     : strcmp (symbol_search_name, name.c_str ()));
  if (cmp == 0)
    {
      if (comp_match_res != NULL)
	comp_match_res->set_match (symbol_search_name);
      return true;
    }
  else
    return false;
}

/* Implement the "la_get_symbol_name_matcher" language_defn method for
   Ada.  */

static symbol_name_matcher_ftype *
ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
{
  if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
    return literal_symbol_name_matcher;

  if (lookup_name.completion_mode ())
    return ada_symbol_name_matches;
  else
    {
      if (lookup_name.ada ().wild_match_p ())
	return do_wild_match;
      else if (lookup_name.ada ().verbatim_p ())
	return do_exact_match;
      else
	return do_full_match;
    }
}

/* Implement the "la_read_var_value" language_defn method for Ada.  */

static struct value *
ada_read_var_value (struct symbol *var, const struct block *var_block,
		    struct frame_info *frame)
{
  const struct block *frame_block = NULL;
  struct symbol *renaming_sym = NULL;

  /* The only case where default_read_var_value is not sufficient
     is when VAR is a renaming...  */
  if (frame)
    frame_block = get_frame_block (frame, NULL);
  if (frame_block)
    renaming_sym = ada_find_renaming_symbol (var, frame_block);
  if (renaming_sym != NULL)
    return ada_read_renaming_var_value (renaming_sym, frame_block);

  /* This is a typical case where we expect the default_read_var_value
     function to work.  */
  return default_read_var_value (var, var_block, frame);
}

static const char *ada_extensions[] =
{
  ".adb", ".ads", ".a", ".ada", ".dg", NULL
};

extern const struct language_defn ada_language_defn = {
  "ada",                        /* Language name */
  "Ada",
  language_ada,
  range_check_off,
  case_sensitive_on,            /* Yes, Ada is case-insensitive, but
                                   that's not quite what this means.  */
  array_row_major,
  macro_expansion_no,
  ada_extensions,
  &ada_exp_descriptor,
  parse,
  resolve,
  ada_printchar,                /* Print a character constant */
  ada_printstr,                 /* Function to print string constant */
  emit_char,                    /* Function to print single char (not used) */
  ada_print_type,               /* Print a type using appropriate syntax */
  ada_print_typedef,            /* Print a typedef using appropriate syntax */
  ada_val_print,                /* Print a value using appropriate syntax */
  ada_value_print,              /* Print a top-level value */
  ada_read_var_value,		/* la_read_var_value */
  NULL,                         /* Language specific skip_trampoline */
  NULL,                         /* name_of_this */
  true,                         /* la_store_sym_names_in_linkage_form_p */
  ada_lookup_symbol_nonlocal,   /* Looking up non-local symbols.  */
  basic_lookup_transparent_type,        /* lookup_transparent_type */
  ada_la_decode,                /* Language specific symbol demangler */
  ada_sniff_from_mangled_name,
  NULL,                         /* Language specific
				   class_name_from_physname */
  ada_op_print_tab,             /* expression operators for printing */
  0,                            /* c-style arrays */
  1,                            /* String lower bound */
  ada_get_gdb_completer_word_break_characters,
  ada_collect_symbol_completion_matches,
  ada_language_arch_info,
  ada_print_array_index,
  default_pass_by_reference,
  c_get_string,
  ada_watch_location_expression,
  ada_get_symbol_name_matcher,	/* la_get_symbol_name_matcher */
  ada_iterate_over_symbols,
  default_search_name_hash,
  &ada_varobj_ops,
  NULL,
  NULL,
  LANG_MAGIC
};

/* Command-list for the "set/show ada" prefix command.  */
static struct cmd_list_element *set_ada_list;
static struct cmd_list_element *show_ada_list;

/* Implement the "set ada" prefix command.  */

static void
set_ada_command (const char *arg, int from_tty)
{
  printf_unfiltered (_(\
"\"set ada\" must be followed by the name of a setting.\n"));
  help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
}

/* Implement the "show ada" prefix command.  */

static void
show_ada_command (const char *args, int from_tty)
{
  cmd_show_list (show_ada_list, from_tty, "");
}

static void
initialize_ada_catchpoint_ops (void)
{
  struct breakpoint_ops *ops;

  initialize_breakpoint_ops ();

  ops = &catch_exception_breakpoint_ops;
  *ops = bkpt_breakpoint_ops;
  ops->allocate_location = allocate_location_catch_exception;
  ops->re_set = re_set_catch_exception;
  ops->check_status = check_status_catch_exception;
  ops->print_it = print_it_catch_exception;
  ops->print_one = print_one_catch_exception;
  ops->print_mention = print_mention_catch_exception;
  ops->print_recreate = print_recreate_catch_exception;

  ops = &catch_exception_unhandled_breakpoint_ops;
  *ops = bkpt_breakpoint_ops;
  ops->allocate_location = allocate_location_catch_exception_unhandled;
  ops->re_set = re_set_catch_exception_unhandled;
  ops->check_status = check_status_catch_exception_unhandled;
  ops->print_it = print_it_catch_exception_unhandled;
  ops->print_one = print_one_catch_exception_unhandled;
  ops->print_mention = print_mention_catch_exception_unhandled;
  ops->print_recreate = print_recreate_catch_exception_unhandled;

  ops = &catch_assert_breakpoint_ops;
  *ops = bkpt_breakpoint_ops;
  ops->allocate_location = allocate_location_catch_assert;
  ops->re_set = re_set_catch_assert;
  ops->check_status = check_status_catch_assert;
  ops->print_it = print_it_catch_assert;
  ops->print_one = print_one_catch_assert;
  ops->print_mention = print_mention_catch_assert;
  ops->print_recreate = print_recreate_catch_assert;

  ops = &catch_handlers_breakpoint_ops;
  *ops = bkpt_breakpoint_ops;
  ops->allocate_location = allocate_location_catch_handlers;
  ops->re_set = re_set_catch_handlers;
  ops->check_status = check_status_catch_handlers;
  ops->print_it = print_it_catch_handlers;
  ops->print_one = print_one_catch_handlers;
  ops->print_mention = print_mention_catch_handlers;
  ops->print_recreate = print_recreate_catch_handlers;
}

