/* $NetBSD: if_gmc.c,v 1.12 2019/05/28 08:59:33 msaitoh Exp $ */
/*-
* Copyright (c) 2008 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Matt Thomas <matt@3am-software.com>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/param.h>
#include <sys/callout.h>
#include <sys/device.h>
#include <sys/ioctl.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/mbuf.h>
#include <sys/bus.h>
#include <machine/intr.h>
#include <arm/gemini/gemini_reg.h>
#include <arm/gemini/gemini_gmacreg.h>
#include <arm/gemini/gemini_gmacvar.h>
#include <net/if.h>
#include <net/if_ether.h>
#include <net/if_dl.h>
__KERNEL_RCSID(0, "$NetBSD: if_gmc.c,v 1.12 2019/05/28 08:59:33 msaitoh Exp $");
#define MAX_TXSEG 32
struct gmc_softc {
device_t sc_dev;
struct gmac_softc *sc_psc;
struct gmc_softc *sc_sibling;
bus_dma_tag_t sc_dmat;
bus_space_tag_t sc_iot;
bus_space_handle_t sc_ioh;
bus_space_handle_t sc_dma_ioh;
bus_space_handle_t sc_gmac_ioh;
struct ethercom sc_ec;
struct mii_data sc_mii;
void *sc_ih;
bool sc_port1;
uint8_t sc_phy;
gmac_hwqueue_t *sc_rxq;
gmac_hwqueue_t *sc_txq[6];
callout_t sc_mii_ch;
uint32_t sc_gmac_status;
uint32_t sc_gmac_sta_add[3];
uint32_t sc_gmac_mcast_filter[2];
uint32_t sc_gmac_rx_filter;
uint32_t sc_gmac_config[2];
uint32_t sc_dmavr;
uint32_t sc_int_mask[5];
uint32_t sc_int_enabled[5];
};
#define sc_if sc_ec.ec_if
static bool
gmc_txqueue(struct gmc_softc *sc, gmac_hwqueue_t *hwq, struct mbuf *m)
{
bus_dmamap_t map;
uint32_t desc0, desc1, desc3;
struct mbuf *last_m, *m0;
size_t count, i;
int error;
gmac_desc_t *d;
KASSERT(hwq != NULL);
map = gmac_mapcache_get(hwq->hwq_hqm->hqm_mc);
if (map == NULL)
return false;
for (last_m = NULL, m0 = m, count = 0;
m0 != NULL;
last_m = m0, m0 = m0->m_next) {
vaddr_t addr = (uintptr_t)m0->m_data;
if (m0->m_len == 0)
continue;
if (addr & 1) {
if (last_m != NULL && M_TRAILINGSPACE(last_m) > 0) {
last_m->m_data[last_m->m_len++] = *m->m_data++;
m->m_len--;
} else if (M_TRAILINGSPACE(m0) > 0) {
memmove(m0->m_data + 1, m0->m_data, m0->m_len);
m0->m_data++;
} else if (M_LEADINGSPACE(m0) > 0) {
memmove(m0->m_data - 1, m0->m_data, m0->m_len);
m0->m_data--;
} else {
panic("gmc_txqueue: odd addr %p", m0->m_data);
}
}
count += ((addr & PGOFSET) + m->m_len + PGOFSET) >> PGSHIFT;
}
gmac_hwqueue_sync(hwq);
if (hwq->hwq_free <= count) {
gmac_mapcache_put(hwq->hwq_hqm->hqm_mc, map);
return false;
}
error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
BUS_DMA_WRITE | BUS_DMA_NOWAIT);
if (error) {
aprint_error_dev(sc->sc_dev, "ifstart: load failed: %d\n",
error);
gmac_mapcache_put(hwq->hwq_hqm->hqm_mc, map);
m_freem(m);
sc->sc_if.if_oerrors++;
return true;
}
KASSERT(map->dm_nsegs > 0);
/*
* Sync the mbuf contents to memory/cache.
*/
bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
/*
* Now we need to load the descriptors...
