/* $NetBSD: lfs.c,v 1.74 2018/06/12 20:12:21 zafer Exp $ */
/*-
* Copyright (c) 2003 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Konrad E. Schroder <perseant@hhhh.org>.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1989, 1991, 1993
* The Regents of the University of California. All rights reserved.
* (c) UNIX System Laboratories, Inc.
* All or some portions of this file are derived from material licensed
* to the University of California by American Telephone and Telegraph
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
* the permission of UNIX System Laboratories, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)ufs_bmap.c 8.8 (Berkeley) 8/11/95
*/
#include <sys/types.h>
#include <sys/param.h>
#include <sys/time.h>
#include <sys/buf.h>
#include <sys/mount.h>
#define vnode uvnode
#include <ufs/lfs/lfs.h>
#include <ufs/lfs/lfs_inode.h>
#include <ufs/lfs/lfs_accessors.h>
#undef vnode
#include <assert.h>
#include <err.h>
#include <errno.h>
#include <stdarg.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <util.h>
#include "bufcache.h"
#include "vnode.h"
#include "lfs_user.h"
#include "segwrite.h"
#include "kernelops.h"
#define panic call_panic
extern u_int32_t cksum(void *, size_t);
extern u_int32_t lfs_sb_cksum(struct lfs *);
extern void pwarn(const char *, ...);
extern struct uvnodelst vnodelist;
extern struct uvnodelst getvnodelist[VNODE_HASH_MAX];
extern int nvnodes;
long dev_bsize = DEV_BSIZE;
static int
lfs_fragextend(struct uvnode *, int, int, daddr_t, struct ubuf **);
int fsdirty = 0;
void (*panic_func)(int, const char *, va_list) = my_vpanic;
/*
* LFS buffer and uvnode operations
*/
int
lfs_vop_strategy(struct ubuf * bp)
{
int count;
if (bp->b_flags & B_READ) {
count = kops.ko_pread(bp->b_vp->v_fd, bp->b_data, bp->b_bcount,
bp->b_blkno * dev_bsize);
if (count == bp->b_bcount)
bp->b_flags |= B_DONE;
} else {
count = kops.ko_pwrite(bp->b_vp->v_fd, bp->b_data, bp->b_bcount,
bp->b_blkno * dev_bsize);
if (count == 0) {
perror("pwrite");
return -1;
}
bp->b_flags &= ~B_DELWRI;
reassignbuf(bp, bp->b_vp);
}
return 0;
}
int
lfs_vop_bwrite(struct ubuf * bp)
{
struct lfs *fs;
fs = bp->b_vp->v_fs;
if (!(bp->b_flags & B_DELWRI)) {
lfs_sb_subavail(fs, lfs_btofsb(fs, bp->b_bcount));
}
bp->b_flags |= B_DELWRI | B_LOCKED;
reassignbuf(bp, bp->b_vp);
brelse(bp, 0);
return 0;
}
/*
* ulfs_bmaparray does the bmap conversion, and if requested returns the
* array of logical blocks which must be traversed to get to a block.
* Each entry contains the offset into that block that gets you to the
* next block and the disk address of the block (if it is assigned).
*/
int
ulfs_bmaparray(struct lfs * fs, struct uvnode * vp, daddr_t bn, daddr_t * bnp, struct indir * ap, int *nump)
{
struct inode *ip;
struct ubuf *bp;
struct indir a[ULFS_NIADDR + 1], *xap;
daddr_t daddr;
daddr_t metalbn;
int error, num;
ip = VTOI(vp);
if (bn >= 0 && bn < ULFS_NDADDR) {
if (nump != NULL)
*nump = 0;
*bnp = LFS_FSBTODB(fs, lfs_dino_getdb(fs, ip->i_din, bn));
if (*bnp == 0)
*bnp = -1;
return (0);
}
xap = ap == NULL ? a : ap;
if (!nump)
nump = #
if ((error = ulfs_getlbns(fs, vp, bn, xap, nump)) != 0)
return (error);
num = *nump;
/* Get disk address out of indirect block array */
daddr = lfs_dino_getib(fs, ip->i_din, xap->in_off);
for (bp = NULL, ++xap; --num; ++xap) {
/* Exit the loop if there is no disk address assigned yet and
* the indirect block isn't in the cache, or if we were
* looking for an indirect block and we've found it. */
metalbn = xap->in_lbn;
if ((daddr == 0 && !incore(vp, metalbn)) || metalbn == bn)
break;
/*
* If we get here, we've either got the block in the cache
* or we have a disk address for it, go fetch it.
*/
if (bp)
brelse(bp, 0);
xap->in_exists = 1;
bp = getblk(vp, metalbn, lfs_sb_getbsize(fs));
if (!(bp->b_flags & (B_DONE | B_DELWRI))) {
bp->b_blkno = LFS_FSBTODB(fs, daddr);
bp->b_flags |= B_READ;
VOP_STRATEGY(bp);
}
daddr = lfs_iblock_get(fs, bp->b_data, xap->in_off);
}
if (bp)
brelse(bp, 0);
daddr = LFS_FSBTODB(fs, daddr);
*bnp = daddr == 0 ? -1 : daddr;
return (0);
}
/*
* Create an array of logical block number/offset pairs which represent the
* path of indirect blocks required to access a data block. The first "pair"
* contains the logical block number of the appropriate single, double or
* triple indirect block and the offset into the inode indirect block array.
