Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
/*	$NetBSD: bignum.c,v 1.2 2018/02/08 09:05:17 dholland Exp $	*/

/*-
 * Copyright (c) 2012 Alistair Crooks <agc@NetBSD.org>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 */

#include <sys/types.h>
#include <sys/param.h>

#include <limits.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

#include "bn.h"

/**************************************************************************/

/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 */

#define MP_PREC		32
#define DIGIT_BIT	28
#define MP_MASK          ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1))

#define MP_WARRAY	/*LINTED*/(1U << (((sizeof(mp_word) * CHAR_BIT) - (2 * DIGIT_BIT) + 1)))

#define MP_NO		0
#define MP_YES		1

#ifndef USE_ARG
#define USE_ARG(x)	/*LINTED*/(void)&(x)
#endif

#ifndef __arraycount
#define	__arraycount(__x)	(sizeof(__x) / sizeof(__x[0]))
#endif

#ifndef MIN
#define MIN(a,b)	(((a)<(b))?(a):(b))
#endif

#define MP_ISZERO(a) (((a)->used == 0) ? MP_YES : MP_NO)

typedef int           mp_err;

static int signed_multiply(mp_int * a, mp_int * b, mp_int * c);
static int square(mp_int * a, mp_int * b);

static int signed_subtract_word(mp_int *a, mp_digit b, mp_int *c);

static inline void *
allocate(size_t n, size_t m)
{
	return calloc(n, m);
}

static inline void
deallocate(void *v, size_t sz)
{
	USE_ARG(sz);
	free(v);
}

/* set to zero */
static inline void
mp_zero(mp_int *a)
{
	a->sign = MP_ZPOS;
	a->used = 0;
	memset(a->dp, 0x0, a->alloc * sizeof(*a->dp));
}

/* grow as required */
static int
mp_grow(mp_int *a, int size)
{
	mp_digit *tmp;

	/* if the alloc size is smaller alloc more ram */
	if (a->alloc < size) {
		/* ensure there are always at least MP_PREC digits extra on top */
		size += (MP_PREC * 2) - (size % MP_PREC);

		/* reallocate the array a->dp
		*
		* We store the return in a temporary variable
		* in case the operation failed we don't want
		* to overwrite the dp member of a.
		*/
		tmp = realloc(a->dp, sizeof(*tmp) * size);
		if (tmp == NULL) {
			/* reallocation failed but "a" is still valid [can be freed] */
			return MP_MEM;
		}

		/* reallocation succeeded so set a->dp */
		a->dp = tmp;
		/* zero excess digits */
		memset(&a->dp[a->alloc], 0x0, (size - a->alloc) * sizeof(*a->dp));
		a->alloc = size;
	}
	return MP_OKAY;
}

/* shift left a certain amount of digits */
static int
lshift_digits(mp_int * a, int b)
{
	mp_digit *top, *bottom;
	int     x, res;

	/* if its less than zero return */
	if (b <= 0) {
		return MP_OKAY;
	}

	/* grow to fit the new digits */
	if (a->alloc < a->used + b) {
		if ((res = mp_grow(a, a->used + b)) != MP_OKAY) {
			return res;
		}
	}

	/* increment the used by the shift amount then copy upwards */
	a->used += b;

	/* top */
	top = a->dp + a->used - 1;

	/* base */
	bottom = a->dp + a->used - 1 - b;

	/* much like rshift_digits this is implemented using a sliding window
	* except the window goes the otherway around.  Copying from
	* the bottom to the top.
	*/
	for (x = a->used - 1; x >= b; x--) {
		*top-- = *bottom--;
	}

	/* zero the lower digits */
	memset(a->dp, 0x0, b * sizeof(*a->dp));
	return MP_OKAY;
}

/* trim unused digits 
 *
 * This is used to ensure that leading zero digits are
 * trimed and the leading "used" digit will be non-zero
 * Typically very fast.  Also fixes the sign if there
 * are no more leading digits
 */
static void
trim_unused_digits(mp_int * a)
{
	/* decrease used while the most significant digit is
	* zero.
	*/
	while (a->used > 0 && a->dp[a->used - 1] == 0) {
		a->used -= 1;
	}
	/* reset the sign flag if used == 0 */
	if (a->used == 0) {
		a->sign = MP_ZPOS;
	}
}

/* copy, b = a */
static int
mp_copy(BIGNUM *a, BIGNUM *b)
{
	int	res;

	/* if dst == src do nothing */
	if (a == b) {
		return MP_OKAY;
	}
	if (a == NULL || b == NULL) {
		return MP_VAL;
	}

	/* grow dest */
	if (b->alloc < a->used) {
		if ((res = mp_grow(b, a->used)) != MP_OKAY) {
			return res;
		}
	}

	memcpy(b->dp, a->dp, a->used * sizeof(*b->dp));
	if (b->used > a->used) {
		memset(&b->dp[a->used], 0x0, (b->used - a->used) * sizeof(*b->dp));
	}

	/* copy used count and sign */
	b->used = a->used;
	b->sign = a->sign;
	return MP_OKAY;
}

/* shift left by a certain bit count */
static int
lshift_bits(mp_int *a, int b, mp_int *c)
{
	mp_digit d;
	int      res;

	/* copy */
	if (a != c) {
		if ((res = mp_copy(a, c)) != MP_OKAY) {
			return res;
		}
	}

	if (c->alloc < (int)(c->used + b/DIGIT_BIT + 1)) {
		if ((res = mp_grow(c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) {
			return res;
		}
	}

	/* shift by as many digits in the bit count */
	if (b >= (int)DIGIT_BIT) {
		if ((res = lshift_digits(c, b / DIGIT_BIT)) != MP_OKAY) {
			return res;
		}
	}

	/* shift any bit count < DIGIT_BIT */
	d = (mp_digit) (b % DIGIT_BIT);
	if (d != 0) {
		mp_digit *tmpc, shift, mask, carry, rr;
		int x;

		/* bitmask for carries */
		mask = (((mp_digit)1) << d) - 1;

		/* shift for msbs */
		shift = DIGIT_BIT - d;

		/* alias */
		tmpc = c->dp;

		/* carry */
		carry = 0;
		for (x = 0; x < c->used; x++) {
			/* get the higher bits of the current word */
			rr = (*tmpc >> shift) & mask;

			/* shift the current word and OR in the carry */
			*tmpc = ((*tmpc << d) | carry) & MP_MASK;
			++tmpc;

			/* set the carry to the carry bits of the current word */
			carry = rr;
		}

		/* set final carry */
		if (carry != 0) {
			c->dp[c->used++] = carry;
		}
	}
	trim_unused_digits(c);
	return MP_OKAY;
}

/* reads a unsigned char array, assumes the msb is stored first [big endian] */
static int
mp_read_unsigned_bin(mp_int *a, const uint8_t *b, int c)
{
	int     res;

	/* make sure there are at least two digits */
	if (a->alloc < 2) {
		if ((res = mp_grow(a, 2)) != MP_OKAY) {
			return res;
		}
	}

	/* zero the int */
	mp_zero(a);

	/* read the bytes in */
	while (c-- > 0) {
		if ((res = lshift_bits(a, 8, a)) != MP_OKAY) {
			return res;
		}

		a->dp[0] |= *b++;
		a->used += 1;
	}
	trim_unused_digits(a);
	return MP_OKAY;
}

/* returns the number of bits in an mpi */
static int
mp_count_bits(const mp_int *a)
{
	int     r;
	mp_digit q;

	/* shortcut */
	if (a->used == 0) {
		return 0;
	}

	/* get number of digits and add that */
	r = (a->used - 1) * DIGIT_BIT;

	/* take the last digit and count the bits in it */
	for (q = a->dp[a->used - 1]; q > ((mp_digit) 0) ; r++) {
		q >>= ((mp_digit) 1);
	}
	return r;
}

/* compare maginitude of two ints (unsigned) */
static int
compare_magnitude(mp_int * a, mp_int * b)
{
	int     n;
	mp_digit *tmpa, *tmpb;

	/* compare based on # of non-zero digits */
	if (a->used > b->used) {
		return MP_GT;
	}

	if (a->used < b->used) {
		return MP_LT;
	}

	/* alias for a */
	tmpa = a->dp + (a->used - 1);

	/* alias for b */
	tmpb = b->dp + (a->used - 1);

	/* compare based on digits  */
	for (n = 0; n < a->used; ++n, --tmpa, --tmpb) {
		if (*tmpa > *tmpb) {
			return MP_GT;
		}

		if (*tmpa < *tmpb) {
			return MP_LT;
		}
	}
	return MP_EQ;
}

/* compare two ints (signed)*/
static int
signed_compare(mp_int * a, mp_int * b)
{
	/* compare based on sign */
	if (a->sign != b->sign) {
		return (a->sign == MP_NEG) ? MP_LT : MP_GT;
	}
	return (a->sign == MP_NEG) ? compare_magnitude(b, a) : compare_magnitude(a, b);
}

/* get the size for an unsigned equivalent */
static int
mp_unsigned_bin_size(mp_int * a)
{
	int     size = mp_count_bits(a);

	return (size / 8 + ((size & 7) != 0 ? 1 : 0));
}

/* init a new mp_int */
static int
mp_init(mp_int * a)
{
	/* allocate memory required and clear it */
	a->dp = allocate(1, sizeof(*a->dp) * MP_PREC);
	if (a->dp == NULL) {
		return MP_MEM;
	}

	/* set the digits to zero */
	memset(a->dp, 0x0, MP_PREC * sizeof(*a->dp));

	/* set the used to zero, allocated digits to the default precision
	* and sign to positive */
	a->used  = 0;
	a->alloc = MP_PREC;
	a->sign  = MP_ZPOS;

	return MP_OKAY;
}

/* clear one (frees)  */
static void
mp_clear(mp_int * a)
{
	/* only do anything if a hasn't been freed previously */
	if (a->dp != NULL) {
		memset(a->dp, 0x0, a->used * sizeof(*a->dp));

		/* free ram */
		deallocate(a->dp, (size_t)a->alloc);

		/* reset members to make debugging easier */
		a->dp = NULL;
		a->alloc = a->used = 0;
		a->sign  = MP_ZPOS;
	}
}

static int
mp_init_multi(mp_int *mp, ...) 
{
	mp_err res = MP_OKAY;      /* Assume ok until proven otherwise */
	int n = 0;                 /* Number of ok inits */
	mp_int* cur_arg = mp;
	va_list args;

	va_start(args, mp);        /* init args to next argument from caller */
	while (cur_arg != NULL) {
		if (mp_init(cur_arg) != MP_OKAY) {
			/* Oops - error! Back-track and mp_clear what we already
			succeeded in init-ing, then return error.
			*/
			va_list clean_args;

			/* end the current list */
			va_end(args);

			/* now start cleaning up */            
			cur_arg = mp;
			va_start(clean_args, mp);
			while (n--) {
				mp_clear(cur_arg);
				cur_arg = va_arg(clean_args, mp_int*);
			}
			va_end(clean_args);
			res = MP_MEM;
			break;
		}
		n++;
		cur_arg = va_arg(args, mp_int*);
	}
	va_end(args);
	return res;                /* Assumed ok, if error flagged above. */
}

/* init an mp_init for a given size */
static int
mp_init_size(mp_int * a, int size)
{
	/* pad size so there are always extra digits */
	size += (MP_PREC * 2) - (size % MP_PREC);	

	/* alloc mem */
	a->dp = allocate(1, sizeof(*a->dp) * size);
	if (a->dp == NULL) {
		return MP_MEM;
	}

	/* set the members */
	a->used  = 0;
	a->alloc = size;
	a->sign  = MP_ZPOS;

	/* zero the digits */
	memset(a->dp, 0x0, size * sizeof(*a->dp));
	return MP_OKAY;
}

/* creates "a" then copies b into it */
static int
mp_init_copy(mp_int * a, mp_int * b)
{
	int     res;

	if ((res = mp_init(a)) != MP_OKAY) {
		return res;
	}
	return mp_copy(b, a);
}

/* low level addition, based on HAC pp.594, Algorithm 14.7 */
static int
basic_add(mp_int * a, mp_int * b, mp_int * c)
{
	mp_int *x;
	int     olduse, res, min, max;

	/* find sizes, we let |a| <= |b| which means we have to sort
	* them.  "x" will point to the input with the most digits
	*/
	if (a->used > b->used) {
		min = b->used;
		max = a->used;
		x = a;
	} else {
		min = a->used;
		max = b->used;
		x = b;
	}

	/* init result */
	if (c->alloc < max + 1) {
		if ((res = mp_grow(c, max + 1)) != MP_OKAY) {
			return res;
		}
	}

	/* get old used digit count and set new one */
	olduse = c->used;
	c->used = max + 1;

	{
		mp_digit carry, *tmpa, *tmpb, *tmpc;
		int i;

		/* alias for digit pointers */

		/* first input */
		tmpa = a->dp;

		/* second input */
		tmpb = b->dp;

		/* destination */
		tmpc = c->dp;

		/* zero the carry */
		carry = 0;
		for (i = 0; i < min; i++) {
			/* Compute the sum at one digit, T[i] = A[i] + B[i] + U */
			*tmpc = *tmpa++ + *tmpb++ + carry;

			/* U = carry bit of T[i] */
			carry = *tmpc >> ((mp_digit)DIGIT_BIT);

			/* take away carry bit from T[i] */
			*tmpc++ &= MP_MASK;
		}

		/* now copy higher words if any, that is in A+B 
		* if A or B has more digits add those in 
		*/
		if (min != max) {
			for (; i < max; i++) {
				/* T[i] = X[i] + U */
				*tmpc = x->dp[i] + carry;

				/* U = carry bit of T[i] */
				carry = *tmpc >> ((mp_digit)DIGIT_BIT);

				/* take away carry bit from T[i] */
				*tmpc++ &= MP_MASK;
			}
		}

		/* add carry */
		*tmpc++ = carry;

		/* clear digits above oldused */
		if (olduse > c->used) {
			memset(tmpc, 0x0, (olduse - c->used) * sizeof(*c->dp));
		}
	}

	trim_unused_digits(c);
	return MP_OKAY;
}

/* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */
static int
basic_subtract(mp_int * a, mp_int * b, mp_int * c)
{
	int     olduse, res, min, max;

	/* find sizes */
	min = b->used;
	max = a->used;

	/* init result */
	if (c->alloc < max) {
		if ((res = mp_grow(c, max)) != MP_OKAY) {
			return res;
		}
	}
	olduse = c->used;
	c->used = max;

	{
		mp_digit carry, *tmpa, *tmpb, *tmpc;
		int i;

		/* alias for digit pointers */
		tmpa = a->dp;
		tmpb = b->dp;
		tmpc = c->dp;

		/* set carry to zero */
		carry = 0;
		for (i = 0; i < min; i++) {
			/* T[i] = A[i] - B[i] - U */
			*tmpc = *tmpa++ - *tmpb++ - carry;

			/* U = carry bit of T[i]
			* Note this saves performing an AND operation since
			* if a carry does occur it will propagate all the way to the
			* MSB.  As a result a single shift is enough to get the carry
			*/
			carry = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof(mp_digit) - 1));

			/* Clear carry from T[i] */
			*tmpc++ &= MP_MASK;
		}

		/* now copy higher words if any, e.g. if A has more digits than B  */
		for (; i < max; i++) {
			/* T[i] = A[i] - U */
			*tmpc = *tmpa++ - carry;

			/* U = carry bit of T[i] */
			carry = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof(mp_digit) - 1));

			/* Clear carry from T[i] */
			*tmpc++ &= MP_MASK;
		}

		/* clear digits above used (since we may not have grown result above) */
		if (olduse > c->used) {
			memset(tmpc, 0x0, (olduse - c->used) * sizeof(*a->dp));
		}
	}

	trim_unused_digits(c);
	return MP_OKAY;
}

/* high level subtraction (handles signs) */
static int
signed_subtract(mp_int * a, mp_int * b, mp_int * c)
{
	int     sa, sb, res;

	sa = a->sign;
	sb = b->sign;

	if (sa != sb) {
		/* subtract a negative from a positive, OR */
		/* subtract a positive from a negative. */
		/* In either case, ADD their magnitudes, */
		/* and use the sign of the first number. */
		c->sign = sa;
		res = basic_add(a, b, c);
	} else {
		/* subtract a positive from a positive, OR */
		/* subtract a negative from a negative. */
		/* First, take the difference between their */
		/* magnitudes, then... */
		if (compare_magnitude(a, b) != MP_LT) {
			/* Copy the sign from the first */
			c->sign = sa;
			/* The first has a larger or equal magnitude */
			res = basic_subtract(a, b, c);
		} else {
			/* The result has the *opposite* sign from */
			/* the first number. */
			c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS;
			/* The second has a larger magnitude */
			res = basic_subtract(b, a, c);
		}
	}
	return res;
}

/* shift right a certain amount of digits */
static int
rshift_digits(mp_int * a, int b)
{
	/* if b <= 0 then ignore it */
	if (b <= 0) {
		return 0;
	}

	/* if b > used then simply zero it and return */
	if (a->used <= b) {
		mp_zero(a);
		return 0;
	}

	/* this is implemented as a sliding window where 
	* the window is b-digits long and digits from 
	* the top of the window are copied to the bottom
	*
	* e.g.

	b-2 | b-1 | b0 | b1 | b2 | ... | bb |   ---->
		 /\                   |      ---->
		  \-------------------/      ---->
	*/
	memmove(a->dp, &a->dp[b], (a->used - b) * sizeof(*a->dp));
	memset(&a->dp[a->used - b], 0x0, b * sizeof(*a->dp));

	/* remove excess digits */
	a->used -= b;
	return 1;
}

/* multiply by a digit */
static int
multiply_digit(mp_int * a, mp_digit b, mp_int * c)
{
	mp_digit carry, *tmpa, *tmpc;
	mp_word  r;
	int      ix, res, olduse;

	/* make sure c is big enough to hold a*b */
	if (c->alloc < a->used + 1) {
		if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
			return res;
		}
	}

	/* get the original destinations used count */
	olduse = c->used;

	/* set the sign */
	c->sign = a->sign;

	/* alias for a->dp [source] */
	tmpa = a->dp;

	/* alias for c->dp [dest] */
	tmpc = c->dp;

	/* zero carry */
	carry = 0;

	/* compute columns */
	for (ix = 0; ix < a->used; ix++) {
		/* compute product and carry sum for this term */
		r = ((mp_word) carry) + ((mp_word)*tmpa++) * ((mp_word)b);

		/* mask off higher bits to get a single digit */
		*tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK));

		/* send carry into next iteration */
		carry = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
	}

	/* store final carry [if any] and increment ix offset  */
	*tmpc++ = carry;
	++ix;
	if (olduse > ix) {
		memset(tmpc, 0x0, (olduse - ix) * sizeof(*tmpc));
	}

	/* set used count */
	c->used = a->used + 1;
	trim_unused_digits(c);

	return MP_OKAY;
}

/* high level addition (handles signs) */
static int
signed_add(mp_int * a, mp_int * b, mp_int * c)
{
	int     asign, bsign, res;

	/* get sign of both inputs */
	asign = a->sign;
	bsign = b->sign;

	/* handle two cases, not four */
	if (asign == bsign) {
		/* both positive or both negative */
		/* add their magnitudes, copy the sign */
		c->sign = asign;
		res = basic_add(a, b, c);
	} else {
		/* one positive, the other negative */
		/* subtract the one with the greater magnitude from */
		/* the one of the lesser magnitude.  The result gets */
		/* the sign of the one with the greater magnitude. */
		if (compare_magnitude(a, b) == MP_LT) {
			c->sign = bsign;
			res = basic_subtract(b, a, c);
		} else {
			c->sign = asign;
			res = basic_subtract(a, b, c);
		}
	}
	return res;
}