*/
desc0 = map->dm_nsegs << 16;
desc1 = m->m_pkthdr.len;
desc3 = DESC3_SOF;
i = 0;
d = NULL;
do {
#if 0
if (i > 0)
aprint_debug_dev(sc->sc_dev,
"gmac_txqueue: %zu@%p=%#x/%#x/%#x/%#x\n",
i-1, d, d->d_desc0, d->d_desc1,
d->d_bufaddr, d->d_desc3);
#endif
d = gmac_hwqueue_desc(hwq, i);
KASSERT(map->dm_segs[i].ds_len > 0);
KASSERT((map->dm_segs[i].ds_addr & 1) == 0);
d->d_desc0 = htole32(map->dm_segs[i].ds_len | desc0);
d->d_desc1 = htole32(desc1);
d->d_bufaddr = htole32(map->dm_segs[i].ds_addr);
d->d_desc3 = htole32(desc3);
desc3 = 0;
} while (++i < map->dm_nsegs);
d->d_desc3 |= htole32(DESC3_EOF | DESC3_EOFIE);
#if 0
aprint_debug_dev(sc->sc_dev,
"gmac_txqueue: %zu@%p=%#x/%#x/%#x/%#x\n",
i-1, d, d->d_desc0, d->d_desc1, d->d_bufaddr, d->d_desc3);
#endif
M_SETCTX(m, map);
IF_ENQUEUE(&hwq->hwq_ifq, m);
/*
* Last descriptor has been marked. Give them to the h/w.
* This will sync for us.
*/
gmac_hwqueue_produce(hwq, map->dm_nsegs);
#if 0
aprint_debug_dev(sc->sc_dev,
"gmac_txqueue: *%zu@%p=%#x/%#x/%#x/%#x\n",
i-1, d, d->d_desc0, d->d_desc1, d->d_bufaddr, d->d_desc3);
#endif
return true;
}
static void
gmc_filter_change(struct gmc_softc *sc)
{
struct ethercom *ec = &sc->sc_ec;
struct ether_multi *enm;
struct ether_multistep step;
uint32_t mhash[2];
uint32_t new0, new1, new2;
const char * const eaddr = CLLADDR(sc->sc_if.if_sadl);
new0 = eaddr[0] | ((eaddr[1] | (eaddr[2] | (eaddr[3] << 8)) << 8) << 8);
new1 = eaddr[4] | (eaddr[5] << 8);
new2 = 0;
if (sc->sc_gmac_sta_add[0] != new0
|| sc->sc_gmac_sta_add[1] != new1
|| sc->sc_gmac_sta_add[2] != new2) {
bus_space_write_4(sc->sc_iot, sc->sc_gmac_ioh, GMAC_STA_ADD0,
new0);
bus_space_write_4(sc->sc_iot, sc->sc_gmac_ioh, GMAC_STA_ADD1,
new1);
bus_space_write_4(sc->sc_iot, sc->sc_gmac_ioh, GMAC_STA_ADD2,
new2);
sc->sc_gmac_sta_add[0] = new0;
sc->sc_gmac_sta_add[1] = new1;
sc->sc_gmac_sta_add[2] = new2;
}
mhash[0] = 0;
mhash[1] = 0;
ETHER_LOCK(ec);
ETHER_FIRST_MULTI(step, ec, enm);
while (enm != NULL) {
size_t i;
if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
mhash[0] = mhash[1] = 0xffffffff;
break;
}
i = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
mhash[(i >> 5) & 1] |= 1 << (i & 31);
ETHER_NEXT_MULTI(step, enm);
}
ETHER_UNLOCK(ec);
if (sc->sc_gmac_mcast_filter[0] != mhash[0]
|| sc->sc_gmac_mcast_filter[1] != mhash[1]) {
bus_space_write_4(sc->sc_iot, sc->sc_gmac_ioh,
GMAC_MCAST_FILTER0, mhash[0]);
bus_space_write_4(sc->sc_iot, sc->sc_gmac_ioh,
GMAC_MCAST_FILTER1, mhash[1]);
sc->sc_gmac_mcast_filter[0] = mhash[0];
sc->sc_gmac_mcast_filter[1] = mhash[1];
}
new0 = sc->sc_gmac_rx_filter & ~RXFILTER_PROMISC;
new0 |= RXFILTER_BROADCAST | RXFILTER_UNICAST | RXFILTER_MULTICAST;
if (sc->sc_if.if_flags & IFF_PROMISC)
new0 |= RXFILTER_PROMISC;
if (new0 != sc->sc_gmac_rx_filter) {
bus_space_write_4(sc->sc_iot, sc->sc_gmac_ioh, GMAC_RX_FILTER,
new0);
sc->sc_gmac_rx_filter = new0;
}
}
static void
gmc_mii_tick(void *arg)
{
struct gmc_softc * const sc = arg;
struct gmac_softc * const psc = sc->sc_psc;
int s = splnet();
/*
* If we had to increase the number of receive mbufs due to fifo
* overflows, we need a way to decrease them. So every second we
* receive less than or equal to MIN_RXMAPS packets, we decrement
* swfree_min until it returns to MIN_RXMAPS.