* Note, the logical block number of the inode single/double/triple indirect
* block appears twice in the array, once with the offset into di_ib and
* once with the offset into the page itself.
*/
int
ulfs_getlbns(struct lfs * fs, struct uvnode * vp, daddr_t bn, struct indir * ap, int *nump)
{
daddr_t metalbn, realbn;
int64_t blockcnt;
int lbc;
int i, numlevels, off;
int lognindir, indir;
metalbn = 0; /* XXXGCC -Wuninitialized [sh3] */
if (nump)
*nump = 0;
numlevels = 0;
realbn = bn;
if (bn < 0)
bn = -bn;
lognindir = -1;
for (indir = lfs_sb_getnindir(fs); indir; indir >>= 1)
++lognindir;
/* Determine the number of levels of indirection. After this loop is
* done, blockcnt indicates the number of data blocks possible at the
* given level of indirection, and ULFS_NIADDR - i is the number of levels
* of indirection needed to locate the requested block. */
bn -= ULFS_NDADDR;
for (lbc = 0, i = ULFS_NIADDR;; i--, bn -= blockcnt) {
if (i == 0)
return (EFBIG);
lbc += lognindir;
blockcnt = (int64_t) 1 << lbc;
if (bn < blockcnt)
break;
}
/* Calculate the address of the first meta-block. */
metalbn = -((realbn >= 0 ? realbn : -realbn) - bn + ULFS_NIADDR - i);
/* At each iteration, off is the offset into the bap array which is an
* array of disk addresses at the current level of indirection. The
* logical block number and the offset in that block are stored into
* the argument array. */
ap->in_lbn = metalbn;
ap->in_off = off = ULFS_NIADDR - i;
ap->in_exists = 0;
ap++;
for (++numlevels; i <= ULFS_NIADDR; i++) {
/* If searching for a meta-data block, quit when found. */
if (metalbn == realbn)
break;
lbc -= lognindir;
/*blockcnt = (int64_t) 1 << lbc;*/
off = (bn >> lbc) & (lfs_sb_getnindir(fs) - 1);
++numlevels;
ap->in_lbn = metalbn;
ap->in_off = off;
ap->in_exists = 0;
++ap;
metalbn -= -1 + (off << lbc);
}
if (nump)
*nump = numlevels;
return (0);
}
int
lfs_vop_bmap(struct uvnode * vp, daddr_t lbn, daddr_t * daddrp)
{
return ulfs_bmaparray(vp->v_fs, vp, lbn, daddrp, NULL, NULL);
}
/* Search a block for a specific dinode. */
union lfs_dinode *
lfs_ifind(struct lfs *fs, ino_t ino, struct ubuf *bp)
{
union lfs_dinode *ldip;
unsigned i, num;
num = LFS_INOPB(fs);
/*
* Read the inode block backwards, since later versions of the
* inode will supercede earlier ones. Though it is unlikely, it is
* possible that the same inode will appear in the same inode block.
*/
for (i = num; i-- > 0; ) {
ldip = DINO_IN_BLOCK(fs, bp->b_data, i);
if (lfs_dino_getinumber(fs, ldip) == ino)
return (ldip);
}
return NULL;
}
/*
* lfs_raw_vget makes us a new vnode from the inode at the given disk address.
* XXX it currently loses atime information.
*/
struct uvnode *
lfs_raw_vget(struct lfs * fs, ino_t ino, int fd, daddr_t daddr)
{
struct uvnode *vp;
struct inode *ip;
union lfs_dinode *dip;
struct ubuf *bp;
int i, hash;
vp = ecalloc(1, sizeof(*vp));
vp->v_fd = fd;
vp->v_fs = fs;
vp->v_usecount = 0;
vp->v_strategy_op = lfs_vop_strategy;
vp->v_bwrite_op = lfs_vop_bwrite;
vp->v_bmap_op = lfs_vop_bmap;
LIST_INIT(&vp->v_cleanblkhd);
LIST_INIT(&vp->v_dirtyblkhd);
ip = ecalloc(1, sizeof(*ip));
ip->i_din = dip = ecalloc(1, sizeof(*dip));
/* Initialize the inode -- from lfs_vcreate. */
ip->inode_ext.lfs = ecalloc(1, sizeof(*ip->inode_ext.lfs));
vp->v_data = ip;
/* ip->i_vnode = vp; */
ip->i_lockf = 0;
ip->i_state = 0;
/* Load inode block and find inode */
if (daddr > 0) {
bread(fs->lfs_devvp, LFS_FSBTODB(fs, daddr), lfs_sb_getibsize(fs),
0, &bp);
bp->b_flags |= B_AGE;
dip = lfs_ifind(fs, ino, bp);
if (dip == NULL) {
brelse(bp, 0);
free(ip->i_din);
free(ip->inode_ext.lfs);
free(ip);
free(vp);
return NULL;
}
lfs_copy_dinode(fs, ip->i_din, dip);
brelse(bp, 0);
}
ip->i_number = ino;
/* ip->i_devvp = fs->lfs_devvp; */
ip->i_lfs = fs;
ip->i_lfs_effnblks = lfs_dino_getblocks(fs, ip->i_din);
ip->i_lfs_osize = lfs_dino_getsize(fs, ip->i_din);