/* swap the elements of two integers, for cases where you can't simply swap the 
 * mp_int pointers around
 */
static void
mp_exch(mp_int *a, mp_int *b)
{
	mp_int  t;

	t  = *a;
	*a = *b;
	*b = t;
}

/* calc a value mod 2**b */
static int
modulo_2_to_power(mp_int * a, int b, mp_int * c)
{
	int     x, res;

	/* if b is <= 0 then zero the int */
	if (b <= 0) {
		mp_zero(c);
		return MP_OKAY;
	}

	/* if the modulus is larger than the value than return */
	if (b >= (int) (a->used * DIGIT_BIT)) {
		res = mp_copy(a, c);
		return res;
	}

	/* copy */
	if ((res = mp_copy(a, c)) != MP_OKAY) {
		return res;
	}

	/* zero digits above the last digit of the modulus */
	for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++) {
		c->dp[x] = 0;
	}
	/* clear the digit that is not completely outside/inside the modulus */
	c->dp[b / DIGIT_BIT] &=
		(mp_digit) ((((mp_digit) 1) << (((mp_digit) b) % DIGIT_BIT)) - ((mp_digit) 1));
	trim_unused_digits(c);
	return MP_OKAY;
}

/* shift right by a certain bit count (store quotient in c, optional remainder in d) */
static int
rshift_bits(mp_int * a, int b, mp_int * c, mp_int * d)
{
	mp_digit D, r, rr;
	int     x, res;
	mp_int  t;


	/* if the shift count is <= 0 then we do no work */
	if (b <= 0) {
		res = mp_copy(a, c);
		if (d != NULL) {
			mp_zero(d);
		}
		return res;
	}

	if ((res = mp_init(&t)) != MP_OKAY) {
		return res;
	}

	/* get the remainder */
	if (d != NULL) {
		if ((res = modulo_2_to_power(a, b, &t)) != MP_OKAY) {
			mp_clear(&t);
			return res;
		}
	}

	/* copy */
	if ((res = mp_copy(a, c)) != MP_OKAY) {
		mp_clear(&t);
		return res;
	}

	/* shift by as many digits in the bit count */
	if (b >= (int)DIGIT_BIT) {
		rshift_digits(c, b / DIGIT_BIT);
	}

	/* shift any bit count < DIGIT_BIT */
	D = (mp_digit) (b % DIGIT_BIT);
	if (D != 0) {
		mp_digit *tmpc, mask, shift;

		/* mask */
		mask = (((mp_digit)1) << D) - 1;

		/* shift for lsb */
		shift = DIGIT_BIT - D;

		/* alias */
		tmpc = c->dp + (c->used - 1);

		/* carry */
		r = 0;
		for (x = c->used - 1; x >= 0; x--) {
			/* get the lower  bits of this word in a temp */
			rr = *tmpc & mask;

			/* shift the current word and mix in the carry bits from the previous word */
			*tmpc = (*tmpc >> D) | (r << shift);
			--tmpc;

			/* set the carry to the carry bits of the current word found above */
			r = rr;
		}
	}
	trim_unused_digits(c);
	if (d != NULL) {
		mp_exch(&t, d);
	}
	mp_clear(&t);
	return MP_OKAY;
}

/* integer signed division. 
 * c*b + d == a [e.g. a/b, c=quotient, d=remainder]
 * HAC pp.598 Algorithm 14.20
 *
 * Note that the description in HAC is horribly 
 * incomplete.  For example, it doesn't consider 
 * the case where digits are removed from 'x' in 
 * the inner loop.  It also doesn't consider the 
 * case that y has fewer than three digits, etc..
 *
 * The overall algorithm is as described as 
 * 14.20 from HAC but fixed to treat these cases.
*/
static int
signed_divide(mp_int *c, mp_int *d, mp_int *a, mp_int *b)
{
	mp_int  q, x, y, t1, t2;
	int     res, n, t, i, norm, neg;

	/* is divisor zero ? */
	if (MP_ISZERO(b) == MP_YES) {
		return MP_VAL;
	}

	/* if a < b then q=0, r = a */
	if (compare_magnitude(a, b) == MP_LT) {
		if (d != NULL) {
			res = mp_copy(a, d);
		} else {
			res = MP_OKAY;
		}
		if (c != NULL) {
			mp_zero(c);
		}
		return res;
	}

	if ((res = mp_init_size(&q, a->used + 2)) != MP_OKAY) {
		return res;
	}
	q.used = a->used + 2;

	if ((res = mp_init(&t1)) != MP_OKAY) {
		goto LBL_Q;
	}

	if ((res = mp_init(&t2)) != MP_OKAY) {
		goto LBL_T1;
	}

	if ((res = mp_init_copy(&x, a)) != MP_OKAY) {
		goto LBL_T2;
	}

	if ((res = mp_init_copy(&y, b)) != MP_OKAY) {
		goto LBL_X;
	}

	/* fix the sign */
	neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
	x.sign = y.sign = MP_ZPOS;

	/* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */
	norm = mp_count_bits(&y) % DIGIT_BIT;
	if (norm < (int)(DIGIT_BIT-1)) {
		norm = (DIGIT_BIT-1) - norm;
		if ((res = lshift_bits(&x, norm, &x)) != MP_OKAY) {
			goto LBL_Y;
		}
		if ((res = lshift_bits(&y, norm, &y)) != MP_OKAY) {
			goto LBL_Y;
		}
	} else {
		norm = 0;
	}

	/* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
	n = x.used - 1;
	t = y.used - 1;

	/* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
	if ((res = lshift_digits(&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */
		goto LBL_Y;
	}

	while (signed_compare(&x, &y) != MP_LT) {
		++(q.dp[n - t]);
		if ((res = signed_subtract(&x, &y, &x)) != MP_OKAY) {
			goto LBL_Y;
		}
	}

	/* reset y by shifting it back down */
	rshift_digits(&y, n - t);

	/* step 3. for i from n down to (t + 1) */
	for (i = n; i >= (t + 1); i--) {
		if (i > x.used) {
			continue;
		}

		/* step 3.1 if xi == yt then set q{i-t-1} to b-1, 
		* otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
		if (x.dp[i] == y.dp[t]) {
			q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);
		} else {
			mp_word tmp;
			tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT);
			tmp |= ((mp_word) x.dp[i - 1]);
			tmp /= ((mp_word) y.dp[t]);
			if (tmp > (mp_word) MP_MASK) {
				tmp = MP_MASK;
			}
			q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
		}

		/* while (q{i-t-1} * (yt * b + y{t-1})) > 
		     xi * b**2 + xi-1 * b + xi-2 
			do q{i-t-1} -= 1; 
		*/
		q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;
		do {
			q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK;

			/* find left hand */
			mp_zero(&t1);
			t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1];
			t1.dp[1] = y.dp[t];
			t1.used = 2;
			if ((res = multiply_digit(&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) {
				goto LBL_Y;
			}

			/* find right hand */
			t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2];
			t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1];
			t2.dp[2] = x.dp[i];
			t2.used = 3;
		} while (compare_magnitude(&t1, &t2) == MP_GT);

		/* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
		if ((res = multiply_digit(&y, q.dp[i - t - 1], &t1)) != MP_OKAY) {
			goto LBL_Y;
		}

		if ((res = lshift_digits(&t1, i - t - 1)) != MP_OKAY) {
			goto LBL_Y;
		}

		if ((res = signed_subtract(&x, &t1, &x)) != MP_OKAY) {
			goto LBL_Y;
		}

		/* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
		if (x.sign == MP_NEG) {
			if ((res = mp_copy(&y, &t1)) != MP_OKAY) {
				goto LBL_Y;
			}
			if ((res = lshift_digits(&t1, i - t - 1)) != MP_OKAY) {
				goto LBL_Y;
			}
			if ((res = signed_add(&x, &t1, &x)) != MP_OKAY) {
				goto LBL_Y;
			}

			q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;
		}
	}

	/* now q is the quotient and x is the remainder 
	* [which we have to normalize] 
	*/

	/* get sign before writing to c */
	x.sign = x.used == 0 ? MP_ZPOS : a->sign;

	if (c != NULL) {
		trim_unused_digits(&q);
		mp_exch(&q, c);
		c->sign = neg;
	}

	if (d != NULL) {
		rshift_bits(&x, norm, &x, NULL);
		mp_exch(&x, d);
	}

	res = MP_OKAY;

LBL_Y:
	mp_clear(&y);
LBL_X:
	mp_clear(&x);
LBL_T2:
	mp_clear(&t2);
LBL_T1:
	mp_clear(&t1);
LBL_Q:
	mp_clear(&q);
	return res;
}

/* c = a mod b, 0 <= c < b */
static int
modulo(mp_int * a, mp_int * b, mp_int * c)
{
	mp_int  t;
	int     res;

	if ((res = mp_init(&t)) != MP_OKAY) {
		return res;
	}

	if ((res = signed_divide(NULL, &t, a, b)) != MP_OKAY) {
		mp_clear(&t);
		return res;
	}

	if (t.sign != b->sign) {
		res = signed_add(b, &t, c);
	} else {
		res = MP_OKAY;
		mp_exch(&t, c);
	}

	mp_clear(&t);
	return res;
}

/* set to a digit */
static void
set_word(mp_int * a, mp_digit b)
{
	mp_zero(a);
	a->dp[0] = b & MP_MASK;
	a->used = (a->dp[0] != 0) ? 1 : 0;
}

/* b = a/2 */
static int
half(mp_int * a, mp_int * b)
{
	int     x, res, oldused;

	/* copy */
	if (b->alloc < a->used) {
		if ((res = mp_grow(b, a->used)) != MP_OKAY) {
			return res;
		}
	}

	oldused = b->used;
	b->used = a->used;
	{
		mp_digit r, rr, *tmpa, *tmpb;

		/* source alias */
		tmpa = a->dp + b->used - 1;

		/* dest alias */
		tmpb = b->dp + b->used - 1;

		/* carry */
		r = 0;
		for (x = b->used - 1; x >= 0; x--) {
			/* get the carry for the next iteration */
			rr = *tmpa & 1;

			/* shift the current digit, add in carry and store */
			*tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1));

			/* forward carry to next iteration */
			r = rr;
		}

		/* zero excess digits */
		tmpb = b->dp + b->used;
		for (x = b->used; x < oldused; x++) {
			*tmpb++ = 0;
		}
	}
	b->sign = a->sign;
	trim_unused_digits(b);
	return MP_OKAY;
}

/* compare a digit */
static int
compare_digit(mp_int * a, mp_digit b)
{
	/* compare based on sign */
	if (a->sign == MP_NEG) {
		return MP_LT;
	}

	/* compare based on magnitude */
	if (a->used > 1) {
		return MP_GT;
	}

	/* compare the only digit of a to b */
	if (a->dp[0] > b) {
		return MP_GT;
	} else if (a->dp[0] < b) {
		return MP_LT;
	} else {
		return MP_EQ;
	}
}

static void
mp_clear_multi(mp_int *mp, ...) 
{
	mp_int* next_mp = mp;
	va_list args;

	va_start(args, mp);
	while (next_mp != NULL) {
		mp_clear(next_mp);
		next_mp = va_arg(args, mp_int*);
	}
	va_end(args);
}

/* computes the modular inverse via binary extended euclidean algorithm, 
 * that is c = 1/a mod b 
 *
 * Based on slow invmod except this is optimized for the case where b is 
 * odd as per HAC Note 14.64 on pp. 610
 */
static int
fast_modular_inverse(mp_int * a, mp_int * b, mp_int * c)
{
	mp_int  x, y, u, v, B, D;
	int     res, neg;

	/* 2. [modified] b must be odd   */
	if (MP_ISZERO(b) == MP_YES) {
		return MP_VAL;
	}

	/* init all our temps */
	if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) {
		return res;
	}

	/* x == modulus, y == value to invert */
	if ((res = mp_copy(b, &x)) != MP_OKAY) {
		goto LBL_ERR;
	}

	/* we need y = |a| */
	if ((res = modulo(a, b, &y)) != MP_OKAY) {
		goto LBL_ERR;
	}

	/* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
	if ((res = mp_copy(&x, &u)) != MP_OKAY) {
		goto LBL_ERR;
	}
	if ((res = mp_copy(&y, &v)) != MP_OKAY) {
		goto LBL_ERR;
	}
	set_word(&D, 1);

top:
	/* 4.  while u is even do */
	while (BN_is_even(&u) == 1) {
		/* 4.1 u = u/2 */
		if ((res = half(&u, &u)) != MP_OKAY) {
			goto LBL_ERR;
		}
		/* 4.2 if B is odd then */
		if (BN_is_odd(&B) == 1) {
			if ((res = signed_subtract(&B, &x, &B)) != MP_OKAY) {
				goto LBL_ERR;
			}
		}
		/* B = B/2 */
		if ((res = half(&B, &B)) != MP_OKAY) {
			goto LBL_ERR;
		}
	}

	/* 5.  while v is even do */
	while (BN_is_even(&v) == 1) {
		/* 5.1 v = v/2 */
		if ((res = half(&v, &v)) != MP_OKAY) {
			goto LBL_ERR;
		}
		/* 5.2 if D is odd then */
		if (BN_is_odd(&D) == 1) {
			/* D = (D-x)/2 */
			if ((res = signed_subtract(&D, &x, &D)) != MP_OKAY) {
				goto LBL_ERR;
			}
		}
		/* D = D/2 */
		if ((res = half(&D, &D)) != MP_OKAY) {
			goto LBL_ERR;
		}
	}

	/* 6.  if u >= v then */
	if (signed_compare(&u, &v) != MP_LT) {
		/* u = u - v, B = B - D */
		if ((res = signed_subtract(&u, &v, &u)) != MP_OKAY) {
			goto LBL_ERR;
		}

		if ((res = signed_subtract(&B, &D, &B)) != MP_OKAY) {
			goto LBL_ERR;
		}
	} else {
		/* v - v - u, D = D - B */
		if ((res = signed_subtract(&v, &u, &v)) != MP_OKAY) {
			goto LBL_ERR;
		}

		if ((res = signed_subtract(&D, &B, &D)) != MP_OKAY) {
			goto LBL_ERR;
		}
	}

	/* if not zero goto step 4 */
	if (MP_ISZERO(&u) == MP_NO) {
		goto top;
	}

	/* now a = C, b = D, gcd == g*v */

	/* if v != 1 then there is no inverse */
	if (compare_digit(&v, 1) != MP_EQ) {
		res = MP_VAL;
		goto LBL_ERR;
	}

	/* b is now the inverse */
	neg = a->sign;
	while (D.sign == MP_NEG) {
		if ((res = signed_add(&D, b, &D)) != MP_OKAY) {
			goto LBL_ERR;
		}
	}
	mp_exch(&D, c);
	c->sign = neg;
	res = MP_OKAY;

LBL_ERR:
	mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL);
	return res;
}

/* hac 14.61, pp608 */
static int
slow_modular_inverse(mp_int * a, mp_int * b, mp_int * c)
{
	mp_int  x, y, u, v, A, B, C, D;
	int     res;

	/* b cannot be negative */
	if (b->sign == MP_NEG || MP_ISZERO(b) == MP_YES) {
		return MP_VAL;
	}

	/* init temps */
	if ((res = mp_init_multi(&x, &y, &u, &v, 
		   &A, &B, &C, &D, NULL)) != MP_OKAY) {
		return res;
	}

	/* x = a, y = b */
	if ((res = modulo(a, b, &x)) != MP_OKAY) {
		goto LBL_ERR;
	}
	if ((res = mp_copy(b, &y)) != MP_OKAY) {
		goto LBL_ERR;
	}

	/* 2. [modified] if x,y are both even then return an error! */
	if (BN_is_even(&x) == 1 && BN_is_even(&y) == 1) {
		res = MP_VAL;
		goto LBL_ERR;
	}

	/* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
	if ((res = mp_copy(&x, &u)) != MP_OKAY) {
		goto LBL_ERR;
	}
	if ((res = mp_copy(&y, &v)) != MP_OKAY) {
		goto LBL_ERR;
	}
	set_word(&A, 1);
	set_word(&D, 1);

top:
	/* 4.  while u is even do */
	while (BN_is_even(&u) == 1) {
		/* 4.1 u = u/2 */
		if ((res = half(&u, &u)) != MP_OKAY) {
			goto LBL_ERR;
		}
		/* 4.2 if A or B is odd then */
		if (BN_is_odd(&A) == 1 || BN_is_odd(&B) == 1) {
			/* A = (A+y)/2, B = (B-x)/2 */
			if ((res = signed_add(&A, &y, &A)) != MP_OKAY) {
				 goto LBL_ERR;
			}
			if ((res = signed_subtract(&B, &x, &B)) != MP_OKAY) {
				 goto LBL_ERR;
			}
		}
		/* A = A/2, B = B/2 */
		if ((res = half(&A, &A)) != MP_OKAY) {
			goto LBL_ERR;
		}
		if ((res = half(&B, &B)) != MP_OKAY) {
			goto LBL_ERR;
		}
	}

	/* 5.  while v is even do */
	while (BN_is_even(&v) == 1) {
		/* 5.1 v = v/2 */
		if ((res = half(&v, &v)) != MP_OKAY) {
			goto LBL_ERR;
		}
		/* 5.2 if C or D is odd then */
		if (BN_is_odd(&C) == 1 || BN_is_odd(&D) == 1) {
			/* C = (C+y)/2, D = (D-x)/2 */
			if ((res = signed_add(&C, &y, &C)) != MP_OKAY) {
				 goto LBL_ERR;
			}
			if ((res = signed_subtract(&D, &x, &D)) != MP_OKAY) {
				 goto LBL_ERR;
			}
		}
		/* C = C/2, D = D/2 */
		if ((res = half(&C, &C)) != MP_OKAY) {
			goto LBL_ERR;
		}
		if ((res = half(&D, &D)) != MP_OKAY) {
			goto LBL_ERR;
		}
	}

	/* 6.  if u >= v then */
	if (signed_compare(&u, &v) != MP_LT) {
		/* u = u - v, A = A - C, B = B - D */
		if ((res = signed_subtract(&u, &v, &u)) != MP_OKAY) {
			goto LBL_ERR;
		}

		if ((res = signed_subtract(&A, &C, &A)) != MP_OKAY) {
			goto LBL_ERR;
		}

		if ((res = signed_subtract(&B, &D, &B)) != MP_OKAY) {
			goto LBL_ERR;
		}
	} else {
		/* v - v - u, C = C - A, D = D - B */
		if ((res = signed_subtract(&v, &u, &v)) != MP_OKAY) {
			goto LBL_ERR;
		}

		if ((res = signed_subtract(&C, &A, &C)) != MP_OKAY) {
			goto LBL_ERR;
		}

		if ((res = signed_subtract(&D, &B, &D)) != MP_OKAY) {
			goto LBL_ERR;
		}
	}

	/* if not zero goto step 4 */
	if (BN_is_zero(&u) == 0) {
		goto top;
	}
	/* now a = C, b = D, gcd == g*v */

	/* if v != 1 then there is no inverse */
	if (compare_digit(&v, 1) != MP_EQ) {
		res = MP_VAL;
		goto LBL_ERR;
	}

	/* if its too low */
	while (compare_digit(&C, 0) == MP_LT) {
		if ((res = signed_add(&C, b, &C)) != MP_OKAY) {
			 goto LBL_ERR;
		}
	}

	/* too big */
	while (compare_magnitude(&C, b) != MP_LT) {
		if ((res = signed_subtract(&C, b, &C)) != MP_OKAY) {
			 goto LBL_ERR;
		}
	}

	/* C is now the inverse */
	mp_exch(&C, c);
	res = MP_OKAY;
LBL_ERR:
	mp_clear_multi(&x, &y, &u, &v, &A, &B, &C, &D, NULL);
	return res;
}

static int
modular_inverse(mp_int *c, mp_int *a, mp_int *b)
{
	/* b cannot be negative */
	if (b->sign == MP_NEG || MP_ISZERO(b) == MP_YES) {
		return MP_VAL;
	}

