Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
/* $NetBSD: sun4i_dma.c,v 1.3 2018/04/20 18:04:12 bouyer Exp $ */

/*-
 * Copyright (c) 2017 Jared McNeill <jmcneill@invisible.ca>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include "opt_ddb.h"

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: sun4i_dma.c,v 1.3 2018/04/20 18:04:12 bouyer Exp $");

#include <sys/param.h>
#include <sys/bus.h>
#include <sys/device.h>
#include <sys/intr.h>
#include <sys/systm.h>
#include <sys/mutex.h>
#include <sys/bitops.h>
#include <sys/kmem.h>

#include <dev/fdt/fdtvar.h>

#define	DMA_MAX_TYPES		2
#define	 DMA_TYPE_NORMAL	0
#define	 DMA_TYPE_DEDICATED	1
#define	DMA_MAX_CHANNELS	8
#define	DMA_MAX_DRQS		32

#define	DRQ_TYPE_SDRAM		0x16

#define	DMA_IRQ_EN_REG		0x00
#define	DMA_IRQ_PEND_STAS_REG	0x04
#define	 DMA_IRQ_PEND_STAS_END_MASK	0xaaaaaaaa
#define	NDMA_CTRL_REG(n)	(0x100 + (n) * 0x20)
#define	 NDMA_CTRL_LOAD			__BIT(31)
#define	 NDMA_CTRL_CONTI_EN		__BIT(30)
#define	 NDMA_CTRL_WAIT_STATE		__BITS(29,27)
#define	 NDMA_CTRL_DST_DATA_WIDTH	__BITS(26,25)
#define	 NDMA_CTRL_DST_BST_LEN		__BITS(24,23)
#define	 NDMA_CTRL_DST_ADDR_TYPE	__BIT(21)
#define	 NDMA_CTRL_DST_DRQ_TYPE		__BITS(20,16)
#define	 NDMA_CTRL_BC_MODE_SEL		__BIT(15)
#define	 NDMA_CTRL_SRC_DATA_WIDTH	__BITS(10,9)
#define	 NDMA_CTRL_SRC_BST_LEN		__BITS(8,7)
#define	 NDMA_CTRL_SRC_ADDR_TYPE	__BIT(5)
#define	 NDMA_CTRL_SRC_DRQ_TYPE		__BITS(4,0)
#define	NDMA_SRC_ADDR_REG(n)	(0x100 + (n) * 0x20 + 0x4)
#define	NDMA_DEST_ADDR_REG(n)	(0x100 + (n) * 0x20 + 0x8)
#define	NDMA_BC_REG(n)		(0x100 + (n) * 0x20 + 0xc)
#define	DDMA_CTRL_REG(n)	(0x300 + (n) * 0x20)
#define	 DDMA_CTRL_LOAD			__BIT(31)
#define	 DDMA_CTRL_BSY_STA		__BIT(30)
#define	 DDMA_CTRL_CONTI_EN		__BIT(29)
#define	 DDMA_CTRL_DST_DATA_WIDTH	__BITS(26,25)
#define	 DDMA_CTRL_DST_BST_LEN		__BITS(24,23)
#define	 DDMA_CTRL_DST_ADDR_MODE	__BITS(22,21)
#define	 DDMA_CTRL_DST_DRQ_TYPE		__BITS(20,16)
#define	 DDMA_CTRL_BC_MODE_SEL		__BIT(15)
#define	 DDMA_CTRL_SRC_DATA_WIDTH	__BITS(10,9)
#define	 DDMA_CTRL_SRC_BST_LEN		__BITS(8,7)
#define	 DDMA_CTRL_SRC_ADDR_MODE	__BITS(6,5)
#define	 DDMA_CTRL_SRC_DRQ_TYPE		__BITS(4,0)
#define	DDMA_SRC_ADDR_REG(n)	(0x300 + (n) * 0x20 + 0x4)
#define	DDMA_DEST_ADDR_REG(n)	(0x300 + (n) * 0x20 + 0x8)
#define	DDMA_BC_REG(n)		(0x300 + (n) * 0x20 + 0xc)
#define	DDMA_PARA_REG(n)	(0x300 + (n) * 0x20 + 0x18)
#define	 DDMA_PARA_DST_DATA_BLK_SIZE	__BITS(31,24)
#define	 DDMA_PARA_DST_WAIT_CLK_CYC	__BITS(23,16)
#define	 DDMA_PARA_SRC_DATA_BLK_SIZE	__BITS(15,8)
#define	 DDMA_PARA_SRC_WAIT_CLK_CYC	__BITS(7,0)
#define	 DDMA_PARA_VALUE				\
	  (__SHIFTIN(1, DDMA_PARA_DST_DATA_BLK_SIZE) |	\
	   __SHIFTIN(1, DDMA_PARA_SRC_DATA_BLK_SIZE) |	\
	   __SHIFTIN(2, DDMA_PARA_DST_WAIT_CLK_CYC) |	\
	   __SHIFTIN(2, DDMA_PARA_SRC_WAIT_CLK_CYC))