#if 0
if (lfs_sb_getversion(fs) > 1) {
lfs_dino_setatime(fs, ip->i_din, ts.tv_sec);
lfs_dino_setatimensec(fs, ip->i_din, ts.tv_nsec);
}
#endif
memset(ip->i_lfs_fragsize, 0, ULFS_NDADDR * sizeof(*ip->i_lfs_fragsize));
for (i = 0; i < ULFS_NDADDR; i++)
if (lfs_dino_getdb(fs, ip->i_din, i) != 0)
ip->i_lfs_fragsize[i] = lfs_blksize(fs, ip, i);
++nvnodes;
hash = ((int)(intptr_t)fs + ino) & (VNODE_HASH_MAX - 1);
LIST_INSERT_HEAD(&getvnodelist[hash], vp, v_getvnodes);
LIST_INSERT_HEAD(&vnodelist, vp, v_mntvnodes);
return vp;
}
static struct uvnode *
lfs_vget(void *vfs, ino_t ino)
{
struct lfs *fs = (struct lfs *)vfs;
daddr_t daddr;
struct ubuf *bp;
IFILE *ifp;
LFS_IENTRY(ifp, fs, ino, bp);
daddr = lfs_if_getdaddr(fs, ifp);
brelse(bp, 0);
if (daddr <= 0 || lfs_dtosn(fs, daddr) >= lfs_sb_getnseg(fs))
return NULL;
return lfs_raw_vget(fs, ino, fs->lfs_ivnode->v_fd, daddr);
}
/*
* Check superblock magic number and checksum.
* Sets lfs_is64 and lfs_dobyteswap.
*/
static int
check_sb(struct lfs *fs)
{
u_int32_t checksum;
u_int32_t magic;
/* we can read the magic out of either the 32-bit or 64-bit dlfs */
magic = fs->lfs_dlfs_u.u_32.dlfs_magic;
switch (magic) {
case LFS_MAGIC:
fs->lfs_is64 = false;
fs->lfs_dobyteswap = false;
break;
case LFS_MAGIC_SWAPPED:
fs->lfs_is64 = false;
fs->lfs_dobyteswap = true;
break;
case LFS64_MAGIC:
fs->lfs_is64 = true;
fs->lfs_dobyteswap = false;
break;
case LFS64_MAGIC_SWAPPED:
fs->lfs_is64 = true;
fs->lfs_dobyteswap = true;
break;
default:
printf("Superblock magic number (0x%lx) does not match "
"expected 0x%lx\n", (unsigned long) magic,
(unsigned long) LFS_MAGIC);
return 1;
}
/* checksum */
checksum = lfs_sb_cksum(fs);
if (lfs_sb_getcksum(fs) != checksum) {
printf("Superblock checksum (%lx) does not match computed checksum (%lx)\n",
(unsigned long) lfs_sb_getcksum(fs), (unsigned long) checksum);
return 1;
}
return 0;
}
/* Initialize LFS library; load superblocks and choose which to use. */
struct lfs *
lfs_init(int devfd, daddr_t sblkno, daddr_t idaddr, int dummy_read, int debug)
{
struct uvnode *devvp;
struct ubuf *bp;
int tryalt;
struct lfs *fs, *altfs;
vfs_init();
devvp = ecalloc(1, sizeof(*devvp));
devvp->v_fs = NULL;
devvp->v_fd = devfd;
devvp->v_strategy_op = raw_vop_strategy;
devvp->v_bwrite_op = raw_vop_bwrite;
devvp->v_bmap_op = raw_vop_bmap;
LIST_INIT(&devvp->v_cleanblkhd);
LIST_INIT(&devvp->v_dirtyblkhd);
tryalt = 0;
if (dummy_read) {
if (sblkno == 0)
sblkno = LFS_LABELPAD / dev_bsize;
fs = ecalloc(1, sizeof(*fs));
fs->lfs_devvp = devvp;
} else {
if (sblkno == 0) {
sblkno = LFS_LABELPAD / dev_bsize;
tryalt = 1;
} else if (debug) {
printf("No -b flag given, not attempting to verify checkpoint\n");
}
dev_bsize = DEV_BSIZE;
(void)bread(devvp, sblkno, LFS_SBPAD, 0, &bp);
fs = ecalloc(1, sizeof(*fs));
__CTASSERT(sizeof(struct dlfs) == sizeof(struct dlfs64));
memcpy(&fs->lfs_dlfs_u, bp->b_data, sizeof(struct dlfs));
fs->lfs_devvp = devvp;
bp->b_flags |= B_INVAL;
brelse(bp, 0);
dev_bsize = lfs_sb_getfsize(fs) >> lfs_sb_getfsbtodb(fs);
if (tryalt) {
(void)bread(devvp, LFS_FSBTODB(fs, lfs_sb_getsboff(fs, 1)),
LFS_SBPAD, 0, &bp);
altfs = ecalloc(1, sizeof(*altfs));
memcpy(&altfs->lfs_dlfs_u, bp->b_data,
sizeof(struct dlfs));
altfs->lfs_devvp = devvp;
bp->b_flags |= B_INVAL;
brelse(bp, 0);
if (check_sb(fs) || lfs_sb_getidaddr(fs) <= 0) {
if (debug)
printf("Primary superblock is no good, using first alternate\n");
free(fs);
fs = altfs;
} else {
/* If both superblocks check out, try verification */
if (check_sb(altfs)) {
if (debug)
printf("First alternate superblock is no good, using primary\n");
free(altfs);
} else {
if (lfs_verify(fs, altfs, devvp, debug) == fs) {
free(altfs);
} else {
free(fs);
fs = altfs;
}
}
}
}
if (check_sb(fs)) {
free(fs);
return NULL;
}
}
/* Compatibility */
if (lfs_sb_getversion(fs) < 2) {