	/* if the modulus is odd we can use a faster routine instead */
	if (BN_is_odd(b) == 1) {
		return fast_modular_inverse(a, b, c);
	}
	return slow_modular_inverse(a, b, c);
}

/* b = |a| 
 *
 * Simple function copies the input and fixes the sign to positive
 */
static int
absolute(mp_int * a, mp_int * b)
{
	int     res;

	/* copy a to b */
	if (a != b) {
		if ((res = mp_copy(a, b)) != MP_OKAY) {
			return res;
		}
	}

	/* force the sign of b to positive */
	b->sign = MP_ZPOS;

	return MP_OKAY;
}

/* determines if reduce_2k_l can be used */
static int
mp_reduce_is_2k_l(mp_int *a)
{
	int ix, iy;

	if (a->used == 0) {
		return MP_NO;
	} else if (a->used == 1) {
		return MP_YES;
	} else if (a->used > 1) {
		/* if more than half of the digits are -1 we're sold */
		for (iy = ix = 0; ix < a->used; ix++) {
			if (a->dp[ix] == MP_MASK) {
				++iy;
			}
		}
		return (iy >= (a->used/2)) ? MP_YES : MP_NO;

	}
	return MP_NO;
}

/* computes a = 2**b 
 *
 * Simple algorithm which zeroes the int, grows it then just sets one bit
 * as required.
 */
static int
mp_2expt(mp_int * a, int b)
{
	int     res;

	/* zero a as per default */
	mp_zero(a);

	/* grow a to accommodate the single bit */
	if ((res = mp_grow(a, b / DIGIT_BIT + 1)) != MP_OKAY) {
		return res;
	}

	/* set the used count of where the bit will go */
	a->used = b / DIGIT_BIT + 1;

	/* put the single bit in its place */
	a->dp[b / DIGIT_BIT] = ((mp_digit)1) << (b % DIGIT_BIT);

	return MP_OKAY;
}

/* pre-calculate the value required for Barrett reduction
 * For a given modulus "b" it calulates the value required in "a"
 */
static int
mp_reduce_setup(mp_int * a, mp_int * b)
{
	int     res;

	if ((res = mp_2expt(a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) {
		return res;
	}
	return signed_divide(a, NULL, a, b);
}

/* b = a*2 */
static int
doubled(mp_int * a, mp_int * b)
{
	int     x, res, oldused;

	/* grow to accommodate result */
	if (b->alloc < a->used + 1) {
		if ((res = mp_grow(b, a->used + 1)) != MP_OKAY) {
			return res;
		}
	}

	oldused = b->used;
	b->used = a->used;

	{
		mp_digit r, rr, *tmpa, *tmpb;

		/* alias for source */
		tmpa = a->dp;

		/* alias for dest */
		tmpb = b->dp;

		/* carry */
		r = 0;
		for (x = 0; x < a->used; x++) {

			/* get what will be the *next* carry bit from the 
			* MSB of the current digit 
			*/
			rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1));

			/* now shift up this digit, add in the carry [from the previous] */
			*tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK;

			/* copy the carry that would be from the source 
			* digit into the next iteration 
			*/
			r = rr;
		}

		/* new leading digit? */
		if (r != 0) {
			/* add a MSB which is always 1 at this point */
			*tmpb = 1;
			++(b->used);
		}

		/* now zero any excess digits on the destination 
		* that we didn't write to 
		*/
		tmpb = b->dp + b->used;
		for (x = b->used; x < oldused; x++) {
			*tmpb++ = 0;
		}
	}
	b->sign = a->sign;
	return MP_OKAY;
}

/* divide by three (based on routine from MPI and the GMP manual) */
static int
third(mp_int * a, mp_int *c, mp_digit * d)
{
	mp_int   q;
	mp_word  w, t;
	mp_digit b;
	int      res, ix;

	/* b = 2**DIGIT_BIT / 3 */
	b = (((mp_word)1) << ((mp_word)DIGIT_BIT)) / ((mp_word)3);

	if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
		return res;
	}

	q.used = a->used;
	q.sign = a->sign;
	w = 0;
	for (ix = a->used - 1; ix >= 0; ix--) {
		w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);

		if (w >= 3) {
			/* multiply w by [1/3] */
			t = (w * ((mp_word)b)) >> ((mp_word)DIGIT_BIT);

			/* now subtract 3 * [w/3] from w, to get the remainder */
			w -= t+t+t;

			/* fixup the remainder as required since
			* the optimization is not exact.
			*/
			while (w >= 3) {
				t += 1;
				w -= 3;
			}
		} else {
			t = 0;
		}
		q.dp[ix] = (mp_digit)t;
	}

	/* [optional] store the remainder */
	if (d != NULL) {
		*d = (mp_digit)w;
	}

	/* [optional] store the quotient */
	if (c != NULL) {
		trim_unused_digits(&q);
		mp_exch(&q, c);
	}
	mp_clear(&q);

	return res;
}

/* multiplication using the Toom-Cook 3-way algorithm 
 *
 * Much more complicated than Karatsuba but has a lower 
 * asymptotic running time of O(N**1.464).  This algorithm is 
 * only particularly useful on VERY large inputs 
 * (we're talking 1000s of digits here...).
*/
static int
toom_cook_multiply(mp_int *a, mp_int *b, mp_int *c)
{
	mp_int w0, w1, w2, w3, w4, tmp1, tmp2, a0, a1, a2, b0, b1, b2;
	int res, B;

	/* init temps */
	if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4, 
			&a0, &a1, &a2, &b0, &b1, 
			&b2, &tmp1, &tmp2, NULL)) != MP_OKAY) {
		return res;
	}

	/* B */
	B = MIN(a->used, b->used) / 3;

	/* a = a2 * B**2 + a1 * B + a0 */
	if ((res = modulo_2_to_power(a, DIGIT_BIT * B, &a0)) != MP_OKAY) {
		goto ERR;
	}

	if ((res = mp_copy(a, &a1)) != MP_OKAY) {
		goto ERR;
	}
	rshift_digits(&a1, B);
	modulo_2_to_power(&a1, DIGIT_BIT * B, &a1);

	if ((res = mp_copy(a, &a2)) != MP_OKAY) {
		goto ERR;
	}
	rshift_digits(&a2, B*2);

	/* b = b2 * B**2 + b1 * B + b0 */
	if ((res = modulo_2_to_power(b, DIGIT_BIT * B, &b0)) != MP_OKAY) {
		goto ERR;
	}

	if ((res = mp_copy(b, &b1)) != MP_OKAY) {
		goto ERR;
	}
	rshift_digits(&b1, B);
	modulo_2_to_power(&b1, DIGIT_BIT * B, &b1);

	if ((res = mp_copy(b, &b2)) != MP_OKAY) {
		goto ERR;
	}
	rshift_digits(&b2, B*2);

	/* w0 = a0*b0 */
	if ((res = signed_multiply(&a0, &b0, &w0)) != MP_OKAY) {
		goto ERR;
	}

	/* w4 = a2 * b2 */
	if ((res = signed_multiply(&a2, &b2, &w4)) != MP_OKAY) {
		goto ERR;
	}

	/* w1 = (a2 + 2(a1 + 2a0))(b2 + 2(b1 + 2b0)) */
	if ((res = doubled(&a0, &tmp1)) != MP_OKAY) {
		goto ERR;
	}
	if ((res = signed_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
		goto ERR;
	}
	if ((res = doubled(&tmp1, &tmp1)) != MP_OKAY) {
		goto ERR;
	}
	if ((res = signed_add(&tmp1, &a2, &tmp1)) != MP_OKAY) {
		goto ERR;
	}

	if ((res = doubled(&b0, &tmp2)) != MP_OKAY) {
		goto ERR;
	}
	if ((res = signed_add(&tmp2, &b1, &tmp2)) != MP_OKAY) {
		goto ERR;
	}
	if ((res = doubled(&tmp2, &tmp2)) != MP_OKAY) {
		goto ERR;
	}
	if ((res = signed_add(&tmp2, &b2, &tmp2)) != MP_OKAY) {
		goto ERR;
	}

	if ((res = signed_multiply(&tmp1, &tmp2, &w1)) != MP_OKAY) {
		goto ERR;
	}

	/* w3 = (a0 + 2(a1 + 2a2))(b0 + 2(b1 + 2b2)) */
	if ((res = doubled(&a2, &tmp1)) != MP_OKAY) {
		goto ERR;
	}
	if ((res = signed_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
		goto ERR;
	}
	if ((res = doubled(&tmp1, &tmp1)) != MP_OKAY) {
		goto ERR;
	}
	if ((res = signed_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
		goto ERR;
	}

	if ((res = doubled(&b2, &tmp2)) != MP_OKAY) {
		goto ERR;
	}
	if ((res = signed_add(&tmp2, &b1, &tmp2)) != MP_OKAY) {
		goto ERR;
	}
	if ((res = doubled(&tmp2, &tmp2)) != MP_OKAY) {
		goto ERR;
	}
	if ((res = signed_add(&tmp2, &b0, &tmp2)) != MP_OKAY) {
		goto ERR;
	}

	if ((res = signed_multiply(&tmp1, &tmp2, &w3)) != MP_OKAY) {
		goto ERR;
	}


	/* w2 = (a2 + a1 + a0)(b2 + b1 + b0) */
	if ((res = signed_add(&a2, &a1, &tmp1)) != MP_OKAY) {
		goto ERR;
	}
	if ((res = signed_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
		goto ERR;
	}
	if ((res = signed_add(&b2, &b1, &tmp2)) != MP_OKAY) {
		goto ERR;
	}
	if ((res = signed_add(&tmp2, &b0, &tmp2)) != MP_OKAY) {
		goto ERR;
	}
	if ((res = signed_multiply(&tmp1, &tmp2, &w2)) != MP_OKAY) {
		goto ERR;
	}

	/* now solve the matrix 

	0  0  0  0  1
	1  2  4  8  16
	1  1  1  1  1
	16 8  4  2  1
	1  0  0  0  0

	using 12 subtractions, 4 shifts, 
	2 small divisions and 1 small multiplication 
	*/

	/* r1 - r4 */
	if ((res = signed_subtract(&w1, &w4, &w1)) != MP_OKAY) {
		goto ERR;
	}
	/* r3 - r0 */
	if ((res = signed_subtract(&w3, &w0, &w3)) != MP_OKAY) {
		goto ERR;
	}
	/* r1/2 */
	if ((res = half(&w1, &w1)) != MP_OKAY) {
		goto ERR;
	}
	/* r3/2 */
	if ((res = half(&w3, &w3)) != MP_OKAY) {
		goto ERR;
	}
	/* r2 - r0 - r4 */
	if ((res = signed_subtract(&w2, &w0, &w2)) != MP_OKAY) {
		goto ERR;
	}
	if ((res = signed_subtract(&w2, &w4, &w2)) != MP_OKAY) {
		goto ERR;
	}
	/* r1 - r2 */
	if ((res = signed_subtract(&w1, &w2, &w1)) != MP_OKAY) {
		goto ERR;
	}
	/* r3 - r2 */
	if ((res = signed_subtract(&w3, &w2, &w3)) != MP_OKAY) {
		goto ERR;
	}
	/* r1 - 8r0 */
	if ((res = lshift_bits(&w0, 3, &tmp1)) != MP_OKAY) {
		goto ERR;
	}
	if ((res = signed_subtract(&w1, &tmp1, &w1)) != MP_OKAY) {
		goto ERR;
	}
	/* r3 - 8r4 */
	if ((res = lshift_bits(&w4, 3, &tmp1)) != MP_OKAY) {
		goto ERR;
	}
	if ((res = signed_subtract(&w3, &tmp1, &w3)) != MP_OKAY) {
		goto ERR;
	}
	/* 3r2 - r1 - r3 */
	if ((res = multiply_digit(&w2, 3, &w2)) != MP_OKAY) {
		goto ERR;
	}
	if ((res = signed_subtract(&w2, &w1, &w2)) != MP_OKAY) {
		goto ERR;
	}
	if ((res = signed_subtract(&w2, &w3, &w2)) != MP_OKAY) {
		goto ERR;
	}
	/* r1 - r2 */
	if ((res = signed_subtract(&w1, &w2, &w1)) != MP_OKAY) {
		goto ERR;
	}
	/* r3 - r2 */
	if ((res = signed_subtract(&w3, &w2, &w3)) != MP_OKAY) {
		goto ERR;
	}
	/* r1/3 */
	if ((res = third(&w1, &w1, NULL)) != MP_OKAY) {
		goto ERR;
	}
	/* r3/3 */
	if ((res = third(&w3, &w3, NULL)) != MP_OKAY) {
		goto ERR;
	}

	/* at this point shift W[n] by B*n */
	if ((res = lshift_digits(&w1, 1*B)) != MP_OKAY) {
		goto ERR;
	}
	if ((res = lshift_digits(&w2, 2*B)) != MP_OKAY) {
		goto ERR;
	}
	if ((res = lshift_digits(&w3, 3*B)) != MP_OKAY) {
		goto ERR;
	}
	if ((res = lshift_digits(&w4, 4*B)) != MP_OKAY) {
		goto ERR;
	}     

	if ((res = signed_add(&w0, &w1, c)) != MP_OKAY) {
		goto ERR;
	}
	if ((res = signed_add(&w2, &w3, &tmp1)) != MP_OKAY) {
		goto ERR;
	}
	if ((res = signed_add(&w4, &tmp1, &tmp1)) != MP_OKAY) {
		goto ERR;
	}
	if ((res = signed_add(&tmp1, c, c)) != MP_OKAY) {
		goto ERR;
	}     

ERR:
	mp_clear_multi(&w0, &w1, &w2, &w3, &w4, 
		&a0, &a1, &a2, &b0, &b1, 
		&b2, &tmp1, &tmp2, NULL);
	return res;
}     
     
#define TOOM_MUL_CUTOFF	350
#define KARATSUBA_MUL_CUTOFF 80

/* c = |a| * |b| using Karatsuba Multiplication using 
 * three half size multiplications
 *
 * Let B represent the radix [e.g. 2**DIGIT_BIT] and 
 * let n represent half of the number of digits in 
 * the min(a,b)
 *
 * a = a1 * B**n + a0
 * b = b1 * B**n + b0
 *
 * Then, a * b => 
   a1b1 * B**2n + ((a1 + a0)(b1 + b0) - (a0b0 + a1b1)) * B + a0b0
 *
 * Note that a1b1 and a0b0 are used twice and only need to be 
 * computed once.  So in total three half size (half # of 
 * digit) multiplications are performed, a0b0, a1b1 and 
 * (a1+b1)(a0+b0)
 *
 * Note that a multiplication of half the digits requires
 * 1/4th the number of single precision multiplications so in 
 * total after one call 25% of the single precision multiplications 
 * are saved.  Note also that the call to signed_multiply can end up back 
 * in this function if the a0, a1, b0, or b1 are above the threshold.  
 * This is known as divide-and-conquer and leads to the famous 
 * O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than 
 * the standard O(N**2) that the baseline/comba methods use.  
 * Generally though the overhead of this method doesn't pay off 
 * until a certain size (N ~ 80) is reached.
 */
static int
karatsuba_multiply(mp_int * a, mp_int * b, mp_int * c)
{
	mp_int  x0, x1, y0, y1, t1, x0y0, x1y1;
	int     B;
	int     err;

	/* default the return code to an error */
	err = MP_MEM;

	/* min # of digits */
	B = MIN(a->used, b->used);

	/* now divide in two */
	B = (int)((unsigned)B >> 1);

	/* init copy all the temps */
	if (mp_init_size(&x0, B) != MP_OKAY) {
		goto ERR;
	}
	if (mp_init_size(&x1, a->used - B) != MP_OKAY) {
		goto X0;
	}
	if (mp_init_size(&y0, B) != MP_OKAY) {
		goto X1;
	}
	if (mp_init_size(&y1, b->used - B) != MP_OKAY) {
		goto Y0;
	}
	/* init temps */
	if (mp_init_size(&t1, B * 2) != MP_OKAY) {
		goto Y1;
	}
	if (mp_init_size(&x0y0, B * 2) != MP_OKAY) {
		goto T1;
	}
	if (mp_init_size(&x1y1, B * 2) != MP_OKAY) {
		goto X0Y0;
	}
	/* now shift the digits */
	x0.used = y0.used = B;
	x1.used = a->used - B;
	y1.used = b->used - B;

	{
		int x;
		mp_digit *tmpa, *tmpb, *tmpx, *tmpy;

		/* we copy the digits directly instead of using higher level functions
		* since we also need to shift the digits
		*/
		tmpa = a->dp;
		tmpb = b->dp;

		tmpx = x0.dp;
		tmpy = y0.dp;
		for (x = 0; x < B; x++) {
			*tmpx++ = *tmpa++;
			*tmpy++ = *tmpb++;
		}

		tmpx = x1.dp;
		for (x = B; x < a->used; x++) {
			*tmpx++ = *tmpa++;
		}

		tmpy = y1.dp;
		for (x = B; x < b->used; x++) {
			*tmpy++ = *tmpb++;
		}
	}

	/* only need to clamp the lower words since by definition the 
	* upper words x1/y1 must have a known number of digits
	*/
	trim_unused_digits(&x0);
	trim_unused_digits(&y0);

	/* now calc the products x0y0 and x1y1 */
	/* after this x0 is no longer required, free temp [x0==t2]! */
	if (signed_multiply(&x0, &y0, &x0y0) != MP_OKAY)  {
		goto X1Y1;          /* x0y0 = x0*y0 */
	}
	if (signed_multiply(&x1, &y1, &x1y1) != MP_OKAY) {
		goto X1Y1;          /* x1y1 = x1*y1 */
	}
	/* now calc x1+x0 and y1+y0 */
	if (basic_add(&x1, &x0, &t1) != MP_OKAY) {
		goto X1Y1;          /* t1 = x1 - x0 */
	}
	if (basic_add(&y1, &y0, &x0) != MP_OKAY) {
		goto X1Y1;          /* t2 = y1 - y0 */
	}
	if (signed_multiply(&t1, &x0, &t1) != MP_OKAY) {
		goto X1Y1;          /* t1 = (x1 + x0) * (y1 + y0) */
	}
	/* add x0y0 */
	if (signed_add(&x0y0, &x1y1, &x0) != MP_OKAY) {
		goto X1Y1;          /* t2 = x0y0 + x1y1 */
	}
	if (basic_subtract(&t1, &x0, &t1) != MP_OKAY) {
		goto X1Y1;          /* t1 = (x1+x0)*(y1+y0) - (x1y1 + x0y0) */
	}
	/* shift by B */
	if (lshift_digits(&t1, B) != MP_OKAY) {
		goto X1Y1;          /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */
	}
	if (lshift_digits(&x1y1, B * 2) != MP_OKAY) {
		goto X1Y1;          /* x1y1 = x1y1 << 2*B */
	}
	if (signed_add(&x0y0, &t1, &t1) != MP_OKAY) {
		goto X1Y1;          /* t1 = x0y0 + t1 */
	}
	if (signed_add(&t1, &x1y1, c) != MP_OKAY) {
		goto X1Y1;          /* t1 = x0y0 + t1 + x1y1 */
	}
	/* Algorithm succeeded set the return code to MP_OKAY */
	err = MP_OKAY;

X1Y1:
	mp_clear(&x1y1);
X0Y0:
	mp_clear(&x0y0);
T1:
	mp_clear(&t1);
Y1:
	mp_clear(&y1);
Y0:
	mp_clear(&y0);
X1:
	mp_clear(&x1);
X0:
	mp_clear(&x0);
ERR:
	return err;
}