/* This module's 'new_objfile' observer.  */

static void
ada_new_objfile_observer (struct objfile *objfile)
{
  ada_clear_symbol_cache ();
}

/* This module's 'free_objfile' observer.  */

static void
ada_free_objfile_observer (struct objfile *objfile)
{
  ada_clear_symbol_cache ();
}

void
_initialize_ada_language (void)
{
  initialize_ada_catchpoint_ops ();

  add_prefix_cmd ("ada", no_class, set_ada_command,
                  _("Prefix command for changing Ada-specific settings"),
                  &set_ada_list, "set ada ", 0, &setlist);

  add_prefix_cmd ("ada", no_class, show_ada_command,
                  _("Generic command for showing Ada-specific settings."),
                  &show_ada_list, "show ada ", 0, &showlist);

  add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
                           &trust_pad_over_xvs, _("\
Enable or disable an optimization trusting PAD types over XVS types"), _("\
Show whether an optimization trusting PAD types over XVS types is activated"),
                           _("\
This is related to the encoding used by the GNAT compiler.  The debugger\n\
should normally trust the contents of PAD types, but certain older versions\n\
of GNAT have a bug that sometimes causes the information in the PAD type\n\
to be incorrect.  Turning this setting \"off\" allows the debugger to\n\
work around this bug.  It is always safe to turn this option \"off\", but\n\
this incurs a slight performance penalty, so it is recommended to NOT change\n\
this option to \"off\" unless necessary."),
                            NULL, NULL, &set_ada_list, &show_ada_list);

  add_setshow_boolean_cmd ("print-signatures", class_vars,
			   &print_signatures, _("\
Enable or disable the output of formal and return types for functions in the \
overloads selection menu"), _("\
Show whether the output of formal and return types for functions in the \
overloads selection menu is activated"),
			   NULL, NULL, NULL, &set_ada_list, &show_ada_list);

  add_catch_command ("exception", _("\
Catch Ada exceptions, when raised.\n\
Usage: catch exception [ ARG ]\n\
\n\
Without any argument, stop when any Ada exception is raised.\n\
If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
being raised does not have a handler (and will therefore lead to the task's\n\
termination).\n\
Otherwise, the catchpoint only stops when the name of the exception being\n\
raised is the same as ARG."),
		     catch_ada_exception_command,
                     NULL,
		     CATCH_PERMANENT,
		     CATCH_TEMPORARY);

  add_catch_command ("handlers", _("\
Catch Ada exceptions, when handled.\n\
With an argument, catch only exceptions with the given name."),
		     catch_ada_handlers_command,
                     NULL,
		     CATCH_PERMANENT,
		     CATCH_TEMPORARY);
  add_catch_command ("assert", _("\
Catch failed Ada assertions, when raised.\n\
With an argument, catch only exceptions with the given name."),
		     catch_assert_command,
                     NULL,
		     CATCH_PERMANENT,
		     CATCH_TEMPORARY);

  varsize_limit = 65536;
  add_setshow_uinteger_cmd ("varsize-limit", class_support,
			    &varsize_limit, _("\
Set the maximum number of bytes allowed in a variable-size object."), _("\
Show the maximum number of bytes allowed in a variable-size object."), _("\
Attempts to access an object whose size is not a compile-time constant\n\
and exceeds this limit will cause an error."),
			    NULL, NULL, &setlist, &showlist);

  add_info ("exceptions", info_exceptions_command,
	    _("\
List all Ada exception names.\n\
If a regular expression is passed as an argument, only those matching\n\
the regular expression are listed."));

  add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
		  _("Set Ada maintenance-related variables."),
                  &maint_set_ada_cmdlist, "maintenance set ada ",
                  0/*allow-unknown*/, &maintenance_set_cmdlist);

  add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
		  _("Show Ada maintenance-related variables"),
                  &maint_show_ada_cmdlist, "maintenance show ada ",
                  0/*allow-unknown*/, &maintenance_show_cmdlist);

  add_setshow_boolean_cmd
    ("ignore-descriptive-types", class_maintenance,
     &ada_ignore_descriptive_types_p,
     _("Set whether descriptive types generated by GNAT should be ignored."),
     _("Show whether descriptive types generated by GNAT should be ignored."),
     _("\
When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
DWARF attribute."),
     NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);

  decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
					   NULL, xcalloc, xfree);

  /* The ada-lang observers.  */
  gdb::observers::new_objfile.attach (ada_new_objfile_observer);
  gdb::observers::free_objfile.attach (ada_free_objfile_observer);
  gdb::observers::inferior_exit.attach (ada_inferior_exit);

  /* Setup various context-specific data.  */
  ada_inferior_data
    = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
  ada_pspace_data_handle
    = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
}