lfs_sb_setsumsize(fs, LFS_V1_SUMMARY_SIZE);
lfs_sb_setibsize(fs, lfs_sb_getbsize(fs));
lfs_sb_sets0addr(fs, lfs_sb_getsboff(fs, 0));
lfs_sb_settstamp(fs, lfs_sb_getotstamp(fs));
lfs_sb_setfsbtodb(fs, 0);
}
if (!dummy_read) {
fs->lfs_suflags = emalloc(2 * sizeof(u_int32_t *));
fs->lfs_suflags[0] = emalloc(lfs_sb_getnseg(fs) * sizeof(u_int32_t));
fs->lfs_suflags[1] = emalloc(lfs_sb_getnseg(fs) * sizeof(u_int32_t));
}
if (idaddr == 0)
idaddr = lfs_sb_getidaddr(fs);
else
lfs_sb_setidaddr(fs, idaddr);
/* NB: If dummy_read!=0, idaddr==0 here so we get a fake inode. */
fs->lfs_ivnode = lfs_raw_vget(fs, LFS_IFILE_INUM,
devvp->v_fd, idaddr);
if (fs->lfs_ivnode == NULL)
return NULL;
register_vget((void *)fs, lfs_vget);
return fs;
}
/*
* Check partial segment validity between fs->lfs_offset and the given goal.
*
* If goal == 0, just keep on going until the segments stop making sense,
* and return the address of the last valid partial segment.
*
* If goal != 0, return the address of the first partial segment that failed,
* or "goal" if we reached it without failure (the partial segment *at* goal
* need not be valid).
*/
daddr_t
try_verify(struct lfs *osb, struct uvnode *devvp, daddr_t goal, int debug)
{
daddr_t daddr, odaddr;
SEGSUM *sp;
int i, bc, hitclean;
struct ubuf *bp;
daddr_t nodirop_daddr;
u_int64_t serial;
bc = 0;
hitclean = 0;
odaddr = -1;
daddr = lfs_sb_getoffset(osb);
nodirop_daddr = daddr;
serial = lfs_sb_getserial(osb);
while (daddr != goal) {
/*
* Don't mistakenly read a superblock, if there is one here.
*/
if (lfs_sntod(osb, lfs_dtosn(osb, daddr)) == daddr) {
if (daddr == lfs_sb_gets0addr(osb))
daddr += lfs_btofsb(osb, LFS_LABELPAD);
for (i = 0; i < LFS_MAXNUMSB; i++) {
/* XXX dholland 20150828 I think this is wrong */
if (lfs_sb_getsboff(osb, i) < daddr)
break;
if (lfs_sb_getsboff(osb, i) == daddr)
daddr += lfs_btofsb(osb, LFS_SBPAD);
}
}
/* Read in summary block */
bread(devvp, LFS_FSBTODB(osb, daddr), lfs_sb_getsumsize(osb),
0, &bp);
sp = (SEGSUM *)bp->b_data;
/*
* Check for a valid segment summary belonging to our fs.
*/
if (lfs_ss_getmagic(osb, sp) != SS_MAGIC ||
lfs_ss_getident(osb, sp) != lfs_sb_getident(osb) ||
lfs_ss_getserial(osb, sp) < serial || /* XXX strengthen this */
lfs_ss_getsumsum(osb, sp) !=
cksum((char *)sp + lfs_ss_getsumstart(osb),
lfs_sb_getsumsize(osb) - lfs_ss_getsumstart(osb))) {
brelse(bp, 0);
if (debug) {
if (lfs_ss_getmagic(osb, sp) != SS_MAGIC)
pwarn("pseg at 0x%jx: "
"wrong magic number\n",
(uintmax_t)daddr);
else if (lfs_ss_getident(osb, sp) != lfs_sb_getident(osb))
pwarn("pseg at 0x%jx: "
"expected ident %jx, got %jx\n",
(uintmax_t)daddr,
(uintmax_t)lfs_ss_getident(osb, sp),
(uintmax_t)lfs_sb_getident(osb));
else if (lfs_ss_getserial(osb, sp) >= serial)
pwarn("pseg at 0x%jx: "
"serial %d < %d\n",
(uintmax_t)daddr,
(int)lfs_ss_getserial(osb, sp), (int)serial);
else
pwarn("pseg at 0x%jx: "
"summary checksum wrong\n",
(uintmax_t)daddr);
}
break;
}
if (debug && lfs_ss_getserial(osb, sp) != serial)
pwarn("warning, serial=%d ss_serial=%d\n",
(int)serial, (int)lfs_ss_getserial(osb, sp));
++serial;
bc = check_summary(osb, sp, daddr, debug, devvp, NULL);
if (bc == 0) {
brelse(bp, 0);
break;
}
if (debug)
pwarn("summary good: 0x%x/%d\n", (uintmax_t)daddr,
(int)lfs_ss_getserial(osb, sp));
assert (bc > 0);
odaddr = daddr;
daddr += lfs_btofsb(osb, lfs_sb_getsumsize(osb) + bc);
if (lfs_dtosn(osb, odaddr) != lfs_dtosn(osb, daddr) ||
lfs_dtosn(osb, daddr) != lfs_dtosn(osb, daddr +
lfs_btofsb(osb, lfs_sb_getsumsize(osb) + lfs_sb_getbsize(osb)) - 1)) {
daddr = lfs_ss_getnext(osb, sp);
}
/*
* Check for the beginning and ending of a sequence of
* dirops. Writes from the cleaner never involve new
* information, and are always checkpoints; so don't try
* to roll forward through them. Likewise, psegs written
* by a previous roll-forward attempt are not interesting.