/* Fast (comba) multiplier
 *
 * This is the fast column-array [comba] multiplier.  It is 
 * designed to compute the columns of the product first 
 * then handle the carries afterwards.  This has the effect 
 * of making the nested loops that compute the columns very
 * simple and schedulable on super-scalar processors.
 *
 * This has been modified to produce a variable number of 
 * digits of output so if say only a half-product is required 
 * you don't have to compute the upper half (a feature 
 * required for fast Barrett reduction).
 *
 * Based on Algorithm 14.12 on pp.595 of HAC.
 *
 */
static int
fast_col_array_multiply(mp_int * a, mp_int * b, mp_int * c, int digs)
{
	int     olduse, res, pa, ix, iz;
	/*LINTED*/
	mp_digit W[MP_WARRAY];
	mp_word  _W;

	/* grow the destination as required */
	if (c->alloc < digs) {
		if ((res = mp_grow(c, digs)) != MP_OKAY) {
			return res;
		}
	}

	/* number of output digits to produce */
	pa = MIN(digs, a->used + b->used);

	/* clear the carry */
	_W = 0;
	for (ix = 0; ix < pa; ix++) { 
		int      tx, ty;
		int      iy;
		mp_digit *tmpx, *tmpy;

		/* get offsets into the two bignums */
		ty = MIN(b->used-1, ix);
		tx = ix - ty;

		/* setup temp aliases */
		tmpx = a->dp + tx;
		tmpy = b->dp + ty;

		/* this is the number of times the loop will iterrate, essentially 
		while (tx++ < a->used && ty-- >= 0) { ... }
		*/
		iy = MIN(a->used-tx, ty+1);

		/* execute loop */
		for (iz = 0; iz < iy; ++iz) {
			_W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);

		}

		/* store term */
		W[ix] = ((mp_digit)_W) & MP_MASK;

		/* make next carry */
		_W = _W >> ((mp_word)DIGIT_BIT);
	}

	/* setup dest */
	olduse  = c->used;
	c->used = pa;

	{
		mp_digit *tmpc;
		tmpc = c->dp;
		for (ix = 0; ix < pa+1; ix++) {
			/* now extract the previous digit [below the carry] */
			*tmpc++ = W[ix];
		}

		/* clear unused digits [that existed in the old copy of c] */
		for (; ix < olduse; ix++) {
			*tmpc++ = 0;
		}
	}
	trim_unused_digits(c);
	return MP_OKAY;
}

/* return 1 if we can use fast column array multiply */
/*
* The fast multiplier can be used if the output will 
* have less than MP_WARRAY digits and the number of 
* digits won't affect carry propagation
*/
static inline int
can_use_fast_column_array(int ndigits, int used)
{
	return (((unsigned)ndigits < MP_WARRAY) &&
		used < (1 << (unsigned)((CHAR_BIT * sizeof(mp_word)) - (2 * DIGIT_BIT))));
}

/* Source: /usr/cvsroot/libtommath/dist/libtommath/bn_fast_s_mp_mul_digs.c,v $ */
/* Revision: 1.2 $ */
/* Date: 2011/03/18 16:22:09 $ */


/* multiplies |a| * |b| and only computes upto digs digits of result
 * HAC pp. 595, Algorithm 14.12  Modified so you can control how 
 * many digits of output are created.
 */
static int
basic_multiply_partial_lower(mp_int * a, mp_int * b, mp_int * c, int digs)
{
	mp_int  t;
	int     res, pa, pb, ix, iy;
	mp_digit u;
	mp_word r;
	mp_digit tmpx, *tmpt, *tmpy;

	/* can we use the fast multiplier? */
	if (can_use_fast_column_array(digs, MIN(a->used, b->used))) {
		return fast_col_array_multiply(a, b, c, digs);
	}

	if ((res = mp_init_size(&t, digs)) != MP_OKAY) {
		return res;
	}
	t.used = digs;

	/* compute the digits of the product directly */
	pa = a->used;
	for (ix = 0; ix < pa; ix++) {
		/* set the carry to zero */
		u = 0;

		/* limit ourselves to making digs digits of output */
		pb = MIN(b->used, digs - ix);

		/* setup some aliases */
		/* copy of the digit from a used within the nested loop */
		tmpx = a->dp[ix];

		/* an alias for the destination shifted ix places */
		tmpt = t.dp + ix;

		/* an alias for the digits of b */
		tmpy = b->dp;

		/* compute the columns of the output and propagate the carry */
		for (iy = 0; iy < pb; iy++) {
			/* compute the column as a mp_word */
			r = ((mp_word)*tmpt) +
				((mp_word)tmpx) * ((mp_word)*tmpy++) +
				((mp_word) u);

			/* the new column is the lower part of the result */
			*tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));

			/* get the carry word from the result */
			u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
		}
		/* set carry if it is placed below digs */
		if (ix + iy < digs) {
			*tmpt = u;
		}
	}

	trim_unused_digits(&t);
	mp_exch(&t, c);

	mp_clear(&t);
	return MP_OKAY;
}

/* Source: /usr/cvsroot/libtommath/dist/libtommath/bn_s_mp_mul_digs.c,v $ */
/* Revision: 1.3 $ */
/* Date: 2011/03/18 16:43:04 $ */

/* high level multiplication (handles sign) */
static int
signed_multiply(mp_int * a, mp_int * b, mp_int * c)
{
	int     res, neg;

	neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
	/* use Toom-Cook? */
	if (MIN(a->used, b->used) >= TOOM_MUL_CUTOFF) {
		res = toom_cook_multiply(a, b, c);
	} else if (MIN(a->used, b->used) >= KARATSUBA_MUL_CUTOFF) {
		/* use Karatsuba? */
		res = karatsuba_multiply(a, b, c);
	} else {
		/* can we use the fast multiplier? */
		int     digs = a->used + b->used + 1;

		if (can_use_fast_column_array(digs, MIN(a->used, b->used))) {
			res = fast_col_array_multiply(a, b, c, digs);
		} else  {
			res = basic_multiply_partial_lower(a, b, c, (a)->used + (b)->used + 1);
		}
	}
	c->sign = (c->used > 0) ? neg : MP_ZPOS;
	return res;
}

/* this is a modified version of fast_s_mul_digs that only produces
 * output digits *above* digs.  See the comments for fast_s_mul_digs
 * to see how it works.
 *
 * This is used in the Barrett reduction since for one of the multiplications
 * only the higher digits were needed.  This essentially halves the work.
 *
 * Based on Algorithm 14.12 on pp.595 of HAC.
 */
static int
fast_basic_multiply_partial_upper(mp_int * a, mp_int * b, mp_int * c, int digs)
{
	int     olduse, res, pa, ix, iz;
	mp_digit W[MP_WARRAY];
	mp_word  _W;

	/* grow the destination as required */
	pa = a->used + b->used;
	if (c->alloc < pa) {
		if ((res = mp_grow(c, pa)) != MP_OKAY) {
			return res;
		}
	}

	/* number of output digits to produce */
	pa = a->used + b->used;
	_W = 0;
	for (ix = digs; ix < pa; ix++) { 
		int      tx, ty, iy;
		mp_digit *tmpx, *tmpy;

		/* get offsets into the two bignums */
		ty = MIN(b->used-1, ix);
		tx = ix - ty;

		/* setup temp aliases */
		tmpx = a->dp + tx;
		tmpy = b->dp + ty;

		/* this is the number of times the loop will iterrate, essentially its 
		 while (tx++ < a->used && ty-- >= 0) { ... }
		*/
		iy = MIN(a->used-tx, ty+1);

		/* execute loop */
		for (iz = 0; iz < iy; iz++) {
			 _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
		}

		/* store term */
		W[ix] = ((mp_digit)_W) & MP_MASK;

		/* make next carry */
		_W = _W >> ((mp_word)DIGIT_BIT);
	}

	/* setup dest */
	olduse  = c->used;
	c->used = pa;

	{
		mp_digit *tmpc;

		tmpc = c->dp + digs;
		for (ix = digs; ix < pa; ix++) {
			/* now extract the previous digit [below the carry] */
			*tmpc++ = W[ix];
		}

		/* clear unused digits [that existed in the old copy of c] */
		for (; ix < olduse; ix++) {
			*tmpc++ = 0;
		}
	}
	trim_unused_digits(c);
	return MP_OKAY;
}

/* Source: /usr/cvsroot/libtommath/dist/libtommath/bn_fast_s_mp_mul_high_digs.c,v $ */
/* Revision: 1.1.1.1 $ */
/* Date: 2011/03/12 22:58:18 $ */

/* multiplies |a| * |b| and does not compute the lower digs digits
 * [meant to get the higher part of the product]
 */
static int
basic_multiply_partial_upper(mp_int * a, mp_int * b, mp_int * c, int digs)
{
	mp_int  t;
	int     res, pa, pb, ix, iy;
	mp_digit carry;
	mp_word r;
	mp_digit tmpx, *tmpt, *tmpy;

	/* can we use the fast multiplier? */
	if (can_use_fast_column_array(a->used + b->used + 1, MIN(a->used, b->used))) {
		return fast_basic_multiply_partial_upper(a, b, c, digs);
	}

	if ((res = mp_init_size(&t, a->used + b->used + 1)) != MP_OKAY) {
		return res;
	}
	t.used = a->used + b->used + 1;

	pa = a->used;
	pb = b->used;
	for (ix = 0; ix < pa; ix++) {
		/* clear the carry */
		carry = 0;

		/* left hand side of A[ix] * B[iy] */
		tmpx = a->dp[ix];

		/* alias to the address of where the digits will be stored */
		tmpt = &(t.dp[digs]);

		/* alias for where to read the right hand side from */
		tmpy = b->dp + (digs - ix);

		for (iy = digs - ix; iy < pb; iy++) {
			/* calculate the double precision result */
			r = ((mp_word)*tmpt) +
				((mp_word)tmpx) * ((mp_word)*tmpy++) +
				((mp_word) carry);

			/* get the lower part */
			*tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));

			/* carry the carry */
			carry = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
		}
		*tmpt = carry;
	}
	trim_unused_digits(&t);
	mp_exch(&t, c);
	mp_clear(&t);
	return MP_OKAY;
}

/* Source: /usr/cvsroot/libtommath/dist/libtommath/bn_s_mp_mul_high_digs.c,v $ */
/* Revision: 1.3 $ */
/* Date: 2011/03/18 16:43:04 $ */

/* reduces x mod m, assumes 0 < x < m**2, mu is 
 * precomputed via mp_reduce_setup.
 * From HAC pp.604 Algorithm 14.42
 */
static int
mp_reduce(mp_int * x, mp_int * m, mp_int * mu)
{
	mp_int  q;
	int     res, um = m->used;

	/* q = x */
	if ((res = mp_init_copy(&q, x)) != MP_OKAY) {
		return res;
	}

	/* q1 = x / b**(k-1)  */
	rshift_digits(&q, um - 1);         

	/* according to HAC this optimization is ok */
	if (((unsigned long) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) {
		if ((res = signed_multiply(&q, mu, &q)) != MP_OKAY) {
			goto CLEANUP;
		}
	} else {
		if ((res = basic_multiply_partial_upper(&q, mu, &q, um)) != MP_OKAY) {
			goto CLEANUP;
		}
	}

	/* q3 = q2 / b**(k+1) */
	rshift_digits(&q, um + 1);         

	/* x = x mod b**(k+1), quick (no division) */
	if ((res = modulo_2_to_power(x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) {
		goto CLEANUP;
	}

	/* q = q * m mod b**(k+1), quick (no division) */
	if ((res = basic_multiply_partial_lower(&q, m, &q, um + 1)) != MP_OKAY) {
		goto CLEANUP;
	}

	/* x = x - q */
	if ((res = signed_subtract(x, &q, x)) != MP_OKAY) {
		goto CLEANUP;
	}

	/* If x < 0, add b**(k+1) to it */
	if (compare_digit(x, 0) == MP_LT) {
		set_word(&q, 1);
		if ((res = lshift_digits(&q, um + 1)) != MP_OKAY) {
			goto CLEANUP;
		}
		if ((res = signed_add(x, &q, x)) != MP_OKAY) {
			goto CLEANUP;
		}
	}

	/* Back off if it's too big */
	while (signed_compare(x, m) != MP_LT) {
		if ((res = basic_subtract(x, m, x)) != MP_OKAY) {
			goto CLEANUP;
		}
	}

CLEANUP:
	mp_clear(&q);

	return res;
}

/* determines the setup value */
static int
mp_reduce_2k_setup_l(mp_int *a, mp_int *d)
{
	int    res;
	mp_int tmp;

	if ((res = mp_init(&tmp)) != MP_OKAY) {
		return res;
	}

	if ((res = mp_2expt(&tmp, mp_count_bits(a))) != MP_OKAY) {
		goto ERR;
	}

	if ((res = basic_subtract(&tmp, a, d)) != MP_OKAY) {
		goto ERR;
	}

ERR:
	mp_clear(&tmp);
	return res;
}

/* Source: /usr/cvsroot/libtommath/dist/libtommath/bn_mp_reduce_2k_setup_l.c,v $ */
/* Revision: 1.1.1.1 $ */
/* Date: 2011/03/12 22:58:18 $ */

/* reduces a modulo n where n is of the form 2**p - d 
   This differs from reduce_2k since "d" can be larger
   than a single digit.
*/
static int
mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d)
{
	mp_int q;
	int    p, res;

	if ((res = mp_init(&q)) != MP_OKAY) {
		return res;
	}

	p = mp_count_bits(n);    
top:
	/* q = a/2**p, a = a mod 2**p */
	if ((res = rshift_bits(a, p, &q, a)) != MP_OKAY) {
		goto ERR;
	}

	/* q = q * d */
	if ((res = signed_multiply(&q, d, &q)) != MP_OKAY) { 
		goto ERR;
	}

	/* a = a + q */
	if ((res = basic_add(a, &q, a)) != MP_OKAY) {
		goto ERR;
	}

	if (compare_magnitude(a, n) != MP_LT) {
		basic_subtract(a, n, a);
		goto top;
	}

ERR:
	mp_clear(&q);
	return res;
}

/* Source: /usr/cvsroot/libtommath/dist/libtommath/bn_mp_reduce_2k_l.c,v $ */
/* Revision: 1.1.1.1 $ */
/* Date: 2011/03/12 22:58:18 $ */

/* squaring using Toom-Cook 3-way algorithm */
static int
toom_cook_square(mp_int *a, mp_int *b)
{
	mp_int w0, w1, w2, w3, w4, tmp1, a0, a1, a2;
	int res, B;

	/* init temps */
	if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL)) != MP_OKAY) {
		return res;
	}

	/* B */
	B = a->used / 3;

	/* a = a2 * B**2 + a1 * B + a0 */
	if ((res = modulo_2_to_power(a, DIGIT_BIT * B, &a0)) != MP_OKAY) {
		goto ERR;
	}

	if ((res = mp_copy(a, &a1)) != MP_OKAY) {
		goto ERR;
	}
	rshift_digits(&a1, B);
	modulo_2_to_power(&a1, DIGIT_BIT * B, &a1);

	if ((res = mp_copy(a, &a2)) != MP_OKAY) {
		goto ERR;
	}
	rshift_digits(&a2, B*2);

	/* w0 = a0*a0 */
	if ((res = square(&a0, &w0)) != MP_OKAY) {
		goto ERR;
	}

	/* w4 = a2 * a2 */
	if ((res = square(&a2, &w4)) != MP_OKAY) {
		goto ERR;
	}

	/* w1 = (a2 + 2(a1 + 2a0))**2 */
	if ((res = doubled(&a0, &tmp1)) != MP_OKAY) {
		goto ERR;
	}
	if ((res = signed_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
		goto ERR;
	}
	if ((res = doubled(&tmp1, &tmp1)) != MP_OKAY) {
		goto ERR;
	}
	if ((res = signed_add(&tmp1, &a2, &tmp1)) != MP_OKAY) {
		goto ERR;
	}

	if ((res = square(&tmp1, &w1)) != MP_OKAY) {
		goto ERR;
	}

	/* w3 = (a0 + 2(a1 + 2a2))**2 */
	if ((res = doubled(&a2, &tmp1)) != MP_OKAY) {
		goto ERR;
	}
	if ((res = signed_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
		goto ERR;
	}
	if ((res = doubled(&tmp1, &tmp1)) != MP_OKAY) {
		goto ERR;
	}
	if ((res = signed_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
		goto ERR;
	}

	if ((res = square(&tmp1, &w3)) != MP_OKAY) {
		goto ERR;
	}


	/* w2 = (a2 + a1 + a0)**2 */
	if ((res = signed_add(&a2, &a1, &tmp1)) != MP_OKAY) {
		goto ERR;
	}
	if ((res = signed_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
		goto ERR;
	}
	if ((res = square(&tmp1, &w2)) != MP_OKAY) {
		goto ERR;
	}

	/* now solve the matrix

	0  0  0  0  1
	1  2  4  8  16
	1  1  1  1  1
	16 8  4  2  1
	1  0  0  0  0

	using 12 subtractions, 4 shifts, 2 small divisions and 1 small multiplication.
	*/

	/* r1 - r4 */
	if ((res = signed_subtract(&w1, &w4, &w1)) != MP_OKAY) {
		goto ERR;
	}
	/* r3 - r0 */
	if ((res = signed_subtract(&w3, &w0, &w3)) != MP_OKAY) {
		goto ERR;
	}
	/* r1/2 */
	if ((res = half(&w1, &w1)) != MP_OKAY) {
		goto ERR;
	}
	/* r3/2 */
	if ((res = half(&w3, &w3)) != MP_OKAY) {
		goto ERR;
	}
	/* r2 - r0 - r4 */
	if ((res = signed_subtract(&w2, &w0, &w2)) != MP_OKAY) {
		goto ERR;
	}
	if ((res = signed_subtract(&w2, &w4, &w2)) != MP_OKAY) {
		goto ERR;
	}
	/* r1 - r2 */
	if ((res = signed_subtract(&w1, &w2, &w1)) != MP_OKAY) {
		goto ERR;
	}
	/* r3 - r2 */
	if ((res = signed_subtract(&w3, &w2, &w3)) != MP_OKAY) {
		goto ERR;
	}
	/* r1 - 8r0 */
	if ((res = lshift_bits(&w0, 3, &tmp1)) != MP_OKAY) {
		goto ERR;
	}
	if ((res = signed_subtract(&w1, &tmp1, &w1)) != MP_OKAY) {
		goto ERR;
	}
	/* r3 - 8r4 */
	if ((res = lshift_bits(&w4, 3, &tmp1)) != MP_OKAY) {
		goto ERR;
	}
	if ((res = signed_subtract(&w3, &tmp1, &w3)) != MP_OKAY) {
		goto ERR;
	}
	/* 3r2 - r1 - r3 */
	if ((res = multiply_digit(&w2, 3, &w2)) != MP_OKAY) {
		goto ERR;
	}
	if ((res = signed_subtract(&w2, &w1, &w2)) != MP_OKAY) {
		goto ERR;
	}
	if ((res = signed_subtract(&w2, &w3, &w2)) != MP_OKAY) {
		goto ERR;
	}
	/* r1 - r2 */
	if ((res = signed_subtract(&w1, &w2, &w1)) != MP_OKAY) {
		goto ERR;
	}
	/* r3 - r2 */
	if ((res = signed_subtract(&w3, &w2, &w3)) != MP_OKAY) {
		goto ERR;
	}
	/* r1/3 */
	if ((res = third(&w1, &w1, NULL)) != MP_OKAY) {
		goto ERR;
	}
	/* r3/3 */
	if ((res = third(&w3, &w3, NULL)) != MP_OKAY) {
		goto ERR;
	}