static const struct of_compat_data compat_data[] = {
	{ "allwinner,sun4i-a10-dma",		1 },
	{ NULL }
};

struct sun4idma_channel {
	uint8_t			ch_type;
	uint8_t			ch_index;
	uint32_t		ch_irqmask;
	void			(*ch_callback)(void *);
	void			*ch_callbackarg;
	u_int			ch_drq;
};

struct sun4idma_softc {
	device_t		sc_dev;
	bus_space_tag_t		sc_bst;
	bus_space_handle_t	sc_bsh;
	bus_dma_tag_t		sc_dmat;
	int			sc_phandle;
	void			*sc_ih;

	kmutex_t		sc_lock;

	struct sun4idma_channel	sc_chan[DMA_MAX_TYPES][DMA_MAX_CHANNELS];
};

#define DMA_READ(sc, reg)		\
	bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
#define DMA_WRITE(sc, reg, val)		\
	bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))

static void *
sun4idma_acquire(device_t dev, const void *data, size_t len,
    void (*cb)(void *), void *cbarg)
{
	struct sun4idma_softc *sc = device_private(dev);
	struct sun4idma_channel *ch = NULL;
	const uint32_t *specifier = data;
	uint32_t irqen;
	uint8_t index;

	if (len != 8)
		return NULL;

	const u_int type = be32toh(specifier[0]);
	const u_int drq = be32toh(specifier[1]);

	if (type >= DMA_MAX_TYPES || drq >= DMA_MAX_DRQS)
		return NULL;

	mutex_enter(&sc->sc_lock);

	for (index = 0; index < DMA_MAX_CHANNELS; index++) {
		if (sc->sc_chan[type][index].ch_callback == NULL) {
			ch = &sc->sc_chan[type][index];
			ch->ch_callback = cb;
			ch->ch_callbackarg = cbarg;
			ch->ch_drq = drq;

			irqen = DMA_READ(sc, DMA_IRQ_EN_REG);
			irqen |= ch->ch_irqmask;
			DMA_WRITE(sc, DMA_IRQ_EN_REG, irqen);

			break;
		}
	}

	mutex_exit(&sc->sc_lock);

	return ch;
}

static void
sun4idma_release(device_t dev, void *priv)
{
	struct sun4idma_softc *sc = device_private(dev);
	struct sun4idma_channel *ch = priv;
	uint32_t irqen;

	mutex_enter(&sc->sc_lock);

	irqen = DMA_READ(sc, DMA_IRQ_EN_REG);
	irqen &= ~ch->ch_irqmask;
	DMA_WRITE(sc, DMA_IRQ_EN_REG, irqen);

	ch->ch_callback = NULL;
	ch->ch_callbackarg = NULL;

	mutex_exit(&sc->sc_lock);
}

static int
sun4idma_transfer_ndma(struct sun4idma_softc *sc, struct sun4idma_channel *ch,
   struct fdtbus_dma_req *req)
{
	uint32_t cfg, mem_cfg, dev_cfg, src, dst;
	uint32_t mem_width, dev_width, mem_burst, dev_burst;

	mem_width = req->dreq_mem_opt.opt_bus_width >> 4;
	dev_width = req->dreq_dev_opt.opt_bus_width >> 4;
	mem_burst = req->dreq_mem_opt.opt_burst_len == 1 ? 0 :
		    (req->dreq_mem_opt.opt_burst_len >> 3) + 1;
	dev_burst = req->dreq_dev_opt.opt_burst_len == 1 ? 0 :
		    (req->dreq_dev_opt.opt_burst_len >> 3) + 1;

	mem_cfg = __SHIFTIN(mem_width, NDMA_CTRL_SRC_DATA_WIDTH) |
	    __SHIFTIN(mem_burst, NDMA_CTRL_SRC_BST_LEN) |
	    __SHIFTIN(DRQ_TYPE_SDRAM, NDMA_CTRL_SRC_DRQ_TYPE);
	dev_cfg = __SHIFTIN(dev_width, NDMA_CTRL_SRC_DATA_WIDTH) |
	    __SHIFTIN(dev_burst, NDMA_CTRL_SRC_BST_LEN) |
	    __SHIFTIN(ch->ch_drq, NDMA_CTRL_SRC_DRQ_TYPE) |
	    NDMA_CTRL_SRC_ADDR_TYPE;

	if (req->dreq_dir == FDT_DMA_READ) {
		src = req->dreq_dev_phys;
		dst = req->dreq_segs[0].ds_addr;
		cfg = mem_cfg << 16 | dev_cfg;
	} else {
		src = req->dreq_segs[0].ds_addr;
		dst = req->dreq_dev_phys;
		cfg = dev_cfg << 16 | mem_cfg;
	}