*/
if (lfs_ss_getflags(osb, sp) & (SS_CLEAN | SS_RFW))
hitclean = 1;
if (hitclean == 0 && (lfs_ss_getflags(osb, sp) & SS_CONT) == 0)
nodirop_daddr = daddr;
brelse(bp, 0);
}
if (goal == 0)
return nodirop_daddr;
else
return daddr;
}
/* Use try_verify to check whether the newer superblock is valid. */
struct lfs *
lfs_verify(struct lfs *sb0, struct lfs *sb1, struct uvnode *devvp, int debug)
{
daddr_t daddr;
struct lfs *osb, *nsb;
/*
* Verify the checkpoint of the newer superblock,
* if the timestamp/serial number of the two superblocks is
* different.
*/
osb = NULL;
if (debug)
pwarn("sb0 %ju, sb1 %ju",
(uintmax_t) lfs_sb_getserial(sb0),
(uintmax_t) lfs_sb_getserial(sb1));
if ((lfs_sb_getversion(sb0) == 1 &&
lfs_sb_getotstamp(sb0) != lfs_sb_getotstamp(sb1)) ||
(lfs_sb_getversion(sb0) > 1 &&
lfs_sb_getserial(sb0) != lfs_sb_getserial(sb1))) {
if (lfs_sb_getversion(sb0) == 1) {
if (lfs_sb_getotstamp(sb0) > lfs_sb_getotstamp(sb1)) {
osb = sb1;
nsb = sb0;
} else {
osb = sb0;
nsb = sb1;
}
} else {
if (lfs_sb_getserial(sb0) > lfs_sb_getserial(sb1)) {
osb = sb1;
nsb = sb0;
} else {
osb = sb0;
nsb = sb1;
}
}
if (debug) {
printf("Attempting to verify newer checkpoint...");
fflush(stdout);
}
daddr = try_verify(osb, devvp, lfs_sb_getoffset(nsb), debug);
if (debug)
printf("done.\n");
if (daddr == lfs_sb_getoffset(nsb)) {
pwarn("** Newer checkpoint verified; recovered %jd seconds of data\n",
(intmax_t)(lfs_sb_gettstamp(nsb) - lfs_sb_gettstamp(osb)));
sbdirty();
} else {
pwarn("** Newer checkpoint invalid; lost %jd seconds of data\n", (intmax_t)(lfs_sb_gettstamp(nsb) - lfs_sb_gettstamp(osb)));
}
return (daddr == lfs_sb_getoffset(nsb) ? nsb : osb);
}
/* Nothing to check */
return osb;
}
/* Verify a partial-segment summary; return the number of bytes on disk. */
int
check_summary(struct lfs *fs, SEGSUM *sp, daddr_t pseg_addr, int debug,
struct uvnode *devvp, void (func(daddr_t, FINFO *)))
{
FINFO *fp;
int bc; /* Bytes in partial segment */
int nblocks;
daddr_t daddr;
IINFO *iibase, *iip;
struct ubuf *bp;
int i, j, k, datac, len;
lfs_checkword *datap;
u_int32_t ccksum;
/* We've already checked the sumsum, just do the data bounds and sum */
/* Count the blocks. */
nblocks = howmany(lfs_ss_getninos(fs, sp), LFS_INOPB(fs));
bc = nblocks << (lfs_sb_getversion(fs) > 1 ? lfs_sb_getffshift(fs) : lfs_sb_getbshift(fs));
assert(bc >= 0);
fp = SEGSUM_FINFOBASE(fs, sp);
for (i = 0; i < lfs_ss_getnfinfo(fs, sp); i++) {
nblocks += lfs_fi_getnblocks(fs, fp);
bc += lfs_fi_getlastlength(fs, fp) + ((lfs_fi_getnblocks(fs, fp) - 1)
<< lfs_sb_getbshift(fs));
assert(bc >= 0);
fp = NEXT_FINFO(fs, fp);
if (((char *)fp) - (char *)sp > lfs_sb_getsumsize(fs))
return 0;
}
datap = emalloc(nblocks * sizeof(*datap));
datac = 0;
iibase = SEGSUM_IINFOSTART(fs, sp);
iip = iibase;
daddr = pseg_addr + lfs_btofsb(fs, lfs_sb_getsumsize(fs));
fp = SEGSUM_FINFOBASE(fs, sp);
for (i = 0, j = 0;
i < lfs_ss_getnfinfo(fs, sp) || j < howmany(lfs_ss_getninos(fs, sp), LFS_INOPB(fs)); i++) {
if (i >= lfs_ss_getnfinfo(fs, sp) && lfs_ii_getblock(fs, iip) != daddr) {
pwarn("Not enough inode blocks in pseg at 0x%jx: "
"found %d, wanted %d\n",
pseg_addr, j, howmany(lfs_ss_getninos(fs, sp),
LFS_INOPB(fs)));
if (debug)
pwarn("iip=0x%jx, daddr=0x%jx\n",
(uintmax_t)lfs_ii_getblock(fs, iip),
(intmax_t)daddr);
break;
}
while (j < howmany(lfs_ss_getninos(fs, sp), LFS_INOPB(fs)) && lfs_ii_getblock(fs, iip) == daddr) {
bread(devvp, LFS_FSBTODB(fs, daddr), lfs_sb_getibsize(fs),
0, &bp);
datap[datac++] = ((lfs_checkword *)bp->b_data)[0];
brelse(bp, 0);
++j;
daddr += lfs_btofsb(fs, lfs_sb_getibsize(fs));
iip = NEXTLOWER_IINFO(fs, iip);
}
if (i < lfs_ss_getnfinfo(fs, sp)) {
if (func)
func(daddr, fp);
for (k = 0; k < lfs_fi_getnblocks(fs, fp); k++) {
len = (k == lfs_fi_getnblocks(fs, fp) - 1 ?