*/
if (psc->sc_rxpkts_per_sec <= MIN_RXMAPS
&& psc->sc_swfree_min > MIN_RXMAPS) {
psc->sc_swfree_min--;
gmac_swfree_min_update(psc);
}
/*
* If only one GMAC is running or this is port0, reset the count.
*/
if (psc->sc_running != 3 || !sc->sc_port1)
psc->sc_rxpkts_per_sec = 0;
mii_tick(&sc->sc_mii);
if (sc->sc_if.if_flags & IFF_RUNNING)
callout_schedule(&sc->sc_mii_ch, hz);
splx(s);
}
static int
gmc_mediachange(struct ifnet *ifp)
{
struct gmc_softc * const sc = ifp->if_softc;
if ((ifp->if_flags & IFF_UP) == 0)
return 0;
return mii_mediachg(&sc->sc_mii);
}
static void
gmc_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct gmc_softc * const sc = ifp->if_softc;
mii_pollstat(&sc->sc_mii);
ifmr->ifm_status = sc->sc_mii.mii_media_status;
ifmr->ifm_active = sc->sc_mii.mii_media_active;
}
static void
gmc_mii_statchg(struct ifnet *ifp)
{
struct gmc_softc * const sc = ifp->if_softc;
uint32_t gmac_status;
gmac_status = sc->sc_gmac_status;
gmac_status &= ~STATUS_PHYMODE_MASK;
gmac_status |= STATUS_PHYMODE_RGMII_A;
gmac_status &= ~STATUS_SPEED_MASK;
if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_1000_T) {
gmac_status |= STATUS_SPEED_1000M;
} else if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
gmac_status |= STATUS_SPEED_100M;
} else {
gmac_status |= STATUS_SPEED_10M;
}
if (sc->sc_mii.mii_media_active & IFM_FDX)
gmac_status |= STATUS_DUPLEX_FULL;
else
gmac_status &= ~STATUS_DUPLEX_FULL;
if (sc->sc_mii.mii_media_status & IFM_ACTIVE)
gmac_status |= STATUS_LINK_ON;
else
gmac_status &= ~STATUS_LINK_ON;
if (sc->sc_gmac_status != gmac_status) {
aprint_debug_dev(sc->sc_dev,
"status change old=%#x new=%#x active=%#x\n",
sc->sc_gmac_status, gmac_status,
sc->sc_mii.mii_media_active);
sc->sc_gmac_status = gmac_status;
bus_space_write_4(sc->sc_iot, sc->sc_gmac_ioh, GMAC_STATUS,
sc->sc_gmac_status);
}
(*sc->sc_mii.mii_writereg)(sc->sc_dev, sc->sc_phy, 0x0018, 0x0041);
}
static int
gmc_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct gmc_softc * const sc = ifp->if_softc;
int s;
int error;
s = splnet();
switch (cmd) {
default:
error = ether_ioctl(ifp, cmd, data);
if (error == ENETRESET) {
if (ifp->if_flags & IFF_RUNNING) {
/*
* If the interface is running, we have to
* update its multicast filter.