	/* at this point shift W[n] by B*n */
	if ((res = lshift_digits(&w1, 1*B)) != MP_OKAY) {
		goto ERR;
	}
	if ((res = lshift_digits(&w2, 2*B)) != MP_OKAY) {
		goto ERR;
	}
	if ((res = lshift_digits(&w3, 3*B)) != MP_OKAY) {
		goto ERR;
	}
	if ((res = lshift_digits(&w4, 4*B)) != MP_OKAY) {
		goto ERR;
	}

	if ((res = signed_add(&w0, &w1, b)) != MP_OKAY) {
		goto ERR;
	}
	if ((res = signed_add(&w2, &w3, &tmp1)) != MP_OKAY) {
		goto ERR;
	}
	if ((res = signed_add(&w4, &tmp1, &tmp1)) != MP_OKAY) {
		goto ERR;
	}
	if ((res = signed_add(&tmp1, b, b)) != MP_OKAY) {
		goto ERR;
	}

ERR:
	mp_clear_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL);
	return res;
}


/* Source: /usr/cvsroot/libtommath/dist/libtommath/bn_mp_toom_sqr.c,v $ */
/* Revision: 1.1.1.1 $ */
/* Date: 2011/03/12 22:58:18 $ */

/* Karatsuba squaring, computes b = a*a using three 
 * half size squarings
 *
 * See comments of karatsuba_mul for details.  It 
 * is essentially the same algorithm but merely 
 * tuned to perform recursive squarings.
 */
static int
karatsuba_square(mp_int * a, mp_int * b)
{
	mp_int  x0, x1, t1, t2, x0x0, x1x1;
	int     B, err;

	err = MP_MEM;

	/* min # of digits */
	B = a->used;

	/* now divide in two */
	B = (unsigned)B >> 1;

	/* init copy all the temps */
	if (mp_init_size(&x0, B) != MP_OKAY) {
		goto ERR;
	}
	if (mp_init_size(&x1, a->used - B) != MP_OKAY) {
		goto X0;
	}
	/* init temps */
	if (mp_init_size(&t1, a->used * 2) != MP_OKAY) {
		goto X1;
	}
	if (mp_init_size(&t2, a->used * 2) != MP_OKAY) {
		goto T1;
	}
	if (mp_init_size(&x0x0, B * 2) != MP_OKAY) {
		goto T2;
	}
	if (mp_init_size(&x1x1, (a->used - B) * 2) != MP_OKAY) {
		goto X0X0;
	}

	memcpy(x0.dp, a->dp, B * sizeof(*x0.dp));
	memcpy(x1.dp, &a->dp[B], (a->used - B) * sizeof(*x1.dp));

	x0.used = B;
	x1.used = a->used - B;

	trim_unused_digits(&x0);

	/* now calc the products x0*x0 and x1*x1 */
	if (square(&x0, &x0x0) != MP_OKAY) {
		goto X1X1;           /* x0x0 = x0*x0 */
	}
	if (square(&x1, &x1x1) != MP_OKAY) {
		goto X1X1;           /* x1x1 = x1*x1 */
	}
	/* now calc (x1+x0)**2 */
	if (basic_add(&x1, &x0, &t1) != MP_OKAY) {
		goto X1X1;           /* t1 = x1 - x0 */
	}
	if (square(&t1, &t1) != MP_OKAY) {
		goto X1X1;           /* t1 = (x1 - x0) * (x1 - x0) */
	}
	/* add x0y0 */
	if (basic_add(&x0x0, &x1x1, &t2) != MP_OKAY) {
		goto X1X1;           /* t2 = x0x0 + x1x1 */
	}
	if (basic_subtract(&t1, &t2, &t1) != MP_OKAY) {
		goto X1X1;           /* t1 = (x1+x0)**2 - (x0x0 + x1x1) */
	}
	/* shift by B */
	if (lshift_digits(&t1, B) != MP_OKAY) {
		goto X1X1;           /* t1 = (x0x0 + x1x1 - (x1-x0)*(x1-x0))<<B */
	}
	if (lshift_digits(&x1x1, B * 2) != MP_OKAY) {
		goto X1X1;           /* x1x1 = x1x1 << 2*B */
	}
	if (signed_add(&x0x0, &t1, &t1) != MP_OKAY) {
		goto X1X1;           /* t1 = x0x0 + t1 */
	}
	if (signed_add(&t1, &x1x1, b) != MP_OKAY) {
		goto X1X1;           /* t1 = x0x0 + t1 + x1x1 */
	}
	err = MP_OKAY;

X1X1:
	mp_clear(&x1x1);
X0X0:
	mp_clear(&x0x0);
T2:
	mp_clear(&t2);
T1:
	mp_clear(&t1);
X1:
	mp_clear(&x1);
X0:
	mp_clear(&x0);
ERR:
	return err;
}

/* Source: /usr/cvsroot/libtommath/dist/libtommath/bn_mp_karatsuba_sqr.c,v $ */
/* Revision: 1.2 $ */
/* Date: 2011/03/12 23:43:54 $ */

/* the jist of squaring...
 * you do like mult except the offset of the tmpx [one that 
 * starts closer to zero] can't equal the offset of tmpy.  
 * So basically you set up iy like before then you min it with
 * (ty-tx) so that it never happens.  You double all those 
 * you add in the inner loop

After that loop you do the squares and add them in.
*/

static int
fast_basic_square(mp_int * a, mp_int * b)
{
	int       olduse, res, pa, ix, iz;
	mp_digit   W[MP_WARRAY], *tmpx;
	mp_word   W1;

	/* grow the destination as required */
	pa = a->used + a->used;
	if (b->alloc < pa) {
		if ((res = mp_grow(b, pa)) != MP_OKAY) {
			return res;
		}
	}

	/* number of output digits to produce */
	W1 = 0;
	for (ix = 0; ix < pa; ix++) { 
		int      tx, ty, iy;
		mp_word  _W;
		mp_digit *tmpy;

		/* clear counter */
		_W = 0;

		/* get offsets into the two bignums */
		ty = MIN(a->used-1, ix);
		tx = ix - ty;

		/* setup temp aliases */
		tmpx = a->dp + tx;
		tmpy = a->dp + ty;

		/* this is the number of times the loop will iterrate, essentially
		 while (tx++ < a->used && ty-- >= 0) { ... }
		*/
		iy = MIN(a->used-tx, ty+1);

		/* now for squaring tx can never equal ty 
		* we halve the distance since they approach at a rate of 2x
		* and we have to round because odd cases need to be executed
		*/
		iy = MIN(iy, (int)((unsigned)(ty-tx+1)>>1));

		/* execute loop */
		for (iz = 0; iz < iy; iz++) {
			 _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
		}

		/* double the inner product and add carry */
		_W = _W + _W + W1;

		/* even columns have the square term in them */
		if ((ix&1) == 0) {
			 _W += ((mp_word)a->dp[(unsigned)ix>>1])*((mp_word)a->dp[(unsigned)ix>>1]);
		}

		/* store it */
		W[ix] = (mp_digit)(_W & MP_MASK);

		/* make next carry */
		W1 = _W >> ((mp_word)DIGIT_BIT);
	}

	/* setup dest */
	olduse  = b->used;
	b->used = a->used+a->used;

	{
		mp_digit *tmpb;
		tmpb = b->dp;
		for (ix = 0; ix < pa; ix++) {
			*tmpb++ = W[ix] & MP_MASK;
		}

		/* clear unused digits [that existed in the old copy of c] */
		for (; ix < olduse; ix++) {
			*tmpb++ = 0;
		}
	}
	trim_unused_digits(b);
	return MP_OKAY;
}

/* Source: /usr/cvsroot/libtommath/dist/libtommath/bn_fast_s_mp_sqr.c,v $ */
/* Revision: 1.3 $ */
/* Date: 2011/03/18 16:43:04 $ */

/* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */
static int
basic_square(mp_int * a, mp_int * b)
{
	mp_int  t;
	int     res, ix, iy, pa;
	mp_word r;
	mp_digit carry, tmpx, *tmpt;

	pa = a->used;
	if ((res = mp_init_size(&t, 2*pa + 1)) != MP_OKAY) {
		return res;
	}

	/* default used is maximum possible size */
	t.used = 2*pa + 1;

	for (ix = 0; ix < pa; ix++) {
		/* first calculate the digit at 2*ix */
		/* calculate double precision result */
		r = ((mp_word) t.dp[2*ix]) +
		((mp_word)a->dp[ix])*((mp_word)a->dp[ix]);

		/* store lower part in result */
		t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK));

		/* get the carry */
		carry = (mp_digit)(r >> ((mp_word) DIGIT_BIT));

		/* left hand side of A[ix] * A[iy] */
		tmpx = a->dp[ix];

		/* alias for where to store the results */
		tmpt = t.dp + (2*ix + 1);

		for (iy = ix + 1; iy < pa; iy++) {
			/* first calculate the product */
			r = ((mp_word)tmpx) * ((mp_word)a->dp[iy]);

			/* now calculate the double precision result, note we use
			* addition instead of *2 since it's easier to optimize
			*/
			r = ((mp_word) *tmpt) + r + r + ((mp_word) carry);

			/* store lower part */
			*tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));

			/* get carry */
			carry = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
		}
		/* propagate upwards */
		while (carry != ((mp_digit) 0)) {
			r = ((mp_word) *tmpt) + ((mp_word) carry);
			*tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
			carry = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
		}
	}

	trim_unused_digits(&t);
	mp_exch(&t, b);
	mp_clear(&t);
	return MP_OKAY;
}

/* Source: /usr/cvsroot/libtommath/dist/libtommath/bn_s_mp_sqr.c,v $ */
/* Revision: 1.1.1.1 $ */
/* Date: 2011/03/12 22:58:18 $ */

#define TOOM_SQR_CUTOFF      400
#define KARATSUBA_SQR_CUTOFF 120

/* computes b = a*a */
static int
square(mp_int * a, mp_int * b)
{
	int     res;

	/* use Toom-Cook? */
	if (a->used >= TOOM_SQR_CUTOFF) {
		res = toom_cook_square(a, b);
		/* Karatsuba? */
	} else if (a->used >= KARATSUBA_SQR_CUTOFF) {
		res = karatsuba_square(a, b);
	} else {
		/* can we use the fast comba multiplier? */
		if (can_use_fast_column_array(a->used + a->used + 1, a->used)) {
			res = fast_basic_square(a, b);
		} else {
			res = basic_square(a, b);
		}
	}
	b->sign = MP_ZPOS;
	return res;
}

/* find window size */
static inline int
find_window_size(mp_int *X)
{
	int	x;

	x = mp_count_bits(X);
	return (x <= 7) ? 2 : (x <= 36) ? 3 : (x <= 140) ? 4 : (x <= 450) ? 5 : (x <= 1303) ? 6 : (x <= 3529) ? 7 : 8;
}

/* Source: /usr/cvsroot/libtommath/dist/libtommath/bn_mp_sqr.c,v $ */
/* Revision: 1.3 $ */
/* Date: 2011/03/18 16:43:04 $ */

#define TAB_SIZE 256

static int
basic_exponent_mod(mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
{
	mp_digit buf;
	mp_int  M[TAB_SIZE], res, mu;
	int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
	int	(*redux)(mp_int*,mp_int*,mp_int*);

	winsize = find_window_size(X);

	/* init M array */
	/* init first cell */
	if ((err = mp_init(&M[1])) != MP_OKAY) {
		return err; 
	}

	/* now init the second half of the array */
	for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
		if ((err = mp_init(&M[x])) != MP_OKAY) {
			for (y = 1<<(winsize-1); y < x; y++) {
				mp_clear(&M[y]);
			}
			mp_clear(&M[1]);
			return err;
		}
	}

	/* create mu, used for Barrett reduction */
	if ((err = mp_init(&mu)) != MP_OKAY) {
		goto LBL_M;
	}

	if (redmode == 0) {
		if ((err = mp_reduce_setup(&mu, P)) != MP_OKAY) {
			goto LBL_MU;
		}
		redux = mp_reduce;
	} else {
		if ((err = mp_reduce_2k_setup_l(P, &mu)) != MP_OKAY) {
			goto LBL_MU;
		}
		redux = mp_reduce_2k_l;
	}    

	/* create M table
	*
	* The M table contains powers of the base, 
	* e.g. M[x] = G**x mod P
	*
	* The first half of the table is not 
	* computed though accept for M[0] and M[1]
	*/
	if ((err = modulo(G, P, &M[1])) != MP_OKAY) {
		goto LBL_MU;
	}

	/* compute the value at M[1<<(winsize-1)] by squaring 
	* M[1] (winsize-1) times 
	*/
	if ((err = mp_copy( &M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
		goto LBL_MU;
	}

	for (x = 0; x < (winsize - 1); x++) {
		/* square it */
		if ((err = square(&M[1 << (winsize - 1)], 
		       &M[1 << (winsize - 1)])) != MP_OKAY) {
			goto LBL_MU;
		}

		/* reduce modulo P */
		if ((err = redux(&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) {
			goto LBL_MU;
		}
	}

	/* create upper table, that is M[x] = M[x-1] * M[1] (mod P)
	* for x = (2**(winsize - 1) + 1) to (2**winsize - 1)
	*/
	for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
		if ((err = signed_multiply(&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
			goto LBL_MU;
		}
		if ((err = redux(&M[x], P, &mu)) != MP_OKAY) {
			goto LBL_MU;
		}
	}

	/* setup result */
	if ((err = mp_init(&res)) != MP_OKAY) {
		goto LBL_MU;
	}
	set_word(&res, 1);

	/* set initial mode and bit cnt */
	mode = 0;
	bitcnt = 1;
	buf = 0;
	digidx = X->used - 1;
	bitcpy = 0;
	bitbuf = 0;

	for (;;) {
		/* grab next digit as required */
		if (--bitcnt == 0) {
			/* if digidx == -1 we are out of digits */
			if (digidx == -1) {
				break;
			}
			/* read next digit and reset the bitcnt */
			buf = X->dp[digidx--];
			bitcnt = (int) DIGIT_BIT;
		}

		/* grab the next msb from the exponent */
		y = (unsigned)(buf >> (mp_digit)(DIGIT_BIT - 1)) & 1;
		buf <<= (mp_digit)1;

		/* if the bit is zero and mode == 0 then we ignore it
		* These represent the leading zero bits before the first 1 bit
		* in the exponent.  Technically this opt is not required but it
		* does lower the # of trivial squaring/reductions used
		*/
		if (mode == 0 && y == 0) {
			continue;
		}

		/* if the bit is zero and mode == 1 then we square */
		if (mode == 1 && y == 0) {
			if ((err = square(&res, &res)) != MP_OKAY) {
				goto LBL_RES;
			}
			if ((err = redux(&res, P, &mu)) != MP_OKAY) {
				goto LBL_RES;
			}
			continue;
		}

		/* else we add it to the window */
		bitbuf |= (y << (winsize - ++bitcpy));
		mode = 2;

		if (bitcpy == winsize) {
			/* ok window is filled so square as required and multiply  */
			/* square first */
			for (x = 0; x < winsize; x++) {
				if ((err = square(&res, &res)) != MP_OKAY) {
					goto LBL_RES;
				}
				if ((err = redux(&res, P, &mu)) != MP_OKAY) {
					goto LBL_RES;
				}
			}

			/* then multiply */
			if ((err = signed_multiply(&res, &M[bitbuf], &res)) != MP_OKAY) {
				goto LBL_RES;
			}
			if ((err = redux(&res, P, &mu)) != MP_OKAY) {
				goto LBL_RES;
			}

			/* empty window and reset */
			bitcpy = 0;
			bitbuf = 0;
			mode = 1;
		}
	}

	/* if bits remain then square/multiply */
	if (mode == 2 && bitcpy > 0) {
		/* square then multiply if the bit is set */
		for (x = 0; x < bitcpy; x++) {
			if ((err = square(&res, &res)) != MP_OKAY) {
				goto LBL_RES;
			}
			if ((err = redux(&res, P, &mu)) != MP_OKAY) {
				goto LBL_RES;
			}

			bitbuf <<= 1;
			if ((bitbuf & (1 << winsize)) != 0) {
				/* then multiply */
				if ((err = signed_multiply(&res, &M[1], &res)) != MP_OKAY) {
					goto LBL_RES;
				}
				if ((err = redux(&res, P, &mu)) != MP_OKAY) {
					goto LBL_RES;
				}
			}
		}
	}

	mp_exch(&res, Y);
	err = MP_OKAY;
LBL_RES:
	mp_clear(&res);
LBL_MU:
	mp_clear(&mu);
LBL_M:
	mp_clear(&M[1]);
	for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
		mp_clear(&M[x]);
	}
	return err;
}

/* determines if a number is a valid DR modulus */
static int
is_diminished_radix_modulus(mp_int *a)
{
	int ix;

	/* must be at least two digits */
	if (a->used < 2) {
		return 0;
	}

	/* must be of the form b**k - a [a <= b] so all
	* but the first digit must be equal to -1 (mod b).
	*/
	for (ix = 1; ix < a->used; ix++) {
		if (a->dp[ix] != MP_MASK) {
			  return 0;
		}
	}
	return 1;
}

/* Source: /usr/cvsroot/libtommath/dist/libtommath/bn_mp_dr_is_modulus.c,v $ */
/* Revision: 1.1.1.1 $ */
/* Date: 2011/03/12 22:58:18 $ */

/* determines if mp_reduce_2k can be used */
static int
mp_reduce_is_2k(mp_int *a)
{
	int ix, iy, iw;
	mp_digit iz;

	if (a->used == 0) {
		return MP_NO;
	}
	if (a->used == 1) {
		return MP_YES;
	}
	if (a->used > 1) {
		iy = mp_count_bits(a);
		iz = 1;
		iw = 1;

		/* Test every bit from the second digit up, must be 1 */
		for (ix = DIGIT_BIT; ix < iy; ix++) {
			if ((a->dp[iw] & iz) == 0) {
				return MP_NO;
			}
			iz <<= 1;
			if (iz > (mp_digit)MP_MASK) {
				++iw;
				iz = 1;
			}
		}
	}
	return MP_YES;
}

/* Source: /usr/cvsroot/libtommath/dist/libtommath/bn_mp_reduce_is_2k.c,v $ */
/* Revision: 1.1.1.1 $ */
/* Date: 2011/03/12 22:58:18 $ */


/* d = a * b (mod c) */
static int
multiply_modulo(mp_int *d, mp_int * a, mp_int * b, mp_int * c)
{
	mp_int  t;
	int     res;

	if ((res = mp_init(&t)) != MP_OKAY) {
		return res;
	}

	if ((res = signed_multiply(a, b, &t)) != MP_OKAY) {
		mp_clear(&t);
		return res;
	}
	res = modulo(&t, c, d);
	mp_clear(&t);
	return res;
}

/* Source: /usr/cvsroot/libtommath/dist/libtommath/bn_mp_mulmod.c,v $ */
/* Revision: 1.1.1.1 $ */
/* Date: 2011/03/12 22:58:18 $ */

/* setups the montgomery reduction stuff */
static int
mp_montgomery_setup(mp_int * n, mp_digit * rho)
{
	mp_digit x, b;

	/* fast inversion mod 2**k
	*
	* Based on the fact that
	*
	* XA = 1 (mod 2**n)  =>  (X(2-XA)) A = 1 (mod 2**2n)
	*                    =>  2*X*A - X*X*A*A = 1
	*                    =>  2*(1) - (1)     = 1
	*/
	b = n->dp[0];

	if ((b & 1) == 0) {
		return MP_VAL;
	}

	x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
	x *= 2 - b * x;               /* here x*a==1 mod 2**8 */
	x *= 2 - b * x;               /* here x*a==1 mod 2**16 */
	x *= 2 - b * x;               /* here x*a==1 mod 2**32 */
	if (/*CONSTCOND*/sizeof(mp_digit) == 8) {
		x *= 2 - b * x;	/* here x*a==1 mod 2**64 */
	}