lfs_fi_getlastlength(fs, fp)
: lfs_sb_getbsize(fs));
bread(devvp, LFS_FSBTODB(fs, daddr), len,
0, &bp);
datap[datac++] = ((lfs_checkword *)bp->b_data)[0];
brelse(bp, 0);
daddr += lfs_btofsb(fs, len);
}
fp = NEXT_FINFO(fs, fp);
}
}
if (datac != nblocks) {
pwarn("Partial segment at 0x%jx expected %d blocks counted %d\n",
(intmax_t)pseg_addr, nblocks, datac);
}
ccksum = cksum(datap, nblocks * sizeof(datap[0]));
/* Check the data checksum */
if (ccksum != lfs_ss_getdatasum(fs, sp)) {
pwarn("Partial segment at 0x%jx data checksum"
" mismatch: given 0x%x, computed 0x%x\n",
(uintmax_t)pseg_addr, lfs_ss_getdatasum(fs, sp), ccksum);
free(datap);
return 0;
}
free(datap);
assert(bc >= 0);
return bc;
}
/* print message and exit */
void
my_vpanic(int fatal, const char *fmt, va_list ap)
{
(void) vprintf(fmt, ap);
exit(8);
}
void
call_panic(const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
panic_func(1, fmt, ap);
va_end(ap);
}
/* Allocate a new inode. */
struct uvnode *
lfs_valloc(struct lfs *fs, ino_t ino)
{
struct ubuf *bp, *cbp;
IFILE *ifp;
ino_t new_ino;
int error;
CLEANERINFO *cip;
/* Get the head of the freelist. */
LFS_GET_HEADFREE(fs, cip, cbp, &new_ino);
/*
* Remove the inode from the free list and write the new start
* of the free list into the superblock.
*/
LFS_IENTRY(ifp, fs, new_ino, bp);
if (lfs_if_getdaddr(fs, ifp) != LFS_UNUSED_DADDR)
panic("lfs_valloc: inuse inode %d on the free list", new_ino);
LFS_PUT_HEADFREE(fs, cip, cbp, lfs_if_getnextfree(fs, ifp));
brelse(bp, 0);
/* Extend IFILE so that the next lfs_valloc will succeed. */
if (lfs_sb_getfreehd(fs) == LFS_UNUSED_INUM) {
if ((error = extend_ifile(fs)) != 0) {
LFS_PUT_HEADFREE(fs, cip, cbp, new_ino);
return NULL;
}
}
/* Set superblock modified bit and increment file count. */
sbdirty();
lfs_sb_addnfiles(fs, 1);
return lfs_raw_vget(fs, ino, fs->lfs_devvp->v_fd, 0x0);
}
#ifdef IN_FSCK_LFS
void reset_maxino(ino_t);
#endif
/*
* Add a new block to the Ifile, to accommodate future file creations.