*/
gmc_filter_change(sc);
}
error = 0;
}
}
splx(s);
return error;
}
static void
gmc_ifstart(struct ifnet *ifp)
{
struct gmc_softc * const sc = ifp->if_softc;
#if 0
if ((sc->sc_gmac_status & STATUS_LINK_ON) == 0)
return;
#endif
if ((ifp->if_flags & IFF_RUNNING) == 0)
return;
for (;;) {
struct mbuf *m;
IF_DEQUEUE(&ifp->if_snd, m);
if (m == NULL)
break;
if (!gmc_txqueue(sc, sc->sc_txq[0], m)) {
IF_PREPEND(&ifp->if_snd, m);
ifp->if_flags |= IFF_OACTIVE;
break;
}
}
}
static void
gmc_ifstop(struct ifnet *ifp, int disable)
{
struct gmc_softc * const sc = ifp->if_softc;
struct gmac_softc * const psc = sc->sc_psc;
psc->sc_running &= ~(sc->sc_port1 ? 2 : 1);
psc->sc_int_enabled[0] &= ~sc->sc_int_enabled[0];
psc->sc_int_enabled[1] &= ~sc->sc_int_enabled[1];
psc->sc_int_enabled[2] &= ~sc->sc_int_enabled[2];
psc->sc_int_enabled[3] &= ~sc->sc_int_enabled[3];
psc->sc_int_enabled[4] &= ~sc->sc_int_enabled[4] | INT4_SW_FREEQ_EMPTY;
if (psc->sc_running == 0) {
psc->sc_int_enabled[4] &= ~INT4_SW_FREEQ_EMPTY;
KASSERT(psc->sc_int_enabled[0] == 0);
KASSERT(psc->sc_int_enabled[1] == 0);
KASSERT(psc->sc_int_enabled[2] == 0);
KASSERT(psc->sc_int_enabled[3] == 0);
KASSERT(psc->sc_int_enabled[4] == 0);
} else if (((psc->sc_int_select[4] & INT4_SW_FREEQ_EMPTY) != 0)
== sc->sc_port1) {
psc->sc_int_select[4] &= ~INT4_SW_FREEQ_EMPTY;
bus_space_write_4(sc->sc_iot, sc->sc_ioh, GMAC_INT4_MASK,
psc->sc_int_select[4]);
}
gmac_intr_update(psc);
if (disable) {
#if 0
if (psc->sc_running == 0) {
gmac_mapcache_destroy(&psc->sc_txmaps);
gmac_mapcache_destroy(&psc->sc_rxmaps);
}
#endif
}
}
static int
gmc_ifinit(struct ifnet *ifp)
{
struct gmc_softc * const sc = ifp->if_softc;
struct gmac_softc * const psc = sc->sc_psc;
uint32_t new, mask;
gmac_mapcache_fill(psc->sc_rxmaps, MIN_RXMAPS);
gmac_mapcache_fill(psc->sc_txmaps, MIN_TXMAPS);
if (sc->sc_rxq == NULL) {
gmac_hwqmem_t *hqm;
hqm = gmac_hwqmem_create(psc->sc_rxmaps, 16, /*RXQ_NDESCS,*/ 1,
HQM_CONSUMER | HQM_RX);
sc->sc_rxq = gmac_hwqueue_create(hqm, sc->sc_iot,
sc->sc_ioh, GMAC_DEF_RXQn_RWPTR(sc->sc_port1),
GMAC_DEF_RXQn_BASE(sc->sc_port1), 0);
if (sc->sc_rxq == NULL) {
gmac_hwqmem_destroy(hqm);
goto failed;
}
sc->sc_rxq->hwq_ifp = ifp;
sc->sc_rxq->hwq_producer = psc->sc_swfreeq;
}
if (sc->sc_txq[0] == NULL) {
gmac_hwqueue_t *hwq, *last_hwq;
gmac_hwqmem_t *hqm;
size_t i;
hqm = gmac_hwqmem_create(psc->sc_txmaps, TXQ_NDESCS, 6,
HQM_PRODUCER | HQM_TX);
KASSERT(hqm != NULL);
for (i = 0; i < __arraycount(sc->sc_txq); i++) {
sc->sc_txq[i] = gmac_hwqueue_create(hqm, sc->sc_iot,
sc->sc_dma_ioh, GMAC_SW_TX_Qn_RWPTR(i),
GMAC_SW_TX_Q_BASE, i);
if (sc->sc_txq[i] == NULL) {
if (i == 0)
gmac_hwqmem_destroy(hqm);
goto failed;
}
sc->sc_txq[i]->hwq_ifp = ifp;