	/* rho = -1/m mod b */
	*rho = (unsigned long)(((mp_word)1 << ((mp_word) DIGIT_BIT)) - x) & MP_MASK;

	return MP_OKAY;
}

/* Source: /usr/cvsroot/libtommath/dist/libtommath/bn_mp_montgomery_setup.c,v $ */
/* Revision: 1.1.1.1 $ */
/* Date: 2011/03/12 22:58:18 $ */

/* computes xR**-1 == x (mod N) via Montgomery Reduction
 *
 * This is an optimized implementation of montgomery_reduce
 * which uses the comba method to quickly calculate the columns of the
 * reduction.
 *
 * Based on Algorithm 14.32 on pp.601 of HAC.
*/
static int
fast_mp_montgomery_reduce(mp_int * x, mp_int * n, mp_digit rho)
{
	int     ix, res, olduse;
	/*LINTED*/
	mp_word W[MP_WARRAY];

	/* get old used count */
	olduse = x->used;

	/* grow a as required */
	if (x->alloc < n->used + 1) {
		if ((res = mp_grow(x, n->used + 1)) != MP_OKAY) {
			return res;
		}
	}

	/* first we have to get the digits of the input into
	* an array of double precision words W[...]
	*/
	{
		mp_word *_W;
		mp_digit *tmpx;

		/* alias for the W[] array */
		_W = W;

		/* alias for the digits of  x*/
		tmpx = x->dp;

		/* copy the digits of a into W[0..a->used-1] */
		for (ix = 0; ix < x->used; ix++) {
			*_W++ = *tmpx++;
		}

		/* zero the high words of W[a->used..m->used*2] */
		for (; ix < n->used * 2 + 1; ix++) {
			*_W++ = 0;
		}
	}

	/* now we proceed to zero successive digits
	* from the least significant upwards
	*/
	for (ix = 0; ix < n->used; ix++) {
		/* mu = ai * m' mod b
		*
		* We avoid a double precision multiplication (which isn't required)
		* by casting the value down to a mp_digit.  Note this requires
		* that W[ix-1] have  the carry cleared (see after the inner loop)
		*/
		mp_digit mu;
		mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK);

		/* a = a + mu * m * b**i
		*
		* This is computed in place and on the fly.  The multiplication
		* by b**i is handled by offseting which columns the results
		* are added to.
		*
		* Note the comba method normally doesn't handle carries in the
		* inner loop In this case we fix the carry from the previous
		* column since the Montgomery reduction requires digits of the
		* result (so far) [see above] to work.  This is
		* handled by fixing up one carry after the inner loop.  The
		* carry fixups are done in order so after these loops the
		* first m->used words of W[] have the carries fixed
		*/
		{
			int iy;
			mp_digit *tmpn;
			mp_word *_W;

			/* alias for the digits of the modulus */
			tmpn = n->dp;

			/* Alias for the columns set by an offset of ix */
			_W = W + ix;

			/* inner loop */
			for (iy = 0; iy < n->used; iy++) {
				  *_W++ += ((mp_word)mu) * ((mp_word)*tmpn++);
			}
		}

		/* now fix carry for next digit, W[ix+1] */
		W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT);
	}

	/* now we have to propagate the carries and
	* shift the words downward [all those least
	* significant digits we zeroed].
	*/
	{
		mp_digit *tmpx;
		mp_word *_W, *_W1;

		/* nox fix rest of carries */

		/* alias for current word */
		_W1 = W + ix;

		/* alias for next word, where the carry goes */
		_W = W + ++ix;

		for (; ix <= n->used * 2 + 1; ix++) {
			*_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);
		}

		/* copy out, A = A/b**n
		*
		* The result is A/b**n but instead of converting from an
		* array of mp_word to mp_digit than calling rshift_digits
		* we just copy them in the right order
		*/

		/* alias for destination word */
		tmpx = x->dp;

		/* alias for shifted double precision result */
		_W = W + n->used;

		for (ix = 0; ix < n->used + 1; ix++) {
			*tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK));
		}

		/* zero oldused digits, if the input a was larger than
		* m->used+1 we'll have to clear the digits
		*/
		for (; ix < olduse; ix++) {
			*tmpx++ = 0;
		}
	}

	/* set the max used and clamp */
	x->used = n->used + 1;
	trim_unused_digits(x);

	/* if A >= m then A = A - m */
	if (compare_magnitude(x, n) != MP_LT) {
		return basic_subtract(x, n, x);
	}
	return MP_OKAY;
}

/* Source: /usr/cvsroot/libtommath/dist/libtommath/bn_fast_mp_montgomery_reduce.c,v $ */
/* Revision: 1.2 $ */
/* Date: 2011/03/18 16:22:09 $ */

/* computes xR**-1 == x (mod N) via Montgomery Reduction */
static int
mp_montgomery_reduce(mp_int * x, mp_int * n, mp_digit rho)
{
	int     ix, res, digs;
	mp_digit mu;

	/* can the fast reduction [comba] method be used?
	*
	* Note that unlike in mul you're safely allowed *less*
	* than the available columns [255 per default] since carries
	* are fixed up in the inner loop.
	*/
	digs = n->used * 2 + 1;
	if (can_use_fast_column_array(digs, n->used)) {
		return fast_mp_montgomery_reduce(x, n, rho);
	}

	/* grow the input as required */
	if (x->alloc < digs) {
		if ((res = mp_grow(x, digs)) != MP_OKAY) {
			return res;
		}
	}
	x->used = digs;

	for (ix = 0; ix < n->used; ix++) {
		/* mu = ai * rho mod b
		*
		* The value of rho must be precalculated via
		* montgomery_setup() such that
		* it equals -1/n0 mod b this allows the
		* following inner loop to reduce the
		* input one digit at a time
		*/
		mu = (mp_digit) (((mp_word)x->dp[ix]) * ((mp_word)rho) & MP_MASK);

		/* a = a + mu * m * b**i */
		{
			int iy;
			mp_digit *tmpn, *tmpx, carry;
			mp_word r;

			/* alias for digits of the modulus */
			tmpn = n->dp;

			/* alias for the digits of x [the input] */
			tmpx = x->dp + ix;

			/* set the carry to zero */
			carry = 0;

			/* Multiply and add in place */
			for (iy = 0; iy < n->used; iy++) {
				/* compute product and sum */
				r = ((mp_word)mu) * ((mp_word)*tmpn++) +
					  ((mp_word) carry) + ((mp_word) * tmpx);

				/* get carry */
				carry = (mp_digit)(r >> ((mp_word) DIGIT_BIT));

				/* fix digit */
				*tmpx++ = (mp_digit)(r & ((mp_word) MP_MASK));
			}
			/* At this point the ix'th digit of x should be zero */


			/* propagate carries upwards as required*/
			while (carry) {
				*tmpx += carry;
				carry = *tmpx >> DIGIT_BIT;
				*tmpx++ &= MP_MASK;
			}
		}
	}

	/* at this point the n.used'th least
	* significant digits of x are all zero
	* which means we can shift x to the
	* right by n.used digits and the
	* residue is unchanged.
	*/

	/* x = x/b**n.used */
	trim_unused_digits(x);
	rshift_digits(x, n->used);

	/* if x >= n then x = x - n */
	if (compare_magnitude(x, n) != MP_LT) {
		return basic_subtract(x, n, x);
	}

	return MP_OKAY;
}

/* Source: /usr/cvsroot/libtommath/dist/libtommath/bn_mp_montgomery_reduce.c,v $ */
/* Revision: 1.3 $ */
/* Date: 2011/03/18 16:43:04 $ */

/* determines the setup value */
static void
diminished_radix_setup(mp_int *a, mp_digit *d)
{
	/* the casts are required if DIGIT_BIT is one less than
	* the number of bits in a mp_digit [e.g. DIGIT_BIT==31]
	*/
	*d = (mp_digit)((((mp_word)1) << ((mp_word)DIGIT_BIT)) - 
		((mp_word)a->dp[0]));
}

/* Source: /usr/cvsroot/libtommath/dist/libtommath/bn_mp_dr_setup.c,v $ */
/* Revision: 1.1.1.1 $ */
/* Date: 2011/03/12 22:58:18 $ */

/* reduce "x" in place modulo "n" using the Diminished Radix algorithm.
 *
 * Based on algorithm from the paper
 *
 * "Generating Efficient Primes for Discrete Log Cryptosystems"
 *                 Chae Hoon Lim, Pil Joong Lee,
 *          POSTECH Information Research Laboratories
 *
 * The modulus must be of a special format [see manual]
 *
 * Has been modified to use algorithm 7.10 from the LTM book instead
 *
 * Input x must be in the range 0 <= x <= (n-1)**2
 */
static int
diminished_radix_reduce(mp_int * x, mp_int * n, mp_digit k)
{
	int      err, i, m;
	mp_word  r;
	mp_digit mu, *tmpx1, *tmpx2;

	/* m = digits in modulus */
	m = n->used;

	/* ensure that "x" has at least 2m digits */
	if (x->alloc < m + m) {
		if ((err = mp_grow(x, m + m)) != MP_OKAY) {
			return err;
		}
	}

	/* top of loop, this is where the code resumes if
	* another reduction pass is required.
	*/
top:
	/* aliases for digits */
	/* alias for lower half of x */
	tmpx1 = x->dp;

	/* alias for upper half of x, or x/B**m */
	tmpx2 = x->dp + m;

	/* set carry to zero */
	mu = 0;

	/* compute (x mod B**m) + k * [x/B**m] inline and inplace */
	for (i = 0; i < m; i++) {
		r = ((mp_word)*tmpx2++) * ((mp_word)k) + *tmpx1 + mu;
		*tmpx1++  = (mp_digit)(r & MP_MASK);
		mu = (mp_digit)(r >> ((mp_word)DIGIT_BIT));
	}

	/* set final carry */
	*tmpx1++ = mu;

	/* zero words above m */
	for (i = m + 1; i < x->used; i++) {
		*tmpx1++ = 0;
	}

	/* clamp, sub and return */
	trim_unused_digits(x);

	/* if x >= n then subtract and reduce again
	* Each successive "recursion" makes the input smaller and smaller.
	*/
	if (compare_magnitude(x, n) != MP_LT) {
		basic_subtract(x, n, x);
		goto top;
	}
	return MP_OKAY;
}

/* Source: /usr/cvsroot/libtommath/dist/libtommath/bn_mp_dr_reduce.c,v $ */
/* Revision: 1.1.1.1 $ */
/* Date: 2011/03/12 22:58:18 $ */

/* determines the setup value */
static int
mp_reduce_2k_setup(mp_int *a, mp_digit *d)
{
	int res, p;
	mp_int tmp;

	if ((res = mp_init(&tmp)) != MP_OKAY) {
		return res;
	}

	p = mp_count_bits(a);
	if ((res = mp_2expt(&tmp, p)) != MP_OKAY) {
		mp_clear(&tmp);
		return res;
	}

	if ((res = basic_subtract(&tmp, a, &tmp)) != MP_OKAY) {
		mp_clear(&tmp);
		return res;
	}

	*d = tmp.dp[0];
	mp_clear(&tmp);
	return MP_OKAY;
}

/* Source: /usr/cvsroot/libtommath/dist/libtommath/bn_mp_reduce_2k_setup.c,v $ */
/* Revision: 1.1.1.1 $ */
/* Date: 2011/03/12 22:58:18 $ */

/* reduces a modulo n where n is of the form 2**p - d */
static int
mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d)
{
	mp_int q;
	int    p, res;

	if ((res = mp_init(&q)) != MP_OKAY) {
		return res;
	}

	p = mp_count_bits(n);    
top:
	/* q = a/2**p, a = a mod 2**p */
	if ((res = rshift_bits(a, p, &q, a)) != MP_OKAY) {
		goto ERR;
	}

	if (d != 1) {
		/* q = q * d */
		if ((res = multiply_digit(&q, d, &q)) != MP_OKAY) { 
			 goto ERR;
		}
	}

	/* a = a + q */
	if ((res = basic_add(a, &q, a)) != MP_OKAY) {
		goto ERR;
	}

	if (compare_magnitude(a, n) != MP_LT) {
		basic_subtract(a, n, a);
		goto top;
	}

ERR:
	mp_clear(&q);
	return res;
}

/* Source: /usr/cvsroot/libtommath/dist/libtommath/bn_mp_reduce_2k.c,v $ */
/* Revision: 1.1.1.1 $ */
/* Date: 2011/03/12 22:58:18 $ */

/*
 * shifts with subtractions when the result is greater than b.
 *
 * The method is slightly modified to shift B unconditionally upto just under
 * the leading bit of b.  This saves alot of multiple precision shifting.
 */
static int
mp_montgomery_calc_normalization(mp_int * a, mp_int * b)
{
	int     x, bits, res;

	/* how many bits of last digit does b use */
	bits = mp_count_bits(b) % DIGIT_BIT;

	if (b->used > 1) {
		if ((res = mp_2expt(a, (b->used - 1) * DIGIT_BIT + bits - 1)) != MP_OKAY) {
			return res;
		}
	} else {
		set_word(a, 1);
		bits = 1;
	}


	/* now compute C = A * B mod b */
	for (x = bits - 1; x < (int)DIGIT_BIT; x++) {
		if ((res = doubled(a, a)) != MP_OKAY) {
			return res;
		}
		if (compare_magnitude(a, b) != MP_LT) {
			if ((res = basic_subtract(a, b, a)) != MP_OKAY) {
				return res;
			}
		}
	}

	return MP_OKAY;
}

/* Source: /usr/cvsroot/libtommath/dist/libtommath/bn_mp_montgomery_calc_normalization.c,v $ */
/* Revision: 1.1.1.1 $ */
/* Date: 2011/03/12 22:58:18 $ */

/* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85
 *
 * Uses a left-to-right k-ary sliding window to compute the modular exponentiation.
 * The value of k changes based on the size of the exponent.
 *
 * Uses Montgomery or Diminished Radix reduction [whichever appropriate]
 */

#define TAB_SIZE 256

static int
fast_exponent_modulo(mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
{
	mp_int  M[TAB_SIZE], res;
	mp_digit buf, mp;
	int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;

	/* use a pointer to the reduction algorithm.  This allows us to use
	* one of many reduction algorithms without modding the guts of
	* the code with if statements everywhere.
	*/
	int     (*redux)(mp_int*,mp_int*,mp_digit);

	winsize = find_window_size(X);

	/* init M array */
	/* init first cell */
	if ((err = mp_init(&M[1])) != MP_OKAY) {
		return err;
	}

	/* now init the second half of the array */
	for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
		if ((err = mp_init(&M[x])) != MP_OKAY) {
			for (y = 1<<(winsize-1); y < x; y++) {
				mp_clear(&M[y]);
			}
			mp_clear(&M[1]);
			return err;
		}
	}

	/* determine and setup reduction code */
	if (redmode == 0) {
		/* now setup montgomery  */
		if ((err = mp_montgomery_setup(P, &mp)) != MP_OKAY) {
			goto LBL_M;
		}

		/* automatically pick the comba one if available (saves quite a few calls/ifs) */
		if (can_use_fast_column_array(P->used + P->used + 1, P->used)) {
			redux = fast_mp_montgomery_reduce;
		} else {
			/* use slower baseline Montgomery method */
			redux = mp_montgomery_reduce;
		}
	} else if (redmode == 1) {
		/* setup DR reduction for moduli of the form B**k - b */
		diminished_radix_setup(P, &mp);
		redux = diminished_radix_reduce;
	} else {
		/* setup DR reduction for moduli of the form 2**k - b */
		if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) {
			goto LBL_M;
		}
		redux = mp_reduce_2k;
	}

	/* setup result */
	if ((err = mp_init(&res)) != MP_OKAY) {
		goto LBL_M;
	}

	/* create M table
	*

	*
	* The first half of the table is not computed though accept for M[0] and M[1]
	*/

	if (redmode == 0) {
		/* now we need R mod m */
		if ((err = mp_montgomery_calc_normalization(&res, P)) != MP_OKAY) {
			goto LBL_RES;
		}

		/* now set M[1] to G * R mod m */
		if ((err = multiply_modulo(&M[1], G, &res, P)) != MP_OKAY) {
			goto LBL_RES;
		}
	} else {
		set_word(&res, 1);
		if ((err = modulo(G, P, &M[1])) != MP_OKAY) {
			goto LBL_RES;
		}
	}

	/* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
	if ((err = mp_copy( &M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
		goto LBL_RES;
	}

	for (x = 0; x < (winsize - 1); x++) {
		if ((err = square(&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) {
			goto LBL_RES;
		}
		if ((err = (*redux)(&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) {
			goto LBL_RES;
		}
	}

	/* create upper table */
	for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
		if ((err = signed_multiply(&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
			goto LBL_RES;
		}
		if ((err = (*redux)(&M[x], P, mp)) != MP_OKAY) {
			goto LBL_RES;
		}
	}

	/* set initial mode and bit cnt */
	mode = 0;
	bitcnt = 1;
	buf = 0;
	digidx = X->used - 1;
	bitcpy = 0;
	bitbuf = 0;

	for (;;) {
		/* grab next digit as required */
		if (--bitcnt == 0) {
			/* if digidx == -1 we are out of digits so break */
			if (digidx == -1) {
				break;
			}
			/* read next digit and reset bitcnt */
			buf = X->dp[digidx--];
			bitcnt = (int)DIGIT_BIT;
		}

		/* grab the next msb from the exponent */
		y = (int)(mp_digit)((mp_digit)buf >> (unsigned)(DIGIT_BIT - 1)) & 1;
		buf <<= (mp_digit)1;

		/* if the bit is zero and mode == 0 then we ignore it
		* These represent the leading zero bits before the first 1 bit
		* in the exponent.  Technically this opt is not required but it
		* does lower the # of trivial squaring/reductions used
		*/
		if (mode == 0 && y == 0) {
			continue;
		}

		/* if the bit is zero and mode == 1 then we square */
		if (mode == 1 && y == 0) {
			if ((err = square(&res, &res)) != MP_OKAY) {
				goto LBL_RES;
			}
			if ((err = (*redux)(&res, P, mp)) != MP_OKAY) {
				goto LBL_RES;
			}
			continue;
		}

		/* else we add it to the window */
		bitbuf |= (y << (winsize - ++bitcpy));
		mode = 2;

		if (bitcpy == winsize) {
			/* ok window is filled so square as required and multiply  */
			/* square first */
			for (x = 0; x < winsize; x++) {
				if ((err = square(&res, &res)) != MP_OKAY) {
					goto LBL_RES;
				}
				if ((err = (*redux)(&res, P, mp)) != MP_OKAY) {
					goto LBL_RES;
				}
			}

			/* then multiply */
			if ((err = signed_multiply(&res, &M[bitbuf], &res)) != MP_OKAY) {
				goto LBL_RES;
			}
			if ((err = (*redux)(&res, P, mp)) != MP_OKAY) {
				goto LBL_RES;
			}

			/* empty window and reset */
			bitcpy = 0;
			bitbuf = 0;
			mode = 1;
		}
	}

	/* if bits remain then square/multiply */
	if (mode == 2 && bitcpy > 0) {
		/* square then multiply if the bit is set */
		for (x = 0; x < bitcpy; x++) {
			if ((err = square(&res, &res)) != MP_OKAY) {
				goto LBL_RES;
			}
			if ((err = (*redux)(&res, P, mp)) != MP_OKAY) {
				goto LBL_RES;
			}

			/* get next bit of the window */
			bitbuf <<= 1;
			if ((bitbuf & (1 << winsize)) != 0) {
				/* then multiply */
				if ((err = signed_multiply(&res, &M[1], &res)) != MP_OKAY) {
					goto LBL_RES;
				}
				if ((err = (*redux)(&res, P, mp)) != MP_OKAY) {
					goto LBL_RES;
				}
			}
		}
	}

	if (redmode == 0) {
		/* fixup result if Montgomery reduction is used
		* recall that any value in a Montgomery system is
		* actually multiplied by R mod n.  So we have
		* to reduce one more time to cancel out the factor
		* of R.
		*/
		if ((err = (*redux)(&res, P, mp)) != MP_OKAY) {
			goto LBL_RES;
		}
	}