*/
int
extend_ifile(struct lfs *fs)
{
struct uvnode *vp;
struct inode *ip;
IFILE64 *ifp64;
IFILE32 *ifp32;
IFILE_V1 *ifp_v1;
struct ubuf *bp, *cbp;
daddr_t i, blkno, max;
ino_t oldlast;
CLEANERINFO *cip;
vp = fs->lfs_ivnode;
ip = VTOI(vp);
blkno = lfs_lblkno(fs, lfs_dino_getsize(fs, ip->i_din));
lfs_balloc(vp, lfs_dino_getsize(fs, ip->i_din), lfs_sb_getbsize(fs), &bp);
lfs_dino_setsize(fs, ip->i_din,
lfs_dino_getsize(fs, ip->i_din) + lfs_sb_getbsize(fs));
ip->i_state |= IN_MODIFIED;
i = (blkno - lfs_sb_getsegtabsz(fs) - lfs_sb_getcleansz(fs)) *
lfs_sb_getifpb(fs);
LFS_GET_HEADFREE(fs, cip, cbp, &oldlast);
LFS_PUT_HEADFREE(fs, cip, cbp, i);
max = i + lfs_sb_getifpb(fs);
lfs_sb_subbfree(fs, lfs_btofsb(fs, lfs_sb_getbsize(fs)));
if (fs->lfs_is64) {
for (ifp64 = (IFILE64 *)bp->b_data; i < max; ++ifp64) {
ifp64->if_version = 1;
ifp64->if_daddr = LFS_UNUSED_DADDR;
ifp64->if_nextfree = ++i;
}
ifp64--;
ifp64->if_nextfree = oldlast;
} else if (lfs_sb_getversion(fs) > 1) {
for (ifp32 = (IFILE32 *)bp->b_data; i < max; ++ifp32) {
ifp32->if_version = 1;
ifp32->if_daddr = LFS_UNUSED_DADDR;
ifp32->if_nextfree = ++i;
}
ifp32--;
ifp32->if_nextfree = oldlast;
} else {
for (ifp_v1 = (IFILE_V1 *)bp->b_data; i < max; ++ifp_v1) {
ifp_v1->if_version = 1;
ifp_v1->if_daddr = LFS_UNUSED_DADDR;
ifp_v1->if_nextfree = ++i;
}
ifp_v1--;
ifp_v1->if_nextfree = oldlast;
}
LFS_PUT_TAILFREE(fs, cip, cbp, max - 1);
LFS_BWRITE_LOG(bp);
#ifdef IN_FSCK_LFS
reset_maxino(((lfs_dino_getsize(fs, ip->i_din) >> lfs_sb_getbshift(fs))
- lfs_sb_getsegtabsz(fs)
- lfs_sb_getcleansz(fs)) * lfs_sb_getifpb(fs));
#endif
return 0;
}
/*
* Allocate a block, and to inode and filesystem block accounting for it
* and for any indirect blocks the may need to be created in order for
* this block to be created.
*
* Blocks which have never been accounted for (i.e., which "do not exist")
* have disk address 0, which is translated by ulfs_bmap to the special value
* UNASSIGNED == -1, as in the historical ULFS.
*
* Blocks which have been accounted for but which have not yet been written
* to disk are given the new special disk address UNWRITTEN == -2, so that
* they can be differentiated from completely new blocks.
*/
int
lfs_balloc(struct uvnode *vp, off_t startoffset, int iosize, struct ubuf **bpp)
{
int offset;
daddr_t daddr, idaddr;
struct ubuf *ibp, *bp;
struct inode *ip;
struct lfs *fs;
struct indir indirs[ULFS_NIADDR+2], *idp;
daddr_t lbn, lastblock;
int bcount;
int error, frags, i, nsize, osize, num;
ip = VTOI(vp);
fs = ip->i_lfs;
offset = lfs_blkoff(fs, startoffset);
lbn = lfs_lblkno(fs, startoffset);
/*
* Three cases: it's a block beyond the end of file, it's a block in
* the file that may or may not have been assigned a disk address or
* we're writing an entire block.
*
* Note, if the daddr is UNWRITTEN, the block already exists in
* the cache (it was read or written earlier). If so, make sure
* we don't count it as a new block or zero out its contents. If
* it did not, make sure we allocate any necessary indirect
* blocks.
*
* If we are writing a block beyond the end of the file, we need to
* check if the old last block was a fragment. If it was, we need
* to rewrite it.
*/
if (bpp)
*bpp = NULL;
/* Check for block beyond end of file and fragment extension needed. */
lastblock = lfs_lblkno(fs, lfs_dino_getsize(fs, ip->i_din));
if (lastblock < ULFS_NDADDR && lastblock < lbn) {
osize = lfs_blksize(fs, ip, lastblock);
if (osize < lfs_sb_getbsize(fs) && osize > 0) {
if ((error = lfs_fragextend(vp, osize, lfs_sb_getbsize(fs),
lastblock,
(bpp ? &bp : NULL))))
return (error);
lfs_dino_setsize(fs, ip->i_din, (lastblock + 1) * lfs_sb_getbsize(fs));
ip->i_state |= IN_CHANGE | IN_UPDATE;
if (bpp)
(void) VOP_BWRITE(bp);
}
}
/*
* If the block we are writing is a direct block, it's the last
* block in the file, and offset + iosize is less than a full
* block, we can write one or more fragments. There are two cases:
* the block is brand new and we should allocate it the correct
* size or it already exists and contains some fragments and
* may need to extend it.
*/
if (lbn < ULFS_NDADDR && lfs_lblkno(fs, lfs_dino_getsize(fs, ip->i_din)) <= lbn) {
osize = lfs_blksize(fs, ip, lbn);
nsize = lfs_fragroundup(fs, offset + iosize);
if (lfs_lblktosize(fs, lbn) >= lfs_dino_getsize(fs, ip->i_din)) {
/* Brand new block or fragment */
frags = lfs_numfrags(fs, nsize);
if (bpp) {
*bpp = bp = getblk(vp, lbn, nsize);
bp->b_blkno = UNWRITTEN;
}
ip->i_lfs_effnblks += frags;
lfs_sb_subbfree(fs, frags);
lfs_dino_setdb(fs, ip->i_din, lbn, UNWRITTEN);
} else {
if (nsize <= osize) {
/* No need to extend */
if (bpp && (error = bread(vp, lbn, osize,
0, &bp)))
return error;
} else {
/* Extend existing block */
if ((error =
lfs_fragextend(vp, osize, nsize, lbn,
(bpp ? &bp : NULL))))
return error;
}
if (bpp)
*bpp = bp;
}
return 0;
}
error = ulfs_bmaparray(fs, vp, lbn, &daddr, &indirs[0], &num);
if (error)
return (error);
/*
* Do byte accounting all at once, so we can gracefully fail *before*
* we start assigning blocks.