last_hwq = NULL;
SLIST_FOREACH(hwq, &psc->sc_hwfreeq->hwq_producers,
hwq_link) {
if (sc->sc_txq[i]->hwq_qoff < hwq->hwq_qoff)
break;
last_hwq = hwq;
}
if (last_hwq == NULL)
SLIST_INSERT_HEAD(
&psc->sc_hwfreeq->hwq_producers,
sc->sc_txq[i], hwq_link);
else
SLIST_INSERT_AFTER(last_hwq, sc->sc_txq[i],
hwq_link);
}
}
gmc_filter_change(sc);
mask = DMAVR_LOOPBACK | DMAVR_DROP_SMALL_ACK | DMAVR_EXTRABYTES_MASK
| DMAVR_RXBURSTSIZE_MASK | DMAVR_RXBUSWIDTH_MASK
| DMAVR_TXBURSTSIZE_MASK | DMAVR_TXBUSWIDTH_MASK;
new = DMAVR_RXDMA_ENABLE | DMAVR_TXDMA_ENABLE
| DMAVR_EXTRABYTES(2)
| DMAVR_RXBURSTSIZE(DMAVR_BURSTSIZE_32W)
| DMAVR_RXBUSWIDTH(DMAVR_BUSWIDTH_32BITS)
| DMAVR_TXBURSTSIZE(DMAVR_BURSTSIZE_32W)
| DMAVR_TXBUSWIDTH(DMAVR_BUSWIDTH_32BITS);
new |= sc->sc_dmavr & ~mask;
if (sc->sc_dmavr != new) {
sc->sc_dmavr = new;
bus_space_write_4(sc->sc_iot, sc->sc_dma_ioh, GMAC_DMAVR,
sc->sc_dmavr);
aprint_debug_dev(sc->sc_dev, "gmc_ifinit: dmavr=%#x/%#x\n",
sc->sc_dmavr,
bus_space_read_4(sc->sc_iot, sc->sc_dma_ioh, GMAC_DMAVR));
}
mask = CONFIG0_MAXLEN_MASK | CONFIG0_TX_DISABLE | CONFIG0_RX_DISABLE
| CONFIG0_LOOPBACK |/*CONFIG0_SIM_TEST|*/CONFIG0_INVERSE_RXC_RGMII
| CONFIG0_RGMII_INBAND_STATUS_ENABLE;
new = CONFIG0_MAXLEN(CONFIG0_MAXLEN_1536) | CONFIG0_R_LATCHED_MMII;
new |= (sc->sc_gmac_config[0] & ~mask);
if (sc->sc_gmac_config[0] != new) {
sc->sc_gmac_config[0] = new;
bus_space_write_4(sc->sc_iot, sc->sc_gmac_ioh, GMAC_CONFIG0,
sc->sc_gmac_config[0]);
aprint_debug_dev(sc->sc_dev, "gmc_ifinit: config0=%#x/%#x\n",
sc->sc_gmac_config[0],
bus_space_read_4(sc->sc_iot, sc->sc_gmac_ioh, GMAC_CONFIG0));
}
psc->sc_rxpkts_per_sec +=
gmac_rxproduce(psc->sc_swfreeq, psc->sc_swfree_min);
/*
* If we will be the only active interface, make sure the sw freeq
* interrupt gets routed to use.
*/
if (psc->sc_running == 0
&& (((psc->sc_int_select[4] & INT4_SW_FREEQ_EMPTY) != 0) != sc->sc_port1)) {
psc->sc_int_select[4] ^= INT4_SW_FREEQ_EMPTY;
bus_space_write_4(sc->sc_iot, sc->sc_ioh, GMAC_INT4_MASK,
psc->sc_int_select[4]);
}
sc->sc_int_enabled[0] = sc->sc_int_mask[0]
& (INT0_TXDERR|INT0_TXPERR|INT0_RXDERR|INT0_RXPERR|INT0_SWTXQ_EOF);
sc->sc_int_enabled[1] = sc->sc_int_mask[1] & INT1_DEF_RXQ_EOF;
sc->sc_int_enabled[4] = INT4_SW_FREEQ_EMPTY | (sc->sc_int_mask[4]
& (INT4_TX_FAIL | INT4_MIB_HEMIWRAP | INT4_RX_FIFO_OVRN
| INT4_RGMII_STSCHG));
psc->sc_int_enabled[0] |= sc->sc_int_enabled[0];
psc->sc_int_enabled[1] |= sc->sc_int_enabled[1];
psc->sc_int_enabled[4] |= sc->sc_int_enabled[4];
gmac_intr_update(psc);
if ((ifp->if_flags & IFF_RUNNING) == 0)
mii_tick(&sc->sc_mii);
ifp->if_flags |= IFF_RUNNING;
psc->sc_running |= (sc->sc_port1 ? 2 : 1);
callout_schedule(&sc->sc_mii_ch, hz);
return 0;
failed:
gmc_ifstop(ifp, true);
return ENOMEM;
}
static int
gmc_intr(void *arg)
{
struct gmc_softc * const sc = arg;
uint32_t int0_status, int1_status, int4_status;
uint32_t status;
bool do_ifstart = false;
int rv = 0;
aprint_debug_dev(sc->sc_dev, "gmac_intr: entry\n");
int0_status = bus_space_read_4(sc->sc_iot, sc->sc_ioh,
GMAC_INT0_STATUS);
int1_status = bus_space_read_4(sc->sc_iot, sc->sc_ioh,
GMAC_INT1_STATUS);
int4_status = bus_space_read_4(sc->sc_iot, sc->sc_ioh,
GMAC_INT4_STATUS);
aprint_debug_dev(sc->sc_dev, "gmac_intr: sts=%#x/%#x/%#x/%#x/%#x\n",
int0_status, int1_status,
bus_space_read_4(sc->sc_iot, sc->sc_ioh, GMAC_INT2_STATUS),
bus_space_read_4(sc->sc_iot, sc->sc_ioh, GMAC_INT3_STATUS),
int4_status);
#if 0
aprint_debug_dev(sc->sc_dev, "gmac_intr: mask=%#x/%#x/%#x/%#x/%#x\n",
bus_space_read_4(sc->sc_iot, sc->sc_ioh, GMAC_INT0_MASK),
bus_space_read_4(sc->sc_iot, sc->sc_ioh, GMAC_INT1_MASK),
bus_space_read_4(sc->sc_iot, sc->sc_ioh, GMAC_INT2_MASK),
bus_space_read_4(sc->sc_iot, sc->sc_ioh, GMAC_INT3_MASK),
bus_space_read_4(sc->sc_iot, sc->sc_ioh, GMAC_INT4_MASK));
#endif
status = int0_status & sc->sc_int_mask[0];
if (status & (INT0_TXDERR | INT0_TXPERR)) {
aprint_error_dev(sc->sc_dev,
"transmit%s%s error: %#x %08x bufaddr %#x\n",
status & INT0_TXDERR ? " data" : "",
status & INT0_TXPERR ? " protocol" : "",
bus_space_read_4(sc->sc_iot, sc->sc_dma_ioh,
GMAC_DMA_TX_CUR_DESC),
bus_space_read_4(sc->sc_iot, sc->sc_dma_ioh,
GMAC_SW_TX_Q0_RWPTR),
bus_space_read_4(sc->sc_iot, sc->sc_dma_ioh,
GMAC_DMA_TX_DESC2));
bus_space_write_4(sc->sc_iot, sc->sc_ioh, GMAC_INT0_STATUS,
status & (INT0_TXDERR | INT0_TXPERR));
Debugger();
}
if (status & (INT0_RXDERR | INT0_RXPERR)) {
aprint_error_dev(sc->sc_dev,
"receive%s%s error: %#x %#x=%#x/%#x/%#x/%#x\n",
status & INT0_RXDERR ? " data" : "",
status & INT0_RXPERR ? " protocol" : "",
bus_space_read_4(sc->sc_iot, sc->sc_dma_ioh,
GMAC_DMA_RX_CUR_DESC),
bus_space_read_4(sc->sc_iot, sc->sc_ioh,
GMAC_SWFREEQ_RWPTR),
bus_space_read_4(sc->sc_iot, sc->sc_dma_ioh,
GMAC_DMA_RX_DESC0),
bus_space_read_4(sc->sc_iot, sc->sc_dma_ioh,
GMAC_DMA_RX_DESC1),
bus_space_read_4(sc->sc_iot, sc->sc_dma_ioh,
GMAC_DMA_RX_DESC2),
bus_space_read_4(sc->sc_iot, sc->sc_dma_ioh,
GMAC_DMA_RX_DESC3));
bus_space_write_4(sc->sc_iot, sc->sc_ioh, GMAC_INT0_STATUS,
status & (INT0_RXDERR | INT0_RXPERR));
Debugger();
}
if (status & INT0_SWTXQ_EOF) {
status &= INT0_SWTXQ_EOF;
for (int i = 0; status && i < __arraycount(sc->sc_txq); i++) {
if (status & INT0_SWTXQn_EOF(i)) {
gmac_hwqueue_sync(sc->sc_txq[i]);
bus_space_write_4(sc->sc_iot, sc->sc_ioh,
GMAC_INT0_STATUS,
sc->sc_int_mask[0] & (INT0_SWTXQn_EOF(i)
| INT0_SWTXQn_FIN(i)));
status &= ~INT0_SWTXQn_EOF(i);
}
}