	/* swap res with Y */
	mp_exch(&res, Y);
	err = MP_OKAY;
LBL_RES:
	mp_clear(&res);
LBL_M:
	mp_clear(&M[1]);
	for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
		mp_clear(&M[x]);
	}
	return err;
}

/* Source: /usr/cvsroot/libtommath/dist/libtommath/bn_fast_exponent_modulo.c,v $ */
/* Revision: 1.4 $ */
/* Date: 2011/03/18 16:43:04 $ */

/* this is a shell function that calls either the normal or Montgomery
 * exptmod functions.  Originally the call to the montgomery code was
 * embedded in the normal function but that wasted alot of stack space
 * for nothing (since 99% of the time the Montgomery code would be called)
 */
static int
exponent_modulo(mp_int * G, mp_int * X, mp_int * P, mp_int *Y)
{
	int diminished_radix;

	/* modulus P must be positive */
	if (P->sign == MP_NEG) {
		return MP_VAL;
	}

	/* if exponent X is negative we have to recurse */
	if (X->sign == MP_NEG) {
		mp_int tmpG, tmpX;
		int err;

		/* first compute 1/G mod P */
		if ((err = mp_init(&tmpG)) != MP_OKAY) {
			return err;
		}
		if ((err = modular_inverse(&tmpG, G, P)) != MP_OKAY) {
			mp_clear(&tmpG);
			return err;
		}

		/* now get |X| */
		if ((err = mp_init(&tmpX)) != MP_OKAY) {
			mp_clear(&tmpG);
			return err;
		}
		if ((err = absolute(X, &tmpX)) != MP_OKAY) {
			mp_clear_multi(&tmpG, &tmpX, NULL);
			return err;
		}

		/* and now compute (1/G)**|X| instead of G**X [X < 0] */
		err = exponent_modulo(&tmpG, &tmpX, P, Y);
		mp_clear_multi(&tmpG, &tmpX, NULL);
		return err;
	}

	/* modified diminished radix reduction */
	if (mp_reduce_is_2k_l(P) == MP_YES) {
		return basic_exponent_mod(G, X, P, Y, 1);
	}

	/* is it a DR modulus? */
	diminished_radix = is_diminished_radix_modulus(P);

	/* if not, is it a unrestricted DR modulus? */
	if (!diminished_radix) {
		diminished_radix = mp_reduce_is_2k(P) << 1;
	}

	/* if the modulus is odd or diminished_radix, use the montgomery method */
	if (BN_is_odd(P) == 1 || diminished_radix) {
		return fast_exponent_modulo(G, X, P, Y, diminished_radix);
	}
	/* otherwise use the generic Barrett reduction technique */
	return basic_exponent_mod(G, X, P, Y, 0);
}

/* reverse an array, used for radix code */
static void
bn_reverse(unsigned char *s, int len)
{
	int     ix, iy;
	uint8_t t;

	for (ix = 0, iy = len - 1; ix < iy ; ix++, --iy) {
		t = s[ix];
		s[ix] = s[iy];
		s[iy] = t;
	}
}

static inline int
is_power_of_two(mp_digit b, int *p)
{
	int x;

	/* fast return if no power of two */
	if ((b==0) || (b & (b-1))) {
		return 0;
	}

	for (x = 0; x < DIGIT_BIT; x++) {
		if (b == (((mp_digit)1)<<x)) {
			*p = x;
			return 1;
		}
	}
	return 0;
}

/* single digit division (based on routine from MPI) */
static int
signed_divide_word(mp_int *a, mp_digit b, mp_int *c, mp_digit *d)
{
	mp_int  q;
	mp_word w;
	mp_digit t;
	int     res, ix;

	/* cannot divide by zero */
	if (b == 0) {
		return MP_VAL;
	}

	/* quick outs */
	if (b == 1 || MP_ISZERO(a) == 1) {
		if (d != NULL) {
			*d = 0;
		}
		if (c != NULL) {
			return mp_copy(a, c);
		}
		return MP_OKAY;
	}

	/* power of two ? */
	if (is_power_of_two(b, &ix) == 1) {
		if (d != NULL) {
			*d = a->dp[0] & ((((mp_digit)1)<<ix) - 1);
		}
		if (c != NULL) {
			return rshift_bits(a, ix, c, NULL);
		}
		return MP_OKAY;
	}

	/* three? */
	if (b == 3) {
		return third(a, c, d);
	}

	/* no easy answer [c'est la vie].  Just division */
	if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
		return res;
	}

	q.used = a->used;
	q.sign = a->sign;
	w = 0;
	for (ix = a->used - 1; ix >= 0; ix--) {
		w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);

		if (w >= b) {
			t = (mp_digit)(w / b);
			w -= ((mp_word)t) * ((mp_word)b);
		} else {
			t = 0;
		}
		q.dp[ix] = (mp_digit)t;
	}

	if (d != NULL) {
		*d = (mp_digit)w;
	}

	if (c != NULL) {
		trim_unused_digits(&q);
		mp_exch(&q, c);
	}
	mp_clear(&q);

	return res;
}

static const mp_digit ltm_prime_tab[] = {
	0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013,
	0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035,
	0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059,
	0x0061, 0x0065, 0x0067, 0x006B, 0x006D, 0x0071, 0x007F,
#ifndef MP_8BIT
	0x0083,
	0x0089, 0x008B, 0x0095, 0x0097, 0x009D, 0x00A3, 0x00A7, 0x00AD,
	0x00B3, 0x00B5, 0x00BF, 0x00C1, 0x00C5, 0x00C7, 0x00D3, 0x00DF,
	0x00E3, 0x00E5, 0x00E9, 0x00EF, 0x00F1, 0x00FB, 0x0101, 0x0107,
	0x010D, 0x010F, 0x0115, 0x0119, 0x011B, 0x0125, 0x0133, 0x0137,

	0x0139, 0x013D, 0x014B, 0x0151, 0x015B, 0x015D, 0x0161, 0x0167,
	0x016F, 0x0175, 0x017B, 0x017F, 0x0185, 0x018D, 0x0191, 0x0199,
	0x01A3, 0x01A5, 0x01AF, 0x01B1, 0x01B7, 0x01BB, 0x01C1, 0x01C9,
	0x01CD, 0x01CF, 0x01D3, 0x01DF, 0x01E7, 0x01EB, 0x01F3, 0x01F7,
	0x01FD, 0x0209, 0x020B, 0x021D, 0x0223, 0x022D, 0x0233, 0x0239,
	0x023B, 0x0241, 0x024B, 0x0251, 0x0257, 0x0259, 0x025F, 0x0265,
	0x0269, 0x026B, 0x0277, 0x0281, 0x0283, 0x0287, 0x028D, 0x0293,
	0x0295, 0x02A1, 0x02A5, 0x02AB, 0x02B3, 0x02BD, 0x02C5, 0x02CF,

	0x02D7, 0x02DD, 0x02E3, 0x02E7, 0x02EF, 0x02F5, 0x02F9, 0x0301,
	0x0305, 0x0313, 0x031D, 0x0329, 0x032B, 0x0335, 0x0337, 0x033B,
	0x033D, 0x0347, 0x0355, 0x0359, 0x035B, 0x035F, 0x036D, 0x0371,
	0x0373, 0x0377, 0x038B, 0x038F, 0x0397, 0x03A1, 0x03A9, 0x03AD,
	0x03B3, 0x03B9, 0x03C7, 0x03CB, 0x03D1, 0x03D7, 0x03DF, 0x03E5,
	0x03F1, 0x03F5, 0x03FB, 0x03FD, 0x0407, 0x0409, 0x040F, 0x0419,
	0x041B, 0x0425, 0x0427, 0x042D, 0x043F, 0x0443, 0x0445, 0x0449,
	0x044F, 0x0455, 0x045D, 0x0463, 0x0469, 0x047F, 0x0481, 0x048B,

	0x0493, 0x049D, 0x04A3, 0x04A9, 0x04B1, 0x04BD, 0x04C1, 0x04C7,
	0x04CD, 0x04CF, 0x04D5, 0x04E1, 0x04EB, 0x04FD, 0x04FF, 0x0503,
	0x0509, 0x050B, 0x0511, 0x0515, 0x0517, 0x051B, 0x0527, 0x0529,
	0x052F, 0x0551, 0x0557, 0x055D, 0x0565, 0x0577, 0x0581, 0x058F,
	0x0593, 0x0595, 0x0599, 0x059F, 0x05A7, 0x05AB, 0x05AD, 0x05B3,
	0x05BF, 0x05C9, 0x05CB, 0x05CF, 0x05D1, 0x05D5, 0x05DB, 0x05E7,
	0x05F3, 0x05FB, 0x0607, 0x060D, 0x0611, 0x0617, 0x061F, 0x0623,
	0x062B, 0x062F, 0x063D, 0x0641, 0x0647, 0x0649, 0x064D, 0x0653
#endif
};

#define PRIME_SIZE	__arraycount(ltm_prime_tab)

static inline int
mp_prime_is_divisible(mp_int *a, int *result)
{
	int     err, ix;
	mp_digit res;

	/* default to not */
	*result = MP_NO;

	for (ix = 0; ix < (int)PRIME_SIZE; ix++) {
		/* what is a mod LBL_prime_tab[ix] */
		if ((err = signed_divide_word(a, ltm_prime_tab[ix], NULL, &res)) != MP_OKAY) {
			return err;
		}

		/* is the residue zero? */
		if (res == 0) {
			*result = MP_YES;
			return MP_OKAY;
		}
	}

	return MP_OKAY;
}

/* single digit addition */
static int
add_single_digit(mp_int *a, mp_digit b, mp_int *c)
{
	int     res, ix, oldused;
	mp_digit *tmpa, *tmpc, mu;

	/* grow c as required */
	if (c->alloc < a->used + 1) {
		if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
			return res;
		}
	}

	/* if a is negative and |a| >= b, call c = |a| - b */
	if (a->sign == MP_NEG && (a->used > 1 || a->dp[0] >= b)) {
		/* temporarily fix sign of a */
		a->sign = MP_ZPOS;

		/* c = |a| - b */
		res = signed_subtract_word(a, b, c);

		/* fix sign  */
		a->sign = c->sign = MP_NEG;

		/* clamp */
		trim_unused_digits(c);

		return res;
	}

	/* old number of used digits in c */
	oldused = c->used;

	/* sign always positive */
	c->sign = MP_ZPOS;

	/* source alias */
	tmpa = a->dp;

	/* destination alias */
	tmpc = c->dp;

	/* if a is positive */
	if (a->sign == MP_ZPOS) {
		/* add digit, after this we're propagating
		* the carry.
		*/
		*tmpc = *tmpa++ + b;
		mu = *tmpc >> DIGIT_BIT;
		*tmpc++ &= MP_MASK;

		/* now handle rest of the digits */
		for (ix = 1; ix < a->used; ix++) {
			*tmpc = *tmpa++ + mu;
			mu = *tmpc >> DIGIT_BIT;
			*tmpc++ &= MP_MASK;
		}
		/* set final carry */
		ix++;
		*tmpc++  = mu;

		/* setup size */
		c->used = a->used + 1;
	} else {
		/* a was negative and |a| < b */
		c->used  = 1;

		/* the result is a single digit */
		if (a->used == 1) {
			*tmpc++  =  b - a->dp[0];
		} else {
			*tmpc++  =  b;
		}

		/* setup count so the clearing of oldused
		* can fall through correctly
		*/
		ix = 1;
	}

	/* now zero to oldused */
	while (ix++ < oldused) {
		*tmpc++ = 0;
	}
	trim_unused_digits(c);

	return MP_OKAY;
}

/* single digit subtraction */
static int
signed_subtract_word(mp_int *a, mp_digit b, mp_int *c)
{
	mp_digit *tmpa, *tmpc, mu;
	int       res, ix, oldused;

	/* grow c as required */
	if (c->alloc < a->used + 1) {
		if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
			return res;
		}
	}

	/* if a is negative just do an unsigned
	* addition [with fudged signs]
	*/
	if (a->sign == MP_NEG) {
		a->sign = MP_ZPOS;
		res = add_single_digit(a, b, c);
		a->sign = c->sign = MP_NEG;

		/* clamp */
		trim_unused_digits(c);

		return res;
	}

	/* setup regs */
	oldused = c->used;
	tmpa = a->dp;
	tmpc = c->dp;

	/* if a <= b simply fix the single digit */
	if ((a->used == 1 && a->dp[0] <= b) || a->used == 0) {
		if (a->used == 1) {
			*tmpc++ = b - *tmpa;
		} else {
			*tmpc++ = b;
		}
		ix = 1;

		/* negative/1digit */
		c->sign = MP_NEG;
		c->used = 1;
	} else {
		/* positive/size */
		c->sign = MP_ZPOS;
		c->used = a->used;

		/* subtract first digit */
		*tmpc = *tmpa++ - b;
		mu = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1);
		*tmpc++ &= MP_MASK;

		/* handle rest of the digits */
		for (ix = 1; ix < a->used; ix++) {
			*tmpc = *tmpa++ - mu;
			mu = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1);
			*tmpc++ &= MP_MASK;
		}
	}

	/* zero excess digits */
	while (ix++ < oldused) {
		*tmpc++ = 0;
	}
	trim_unused_digits(c);
	return MP_OKAY;
}

static const int lnz[16] = { 
	4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
};

/* Counts the number of lsbs which are zero before the first zero bit */
static int
mp_cnt_lsb(mp_int *a)
{
	int x;
	mp_digit q, qq;

	/* easy out */
	if (MP_ISZERO(a) == 1) {
		return 0;
	}

	/* scan lower digits until non-zero */
	for (x = 0; x < a->used && a->dp[x] == 0; x++) {
	}
	q = a->dp[x];
	x *= DIGIT_BIT;

	/* now scan this digit until a 1 is found */
	if ((q & 1) == 0) {
		do {
			 qq  = q & 15;
			 /* LINTED previous op ensures range of qq */
			 x  += lnz[qq];
			 q >>= 4;
		} while (qq == 0);
	}
	return x;
}

/* c = a * a (mod b) */
static int
square_modulo(mp_int *a, mp_int *b, mp_int *c)
{
	int     res;
	mp_int  t;

	if ((res = mp_init(&t)) != MP_OKAY) {
		return res;
	}

	if ((res = square(a, &t)) != MP_OKAY) {
		mp_clear(&t);
		return res;
	}
	res = modulo(&t, b, c);
	mp_clear(&t);
	return res;
}

static int
mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result)
{
	mp_int  n1, y, r;
	int     s, j, err;

	/* default */
	*result = MP_NO;

	/* ensure b > 1 */
	if (compare_digit(b, 1) != MP_GT) {
		return MP_VAL;
	}     

	/* get n1 = a - 1 */
	if ((err = mp_init_copy(&n1, a)) != MP_OKAY) {
		return err;
	}
	if ((err = signed_subtract_word(&n1, 1, &n1)) != MP_OKAY) {
		goto LBL_N1;
	}

	/* set 2**s * r = n1 */
	if ((err = mp_init_copy(&r, &n1)) != MP_OKAY) {
		goto LBL_N1;
	}

	/* count the number of least significant bits
	* which are zero
	*/
	s = mp_cnt_lsb(&r);

	/* now divide n - 1 by 2**s */
	if ((err = rshift_bits(&r, s, &r, NULL)) != MP_OKAY) {
		goto LBL_R;
	}

	/* compute y = b**r mod a */
	if ((err = mp_init(&y)) != MP_OKAY) {
		goto LBL_R;
	}
	if ((err = exponent_modulo(b, &r, a, &y)) != MP_OKAY) {
		goto LBL_Y;
	}

	/* if y != 1 and y != n1 do */
	if (compare_digit(&y, 1) != MP_EQ && signed_compare(&y, &n1) != MP_EQ) {
		j = 1;
		/* while j <= s-1 and y != n1 */
		while ((j <= (s - 1)) && signed_compare(&y, &n1) != MP_EQ) {
			if ((err = square_modulo(&y, a, &y)) != MP_OKAY) {
				goto LBL_Y;
			}

			/* if y == 1 then composite */
			if (compare_digit(&y, 1) == MP_EQ) {
				goto LBL_Y;
			}

			++j;
		}

		/* if y != n1 then composite */
		if (signed_compare(&y, &n1) != MP_EQ) {
			goto LBL_Y;
		}
	}

	/* probably prime now */
	*result = MP_YES;
LBL_Y:
	mp_clear(&y);
LBL_R:
	mp_clear(&r);
LBL_N1:
	mp_clear(&n1);
	return err;
}

/* performs a variable number of rounds of Miller-Rabin
 *
 * Probability of error after t rounds is no more than

 *
 * Sets result to 1 if probably prime, 0 otherwise
 */
static int
mp_prime_is_prime(mp_int *a, int t, int *result)
{
	mp_int  b;
	int     ix, err, res;

	/* default to no */
	*result = MP_NO;

	/* valid value of t? */
	if (t <= 0 || t > (int)PRIME_SIZE) {
		return MP_VAL;
	}

	/* is the input equal to one of the primes in the table? */
	for (ix = 0; ix < (int)PRIME_SIZE; ix++) {
		if (compare_digit(a, ltm_prime_tab[ix]) == MP_EQ) {
			*result = 1;
			return MP_OKAY;
		}
	}

	/* first perform trial division */
	if ((err = mp_prime_is_divisible(a, &res)) != MP_OKAY) {
		return err;
	}

	/* return if it was trivially divisible */
	if (res == MP_YES) {
		return MP_OKAY;
	}

	/* now perform the miller-rabin rounds */
	if ((err = mp_init(&b)) != MP_OKAY) {
		return err;
	}

	for (ix = 0; ix < t; ix++) {
		/* set the prime */
		set_word(&b, ltm_prime_tab[ix]);

		if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) {
			goto LBL_B;
		}

		if (res == MP_NO) {
			goto LBL_B;
		}
	}

	/* passed the test */
	*result = MP_YES;
LBL_B:
	mp_clear(&b);
	return err;
}

/* returns size of ASCII reprensentation */
static int
mp_radix_size(mp_int *a, int radix, int *size)
{
	int     res, digs;
	mp_int  t;
	mp_digit d;

	*size = 0;

	/* special case for binary */
	if (radix == 2) {
		*size = mp_count_bits(a) + (a->sign == MP_NEG ? 1 : 0) + 1;
		return MP_OKAY;
	}

	/* make sure the radix is in range */
	if (radix < 2 || radix > 64) {
		return MP_VAL;
	}

	if (MP_ISZERO(a) == MP_YES) {
		*size = 2;
		return MP_OKAY;
	}

	/* digs is the digit count */
	digs = 0;

	/* if it's negative add one for the sign */
	if (a->sign == MP_NEG) {
		++digs;
	}

	/* init a copy of the input */
	if ((res = mp_init_copy(&t, a)) != MP_OKAY) {
		return res;
	}

	/* force temp to positive */
	t.sign = MP_ZPOS; 

	/* fetch out all of the digits */
	while (MP_ISZERO(&t) == MP_NO) {
		if ((res = signed_divide_word(&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
			mp_clear(&t);
			return res;
		}
		++digs;
	}
	mp_clear(&t);

	/* return digs + 1, the 1 is for the NULL byte that would be required. */
	*size = digs + 1;
	return MP_OKAY;
}

static const char *mp_s_rmap = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/";

/* stores a bignum as a ASCII string in a given radix (2..64) 
 *
 * Stores upto maxlen-1 chars and always a NULL byte 
 */
static int
mp_toradix_n(mp_int * a, char *str, int radix, int maxlen)
{
	int     res, digs;
	mp_int  t;
	mp_digit d;
	char   *_s = str;