*/
frags = LFS_FSBTODB(fs, 1); /* frags = VFSTOULFS(vp->v_mount)->um_seqinc; */
bcount = 0;
if (daddr == UNASSIGNED) {
bcount = frags;
}
for (i = 1; i < num; ++i) {
if (!indirs[i].in_exists) {
bcount += frags;
}
}
lfs_sb_subbfree(fs, bcount);
ip->i_lfs_effnblks += bcount;
if (daddr == UNASSIGNED) {
if (num > 0 && lfs_dino_getib(fs, ip->i_din, indirs[0].in_off) == 0) {
lfs_dino_setib(fs, ip->i_din, indirs[0].in_off,
UNWRITTEN);
}
/*
* Create new indirect blocks if necessary
*/
if (num > 1) {
idaddr = lfs_dino_getib(fs, ip->i_din, indirs[0].in_off);
for (i = 1; i < num; ++i) {
ibp = getblk(vp, indirs[i].in_lbn,
lfs_sb_getbsize(fs));
if (!indirs[i].in_exists) {
memset(ibp->b_data, 0, ibp->b_bufsize);
ibp->b_blkno = UNWRITTEN;
} else if (!(ibp->b_flags & (B_DELWRI | B_DONE))) {
ibp->b_blkno = LFS_FSBTODB(fs, idaddr);
ibp->b_flags |= B_READ;
VOP_STRATEGY(ibp);
}
/*
* This block exists, but the next one may not.
* If that is the case mark it UNWRITTEN to
* keep the accounting straight.
*/
if (lfs_iblock_get(fs, ibp->b_data,
indirs[i].in_off) == 0)
lfs_iblock_set(fs, ibp->b_data,
indirs[i].in_off, UNWRITTEN);
idaddr = lfs_iblock_get(fs, ibp->b_data,
indirs[i].in_off);
if ((error = VOP_BWRITE(ibp)))
return error;
}
}
}
/*
* Get the existing block from the cache, if requested.
*/
if (bpp)
*bpp = bp = getblk(vp, lbn, lfs_blksize(fs, ip, lbn));
/*
* The block we are writing may be a brand new block
* in which case we need to do accounting.
*
* We can tell a truly new block because ulfs_bmaparray will say
* it is UNASSIGNED. Once we allocate it we will assign it the
* disk address UNWRITTEN.
*/
if (daddr == UNASSIGNED) {
if (bpp) {
/* Note the new address */
bp->b_blkno = UNWRITTEN;
}
switch (num) {
case 0:
lfs_dino_setdb(fs, ip->i_din, lbn, UNWRITTEN);
break;
case 1:
lfs_dino_setib(fs, ip->i_din, indirs[0].in_off,
UNWRITTEN);
break;
default:
idp = &indirs[num - 1];
if (bread(vp, idp->in_lbn, lfs_sb_getbsize(fs), 0, &ibp))
panic("lfs_balloc: bread bno %lld",
(long long)idp->in_lbn);
lfs_iblock_set(fs, ibp->b_data, idp->in_off,
UNWRITTEN);
VOP_BWRITE(ibp);
}
} else if (bpp && !(bp->b_flags & (B_DONE|B_DELWRI))) {
/*
* Not a brand new block, also not in the cache;
* read it in from disk.
*/
if (iosize == lfs_sb_getbsize(fs))
/* Optimization: I/O is unnecessary. */
bp->b_blkno = daddr;
else {
/*
* We need to read the block to preserve the
* existing bytes.
*/
bp->b_blkno = daddr;
bp->b_flags |= B_READ;
VOP_STRATEGY(bp);
return 0;
}
}
return (0);
}
int
lfs_fragextend(struct uvnode *vp, int osize, int nsize, daddr_t lbn,
struct ubuf **bpp)
{
struct inode *ip;
struct lfs *fs;
int frags;
int error;
ip = VTOI(vp);
fs = ip->i_lfs;
frags = (long)lfs_numfrags(fs, nsize - osize);
error = 0;
/*
* If we are not asked to actually return the block, all we need
* to do is allocate space for it. UBC will handle dirtying the
* appropriate things and making sure it all goes to disk.
* Don't bother to read in that case.
*/
if (bpp && (error = bread(vp, lbn, osize, 0, bpp))) {
brelse(*bpp, 0);
goto out;
}
lfs_sb_subbfree(fs, frags);
ip->i_lfs_effnblks += frags;
ip->i_state |= IN_CHANGE | IN_UPDATE;
if (bpp) {
(*bpp)->b_data = erealloc((*bpp)->b_data, nsize);
(void)memset((*bpp)->b_data + osize, 0, nsize - osize);
}
out:
return (error);
}