do_ifstart = true;
rv = 1;
}
if (int4_status & INT4_SW_FREEQ_EMPTY) {
struct gmac_softc * const psc = sc->sc_psc;
psc->sc_rxpkts_per_sec +=
gmac_rxproduce(psc->sc_swfreeq, psc->sc_swfree_min);
bus_space_write_4(sc->sc_iot, sc->sc_ioh, GMAC_INT4_STATUS,
status & INT4_SW_FREEQ_EMPTY);
rv = 1;
}
status = int1_status & sc->sc_int_mask[1];
if (status & INT1_DEF_RXQ_EOF) {
struct gmac_softc * const psc = sc->sc_psc;
psc->sc_rxpkts_per_sec +=
gmac_hwqueue_consume(sc->sc_rxq, psc->sc_swfree_min);
bus_space_write_4(sc->sc_iot, sc->sc_ioh, GMAC_INT1_STATUS,
status & INT1_DEF_RXQ_EOF);
rv = 1;
}
status = int4_status & sc->sc_int_enabled[4];
if (status & INT4_TX_FAIL) {
}
if (status & INT4_MIB_HEMIWRAP) {
}
if (status & INT4_RX_XON) {
}
if (status & INT4_RX_XOFF) {
}
if (status & INT4_TX_XON) {
}
if (status & INT4_TX_XOFF) {
}
if (status & INT4_RX_FIFO_OVRN) {
#if 0
if (sc->sc_psc->sc_swfree_min < MAX_RXMAPS) {
sc->sc_psc->sc_swfree_min++;
gmac_swfree_min_update(psc);
}
#endif
sc->sc_if.if_ierrors++;
}
if (status & INT4_RGMII_STSCHG) {
mii_pollstat(&sc->sc_mii);
}
bus_space_write_4(sc->sc_iot, sc->sc_ioh, GMAC_INT4_STATUS, status);
if (do_ifstart)
if_schedule_deferred_start(&sc->sc_if);
aprint_debug_dev(sc->sc_dev, "gmac_intr: sts=%#x/%#x/%#x/%#x/%#x\n",
bus_space_read_4(sc->sc_iot, sc->sc_ioh, GMAC_INT0_STATUS),
bus_space_read_4(sc->sc_iot, sc->sc_ioh, GMAC_INT1_STATUS),
bus_space_read_4(sc->sc_iot, sc->sc_ioh, GMAC_INT2_STATUS),
bus_space_read_4(sc->sc_iot, sc->sc_ioh, GMAC_INT3_STATUS),
bus_space_read_4(sc->sc_iot, sc->sc_ioh, GMAC_INT4_STATUS));
aprint_debug_dev(sc->sc_dev, "gmac_intr: exit rv=%d\n", rv);
return rv;
}
static int
gmc_match(device_t parent, cfdata_t cf, void *aux)
{
struct gmac_softc *psc = device_private(parent);
struct gmac_attach_args *gma = aux;
if ((unsigned int)gma->gma_phy > 31)
return 0;
if ((unsigned int)gma->gma_port > 1)
return 0;
if (gma->gma_intr < 1 || gma->gma_intr > 2)
return 0;
if (psc->sc_ports & (1 << gma->gma_port))
return 0;
return 1;
}
static void
gmc_attach(device_t parent, device_t self, void *aux)
{
struct gmac_softc * const psc = device_private(parent);
struct gmc_softc * const sc = device_private(self);
struct gmac_attach_args *gma = aux;
struct ifnet * const ifp = &sc->sc_if;
struct mii_data * const mii = &sc->sc_mii;
static const char eaddrs[2][6] = {
"\x0\x52\xc3\x11\x22\x33",
"\x0\x52\xc3\x44\x55\x66",
};
psc->sc_ports |= 1 << gma->gma_port;
sc->sc_port1 = (gma->gma_port == 1);
sc->sc_phy = gma->gma_phy;
sc->sc_dev = self;
sc->sc_psc = psc;
sc->sc_iot = psc->sc_iot;
sc->sc_ioh = psc->sc_ioh;
sc->sc_dmat = psc->sc_dmat;
bus_space_subregion(sc->sc_iot, sc->sc_ioh,
GMAC_PORTn_DMA_OFFSET(gma->gma_port), GMAC_PORTn_DMA_SIZE,