	/* check range of the maxlen, radix */
	if (maxlen < 2 || radix < 2 || radix > 64) {
		return MP_VAL;
	}

	/* quick out if its zero */
	if (MP_ISZERO(a) == MP_YES) {
		*str++ = '0';
		*str = '\0';
		return MP_OKAY;
	}

	if ((res = mp_init_copy(&t, a)) != MP_OKAY) {
		return res;
	}

	/* if it is negative output a - */
	if (t.sign == MP_NEG) {
		/* we have to reverse our digits later... but not the - sign!! */
		++_s;

		/* store the flag and mark the number as positive */
		*str++ = '-';
		t.sign = MP_ZPOS;

		/* subtract a char */
		--maxlen;
	}

	digs = 0;
	while (MP_ISZERO(&t) == 0) {
		if (--maxlen < 1) {
			/* no more room */
			break;
		}
		if ((res = signed_divide_word(&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
			mp_clear(&t);
			return res;
		}
		/* LINTED -- radix' range is checked above, limits d's range */
		*str++ = mp_s_rmap[d];
		++digs;
	}

	/* reverse the digits of the string.  In this case _s points
	* to the first digit [exluding the sign] of the number
	*/
	bn_reverse((unsigned char *)_s, digs);

	/* append a NULL so the string is properly terminated */
	*str = '\0';

	mp_clear(&t);
	return MP_OKAY;
}

static char *
formatbn(const BIGNUM *a, const int radix)
{
	char	*s;
	int	 len;

	if (mp_radix_size(__UNCONST(a), radix, &len) != MP_OKAY) {
		return NULL;
	}
	if ((s = allocate(1, (size_t)len)) != NULL) {
		if (mp_toradix_n(__UNCONST(a), s, radix, len) != MP_OKAY) {
			deallocate(s, (size_t)len);
			return NULL;
		}
	}
	return s;
}

static int
mp_getradix_num(mp_int *a, int radix, char *s)
{
	int err, ch, neg, y;

	/* clear a */
	mp_zero(a);

	/* if first digit is - then set negative */
	if ((ch = *s++) == '-') {
		neg = MP_NEG;
		ch = *s++;
	} else {
		neg = MP_ZPOS;
	}

	for (;;) {
		/* find y in the radix map */
		for (y = 0; y < radix; y++) {
			if (mp_s_rmap[y] == ch) {
				break;
			}
		}
		if (y == radix) {
			break;
		}

		/* shift up and add */
		if ((err = multiply_digit(a, radix, a)) != MP_OKAY) {
			return err;
		}
		if ((err = add_single_digit(a, y, a)) != MP_OKAY) {
			return err;
		}

		ch = *s++;
	}
	if (compare_digit(a, 0) != MP_EQ) {
		a->sign = neg;
	}

	return MP_OKAY;
}

static int
getbn(BIGNUM **a, const char *str, int radix)
{
	int	len;

	if (a == NULL || str == NULL || (*a = BN_new()) == NULL) {
		return 0;
	}
	if (mp_getradix_num(*a, radix, __UNCONST(str)) != MP_OKAY) {
		return 0;
	}
	mp_radix_size(__UNCONST(*a), radix, &len);
	return len - 1;
}

/* d = a - b (mod c) */
static int
subtract_modulo(mp_int *a, mp_int *b, mp_int *c, mp_int *d)
{
	int     res;
	mp_int  t;


	if ((res = mp_init(&t)) != MP_OKAY) {
		return res;
	}

	if ((res = signed_subtract(a, b, &t)) != MP_OKAY) {
		mp_clear(&t);
		return res;
	}
	res = modulo(&t, c, d);
	mp_clear(&t);
	return res;
}

/* bn_mp_gcd.c */
/* Greatest Common Divisor using the binary method */
static int
mp_gcd(mp_int *a, mp_int *b, mp_int *c)
{
	mp_int  u, v;
	int     k, u_lsb, v_lsb, res;

	/* either zero than gcd is the largest */
	if (BN_is_zero(a) == MP_YES) {
		return absolute(b, c);
	}
	if (BN_is_zero(b) == MP_YES) {
		return absolute(a, c);
	}

	/* get copies of a and b we can modify */
	if ((res = mp_init_copy(&u, a)) != MP_OKAY) {
		return res;
	}

	if ((res = mp_init_copy(&v, b)) != MP_OKAY) {
		goto LBL_U;
	}

	/* must be positive for the remainder of the algorithm */
	u.sign = v.sign = MP_ZPOS;

	/* B1.  Find the common power of two for u and v */
	u_lsb = mp_cnt_lsb(&u);
	v_lsb = mp_cnt_lsb(&v);
	k = MIN(u_lsb, v_lsb);

	if (k > 0) {
		/* divide the power of two out */
		if ((res = rshift_bits(&u, k, &u, NULL)) != MP_OKAY) {
			goto LBL_V;
		}

		if ((res = rshift_bits(&v, k, &v, NULL)) != MP_OKAY) {
			goto LBL_V;
		}
	}

	/* divide any remaining factors of two out */
	if (u_lsb != k) {
		if ((res = rshift_bits(&u, u_lsb - k, &u, NULL)) != MP_OKAY) {
			goto LBL_V;
		}
	}

	if (v_lsb != k) {
		if ((res = rshift_bits(&v, v_lsb - k, &v, NULL)) != MP_OKAY) {
			goto LBL_V;
		}
	}

	while (BN_is_zero(&v) == 0) {
		/* make sure v is the largest */
		if (compare_magnitude(&u, &v) == MP_GT) {
			/* swap u and v to make sure v is >= u */
			mp_exch(&u, &v);
		}

		/* subtract smallest from largest */
		if ((res = signed_subtract(&v, &u, &v)) != MP_OKAY) {
			goto LBL_V;
		}

		/* Divide out all factors of two */
		if ((res = rshift_bits(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) {
			goto LBL_V;
		} 
	} 

	/* multiply by 2**k which we divided out at the beginning */
	if ((res = lshift_bits(&u, k, c)) != MP_OKAY) {
		goto LBL_V;
	}
	c->sign = MP_ZPOS;
	res = MP_OKAY;
LBL_V:
	mp_clear (&u);
LBL_U:
	mp_clear (&v);
	return res;
}

/**************************************************************************/

/* BIGNUM emulation layer */

/* essentiually, these are just wrappers around the libtommath functions */
/* usually the order of args changes */
/* the BIGNUM API tends to have more const poisoning */
/* these wrappers also check the arguments passed for sanity */

BIGNUM *
BN_bin2bn(const uint8_t *data, int len, BIGNUM *ret)
{
	if (data == NULL) {
		return BN_new();
	}
	if (ret == NULL) {
		ret = BN_new();
	}
	return (mp_read_unsigned_bin(ret, data, len) == MP_OKAY) ? ret : NULL;
}

/* store in unsigned [big endian] format */
int
BN_bn2bin(const BIGNUM *a, unsigned char *b)
{
	BIGNUM	t;
	int    	x;

	if (a == NULL || b == NULL) {
		return -1;
	}
	if (mp_init_copy (&t, __UNCONST(a)) != MP_OKAY) {
		return -1;
	}
	for (x = 0; !BN_is_zero(&t) ; ) {
		b[x++] = (unsigned char) (t.dp[0] & 0xff);
		if (rshift_bits(&t, 8, &t, NULL) != MP_OKAY) {
			mp_clear(&t);
			return -1;
		}
	}
	bn_reverse(b, x);
	mp_clear(&t);
	return x;
}

void
BN_init(BIGNUM *a)
{
	if (a != NULL) {
		mp_init(a);
	}
}

BIGNUM *
BN_new(void)
{
	BIGNUM	*a;

	if ((a = allocate(1, sizeof(*a))) != NULL) {
		mp_init(a);
	}
	return a;
}

/* copy, b = a */
int
BN_copy(BIGNUM *b, const BIGNUM *a)
{
	if (a == NULL || b == NULL) {
		return MP_VAL;
	}
	return mp_copy(__UNCONST(a), b);
}

BIGNUM *
BN_dup(const BIGNUM *a)
{
	BIGNUM	*ret;

	if (a == NULL) {
		return NULL;
	}
	if ((ret = BN_new()) != NULL) {
		BN_copy(ret, a);
	}
	return ret;
}

void
BN_swap(BIGNUM *a, BIGNUM *b)
{
	if (a && b) {
		mp_exch(a, b);
	}
}

int
BN_lshift(BIGNUM *r, const BIGNUM *a, int n)
{
	if (r == NULL || a == NULL || n < 0) {
		return 0;
	}
	BN_copy(r, a);
	return lshift_digits(r, n) == MP_OKAY;
}

int
BN_lshift1(BIGNUM *r, BIGNUM *a)
{
	if (r == NULL || a == NULL) {
		return 0;
	}
	BN_copy(r, a);
	return lshift_digits(r, 1) == MP_OKAY;
}

int
BN_rshift(BIGNUM *r, const BIGNUM *a, int n)
{
	if (r == NULL || a == NULL || n < 0) {
		return MP_VAL;
	}
	BN_copy(r, a);
	return rshift_digits(r, n) == MP_OKAY;
}

int
BN_rshift1(BIGNUM *r, BIGNUM *a)
{
	if (r == NULL || a == NULL) {
		return 0;
	}
	BN_copy(r, a);
	return rshift_digits(r, 1) == MP_OKAY;
}

int
BN_set_word(BIGNUM *a, BN_ULONG w)
{
	if (a == NULL) {
		return 0;
	}
	set_word(a, w);
	return 1;
}

int
BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
{
	if (a == NULL || b == NULL || r == NULL) {
		return 0;
	}
	return signed_add(__UNCONST(a), __UNCONST(b), r) == MP_OKAY;
}

int
BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
{
	if (a == NULL || b == NULL || r == NULL) {
		return 0;
	}
	return signed_subtract(__UNCONST(a), __UNCONST(b), r) == MP_OKAY;
}

int
BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
{
	if (a == NULL || b == NULL || r == NULL) {
		return 0;
	}
	USE_ARG(ctx);
	return signed_multiply(__UNCONST(a), __UNCONST(b), r) == MP_OKAY;
}

int
BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *a, const BIGNUM *d, BN_CTX *ctx)
{
	if ((dv == NULL && rem == NULL) || a == NULL || d == NULL) {
		return 0;
	}
	USE_ARG(ctx);
	return signed_divide(dv, rem, __UNCONST(a), __UNCONST(d)) == MP_OKAY;
}

/* perform a bit operation on the 2 bignums */
int
BN_bitop(BIGNUM *r, const BIGNUM *a, char op, const BIGNUM *b)
{
	unsigned	ndigits;
	mp_digit	ad;
	mp_digit	bd;
	int		i;

	if (a == NULL || b == NULL || r == NULL) {
		return 0;
	}
	if (BN_cmp(__UNCONST(a), __UNCONST(b)) >= 0) {
		BN_copy(r, a);
		ndigits = a->used;
	} else {
		BN_copy(r, b);
		ndigits = b->used;
	}
	for (i = 0 ; i < (int)ndigits ; i++) {
		ad = (i > a->used) ? 0 : a->dp[i];
		bd = (i > b->used) ? 0 : b->dp[i];
		switch(op) {
		case '&':
			r->dp[i] = (ad & bd);
			break;
		case '|':
			r->dp[i] = (ad | bd);
			break;
		case '^':
			r->dp[i] = (ad ^ bd);
			break;
		default:
			break;
		}
	}
	return 1;
}

void
BN_free(BIGNUM *a)
{
	if (a) {
		mp_clear(a);
		free(a);
	}
}

void
BN_clear(BIGNUM *a)
{
	if (a) {
		mp_clear(a);
	}
}

void
BN_clear_free(BIGNUM *a)
{
	BN_clear(a);
	free(a);
}

int
BN_num_bytes(const BIGNUM *a)
{
	if (a == NULL) {
		return MP_VAL;
	}
	return mp_unsigned_bin_size(__UNCONST(a));
}

int
BN_num_bits(const BIGNUM *a)
{
	if (a == NULL) {
		return 0;
	}
	return mp_count_bits(a);
}

void
BN_set_negative(BIGNUM *a, int n)
{
	if (a) {
		a->sign = (n) ? MP_NEG : 0;
	}
}

int
BN_cmp(BIGNUM *a, BIGNUM *b)
{
	if (a == NULL || b == NULL) {
		return MP_VAL;
	}
	switch(signed_compare(a, b)) {
	case MP_LT:
		return -1;
	case MP_GT:
		return 1;
	case MP_EQ:
	default:
		return 0;
	}
}

int
BN_mod_exp(BIGNUM *Y, BIGNUM *G, BIGNUM *X, BIGNUM *P, BN_CTX *ctx)
{
	if (Y == NULL || G == NULL || X == NULL || P == NULL) {
		return MP_VAL;
	}
	USE_ARG(ctx);
	return exponent_modulo(G, X, P, Y) == MP_OKAY;
}

BIGNUM *
BN_mod_inverse(BIGNUM *r, BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
{
	USE_ARG(ctx);
	if (r == NULL || a == NULL || n == NULL) {
		return NULL;
	}
	return (modular_inverse(r, a, __UNCONST(n)) == MP_OKAY) ? r : NULL;
}

int
BN_mod_mul(BIGNUM *ret, BIGNUM *a, BIGNUM *b, const BIGNUM *m, BN_CTX *ctx)
{
	USE_ARG(ctx);
	if (ret == NULL || a == NULL || b == NULL || m == NULL) {
		return 0;
	}
	return multiply_modulo(ret, a, b, __UNCONST(m)) == MP_OKAY;
}

BN_CTX *
BN_CTX_new(void)
{
	return allocate(1, sizeof(BN_CTX));
}

void
BN_CTX_init(BN_CTX *c)
{
	if (c != NULL) {
		c->arraysize = 15;
		if ((c->v = allocate(sizeof(*c->v), c->arraysize)) == NULL) {
			c->arraysize = 0;
		}
	}
}

BIGNUM *
BN_CTX_get(BN_CTX *ctx)
{
	if (ctx == NULL || ctx->v == NULL || ctx->arraysize == 0 || ctx->count == ctx->arraysize - 1) {
		return NULL;
	}
	return ctx->v[ctx->count++] = BN_new();
}

void
BN_CTX_start(BN_CTX *ctx)
{
	BN_CTX_init(ctx);
}

void
BN_CTX_free(BN_CTX *c)
{
	unsigned	i;

	if (c != NULL && c->v != NULL) {
		for (i = 0 ; i < c->count ; i++) {
			BN_clear_free(c->v[i]);
		}
		deallocate(c->v, sizeof(*c->v) * c->arraysize);
	}
}

void
BN_CTX_end(BN_CTX *ctx)
{
	BN_CTX_free(ctx);
}

char *
BN_bn2hex(const BIGNUM *a)
{
	return (a == NULL) ? NULL : formatbn(a, 16);
}

char *
BN_bn2dec(const BIGNUM *a)
{
	return (a == NULL) ? NULL : formatbn(a, 10);
}

char *
BN_bn2radix(const BIGNUM *a, unsigned radix)
{
	return (a == NULL) ? NULL : formatbn(a, (int)radix);
}

int
BN_print_fp(FILE *fp, const BIGNUM *a)
{
	char	*s;
	int	 ret;

	if (fp == NULL || a == NULL) {
		return 0;
	}
	s = BN_bn2hex(a);
	ret = fprintf(fp, "%s", s);
	deallocate(s, strlen(s) + 1);
	return ret;
}

#ifdef BN_RAND_NEEDED
int
BN_rand(BIGNUM *rnd, int bits, int top, int bottom)
{
	uint64_t	r;
	int		digits;
	int		i;

	if (rnd == NULL) {
		return 0;
	}
	mp_init_size(rnd, digits = howmany(bits, DIGIT_BIT));
	for (i = 0 ; i < digits ; i++) {
		r = (uint64_t)arc4random();
		r <<= 32;
		r |= arc4random();
		rnd->dp[i] = (r & MP_MASK);
		rnd->used += 1;
	}
	if (top == 0) {
		rnd->dp[rnd->used - 1] |= (((mp_digit)1)<<((mp_digit)DIGIT_BIT));
	}
	if (top == 1) {
		rnd->dp[rnd->used - 1] |= (((mp_digit)1)<<((mp_digit)DIGIT_BIT));
		rnd->dp[rnd->used - 1] |= (((mp_digit)1)<<((mp_digit)(DIGIT_BIT - 1)));
	}
	if (bottom) {
		rnd->dp[0] |= 0x1;
	}
	return 1;
}

int
BN_rand_range(BIGNUM *rnd, BIGNUM *range)
{
	if (rnd == NULL || range == NULL || BN_is_zero(range)) {
		return 0;
	}
	BN_rand(rnd, BN_num_bits(range), 1, 0);
	return modulo(rnd, range, rnd) == MP_OKAY;
}
#endif

int
BN_is_prime(const BIGNUM *a, int checks, void (*callback)(int, int, void *), BN_CTX *ctx, void *cb_arg)
{
	int	primality;

	if (a == NULL) {
		return 0;
	}
	USE_ARG(ctx);
	USE_ARG(cb_arg);
	USE_ARG(callback);
	return (mp_prime_is_prime(__UNCONST(a), checks, &primality) == MP_OKAY) ? primality : 0; 
}

const BIGNUM *
BN_value_one(void)
{
	static mp_digit		digit = 1UL;
	static const BIGNUM	one = { &digit, 1, 1, 0 };

	return &one;
}

int
BN_hex2bn(BIGNUM **a, const char *str)
{
	return getbn(a, str, 16);
}

int
BN_dec2bn(BIGNUM **a, const char *str)
{
	return getbn(a, str, 10);
}

int
BN_radix2bn(BIGNUM **a, const char *str, unsigned radix)
{
	return getbn(a, str, (int)radix);
}

int
BN_mod_sub(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m, BN_CTX *ctx)
{
	USE_ARG(ctx);
	if (r == NULL || a == NULL || b == NULL || m == NULL) {
		return 0;
	}
	return subtract_modulo(a, b, __UNCONST(m), r) == MP_OKAY;
}

int
BN_is_bit_set(const BIGNUM *a, int n)
{
	if (a == NULL || n < 0 || n >= a->used * DIGIT_BIT) {
		return 0;
	}
	return (a->dp[n / DIGIT_BIT] & (1 << (n % DIGIT_BIT))) ? 1 : 0;
}

/* raise 'a' to power of 'b' */
int
BN_raise(BIGNUM *res, BIGNUM *a, BIGNUM *b)
{
	uint64_t	 exponent;
	BIGNUM		*power;
	BIGNUM		*temp;
	char		*t;

	t = BN_bn2dec(b);
	exponent = (uint64_t)strtoull(t, NULL, 10);
	free(t);
	if (exponent == 0) {
		BN_copy(res, BN_value_one());
	} else {
		power = BN_dup(a);
		for ( ; (exponent & 1) == 0 ; exponent >>= 1) {
			BN_mul(power, power, power, NULL);
		}
		temp = BN_dup(power);
		for (exponent >>= 1 ; exponent > 0 ; exponent >>= 1) {
			BN_mul(power, power, power, NULL);
			if (exponent & 1) {
				BN_mul(temp, power, temp, NULL);
			}
		}
		BN_copy(res, temp);
		BN_free(power);
		BN_free(temp);
	}
	return 1;
}

/* compute the factorial */
int
BN_factorial(BIGNUM *res, BIGNUM *f)
{
	BIGNUM	*one;
	BIGNUM	*i;

	i = BN_dup(f);
	one = __UNCONST(BN_value_one());
	BN_sub(i, i, one);
	BN_copy(res, f);
	while (BN_cmp(i, one) > 0) {
		BN_mul(res, res, i, NULL);
		BN_sub(i, i, one);
	}
	BN_free(i);
	return 1;
}

/* get greatest common divisor */
int
BN_gcd(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx)
{
	return mp_gcd(a, b, r);
}