&sc->sc_dma_ioh);
bus_space_subregion(sc->sc_iot, sc->sc_ioh,
GMAC_PORTn_GMAC_OFFSET(gma->gma_port), GMAC_PORTn_GMAC_SIZE,
&sc->sc_gmac_ioh);
aprint_normal("\n");
aprint_naive("\n");
strlcpy(ifp->if_xname, device_xname(self), sizeof(ifp->if_xname));
ifp->if_flags = IFF_SIMPLEX | IFF_MULTICAST | IFF_BROADCAST;
ifp->if_softc = sc;
ifp->if_ioctl = gmc_ifioctl;
ifp->if_stop = gmc_ifstop;
ifp->if_start = gmc_ifstart;
ifp->if_init = gmc_ifinit;
IFQ_SET_READY(&ifp->if_snd);
sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
sc->sc_ec.ec_mii = mii;
mii->mii_ifp = ifp;
mii->mii_statchg = gmc_mii_statchg;
mii->mii_readreg = gma->gma_mii_readreg;
mii->mii_writereg = gma->gma_mii_writereg;
ifmedia_init(&mii->mii_media, 0, gmc_mediachange, gmc_mediastatus);
if_attach(ifp);
if_deferred_start_init(ifp, NULL);
ether_ifattach(ifp, eaddrs[gma->gma_port]);
mii_attach(sc->sc_dev, mii, 0xffffffff,
gma->gma_phy, MII_OFFSET_ANY, 0);
if (LIST_EMPTY(&mii->mii_phys)) {
ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
} else {
ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
// ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_1000_T | IFM_FDX);
}
sc->sc_gmac_status = bus_space_read_4(sc->sc_iot, sc->sc_gmac_ioh,
GMAC_STATUS);
sc->sc_gmac_sta_add[0] = bus_space_read_4(sc->sc_iot, sc->sc_gmac_ioh,
GMAC_STA_ADD0);
sc->sc_gmac_sta_add[1] = bus_space_read_4(sc->sc_iot, sc->sc_gmac_ioh,
GMAC_STA_ADD1);
sc->sc_gmac_sta_add[2] = bus_space_read_4(sc->sc_iot, sc->sc_gmac_ioh,
GMAC_STA_ADD2);
sc->sc_gmac_mcast_filter[0] = bus_space_read_4(sc->sc_iot,
sc->sc_gmac_ioh, GMAC_MCAST_FILTER0);
sc->sc_gmac_mcast_filter[1] = bus_space_read_4(sc->sc_iot,
sc->sc_gmac_ioh, GMAC_MCAST_FILTER1);
sc->sc_gmac_rx_filter = bus_space_read_4(sc->sc_iot, sc->sc_gmac_ioh,
GMAC_RX_FILTER);
sc->sc_gmac_config[0] = bus_space_read_4(sc->sc_iot, sc->sc_gmac_ioh,
GMAC_CONFIG0);
sc->sc_dmavr = bus_space_read_4(sc->sc_iot, sc->sc_dma_ioh, GMAC_DMAVR);
/* sc->sc_int_enabled is already zeroed */
sc->sc_int_mask[0] = (sc->sc_port1 ? INT0_GMAC1 : INT0_GMAC0);
sc->sc_int_mask[1] = (sc->sc_port1 ? INT1_GMAC1 : INT1_GMAC0);
sc->sc_int_mask[2] = (sc->sc_port1 ? INT2_GMAC1 : INT2_GMAC0);
sc->sc_int_mask[3] = (sc->sc_port1 ? INT3_GMAC1 : INT3_GMAC0);
sc->sc_int_mask[4] = (sc->sc_port1 ? INT4_GMAC1 : INT4_GMAC0);
if (!sc->sc_port1) {
sc->sc_ih = intr_establish(gma->gma_intr, IPL_NET, IST_LEVEL_HIGH,
gmc_intr, sc);
KASSERT(sc->sc_ih != NULL);
}
callout_init(&sc->sc_mii_ch, 0);
callout_setfunc(&sc->sc_mii_ch, gmc_mii_tick, sc);
aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
ether_sprintf(CLLADDR(sc->sc_if.if_sadl)));
}
CFATTACH_DECL_NEW(gmc, sizeof(struct gmc_softc),
gmc_match, gmc_attach, NULL, NULL);