	DMA_WRITE(sc, NDMA_SRC_ADDR_REG(ch->ch_index), src);
	DMA_WRITE(sc, NDMA_DEST_ADDR_REG(ch->ch_index), dst);
	DMA_WRITE(sc, NDMA_BC_REG(ch->ch_index), req->dreq_segs[0].ds_len);
	DMA_WRITE(sc, NDMA_CTRL_REG(ch->ch_index), cfg | NDMA_CTRL_LOAD);

	return 0;
}

static int
sun4idma_transfer_ddma(struct sun4idma_softc *sc, struct sun4idma_channel *ch,
   struct fdtbus_dma_req *req)
{
	uint32_t cfg, mem_cfg, dev_cfg, src, dst;
	uint32_t mem_width, dev_width, mem_burst, dev_burst;

	mem_width = req->dreq_mem_opt.opt_bus_width >> 4;
	dev_width = req->dreq_dev_opt.opt_bus_width >> 4;
	mem_burst = req->dreq_mem_opt.opt_burst_len == 1 ? 0 :
		    (req->dreq_mem_opt.opt_burst_len >> 3) + 1;
	dev_burst = req->dreq_dev_opt.opt_burst_len == 1 ? 0 :
		    (req->dreq_dev_opt.opt_burst_len >> 3) + 1;

	mem_cfg = __SHIFTIN(mem_width, DDMA_CTRL_SRC_DATA_WIDTH) |
	    __SHIFTIN(mem_burst, DDMA_CTRL_SRC_BST_LEN) |
	    __SHIFTIN(DRQ_TYPE_SDRAM, DDMA_CTRL_SRC_DRQ_TYPE) |
	    __SHIFTIN(0, DDMA_CTRL_SRC_ADDR_MODE);
	dev_cfg = __SHIFTIN(dev_width, DDMA_CTRL_SRC_DATA_WIDTH) |
	    __SHIFTIN(dev_burst, DDMA_CTRL_SRC_BST_LEN) |
	    __SHIFTIN(ch->ch_drq, DDMA_CTRL_SRC_DRQ_TYPE) |
	    __SHIFTIN(1, DDMA_CTRL_SRC_ADDR_MODE);

	if (req->dreq_dir == FDT_DMA_READ) {
		src = req->dreq_dev_phys;
		dst = req->dreq_segs[0].ds_addr;
		cfg = mem_cfg << 16 | dev_cfg;
	} else {
		src = req->dreq_segs[0].ds_addr;
		dst = req->dreq_dev_phys;
		cfg = dev_cfg << 16 | mem_cfg;
	}

	DMA_WRITE(sc, DDMA_SRC_ADDR_REG(ch->ch_index), src);
	DMA_WRITE(sc, DDMA_DEST_ADDR_REG(ch->ch_index), dst);
	DMA_WRITE(sc, DDMA_BC_REG(ch->ch_index), req->dreq_segs[0].ds_len);
	DMA_WRITE(sc, DDMA_PARA_REG(ch->ch_index), DDMA_PARA_VALUE);
	DMA_WRITE(sc, DDMA_CTRL_REG(ch->ch_index), cfg | DDMA_CTRL_LOAD);

	return 0;
}

static int
sun4idma_transfer(device_t dev, void *priv, struct fdtbus_dma_req *req)
{
	struct sun4idma_softc *sc = device_private(dev);
	struct sun4idma_channel *ch = priv;

	if (req->dreq_nsegs != 1)
		return EINVAL;

	if (ch->ch_type == DMA_TYPE_NORMAL)
		return sun4idma_transfer_ndma(sc, ch, req);
	else
		return sun4idma_transfer_ddma(sc, ch, req);
}

static void
sun4idma_halt(device_t dev, void *priv)
{
	struct sun4idma_softc *sc = device_private(dev);
	struct sun4idma_channel *ch = priv;
	uint32_t val;

	if (ch->ch_type == DMA_TYPE_NORMAL) {
		val = DMA_READ(sc, NDMA_CTRL_REG(ch->ch_index));
		val &= ~NDMA_CTRL_LOAD;
		DMA_WRITE(sc, NDMA_CTRL_REG(ch->ch_index), val);
	} else {
		val = DMA_READ(sc, DDMA_CTRL_REG(ch->ch_index));
		val &= ~DDMA_CTRL_LOAD;
		DMA_WRITE(sc, DDMA_CTRL_REG(ch->ch_index), val);
	}
}

static const struct fdtbus_dma_controller_func sun4idma_funcs = {
	.acquire = sun4idma_acquire,
	.release = sun4idma_release,
	.transfer = sun4idma_transfer,
	.halt = sun4idma_halt
};

static int
sun4idma_intr(void *priv)
{
	struct sun4idma_softc *sc = priv;
	uint32_t pend, mask, bit;
	uint8_t type, index;

	pend = DMA_READ(sc, DMA_IRQ_PEND_STAS_REG);
	if (pend == 0)
		return 0;

	DMA_WRITE(sc, DMA_IRQ_PEND_STAS_REG, pend);

	pend &= DMA_IRQ_PEND_STAS_END_MASK;

	while ((bit = ffs32(pend)) != 0) {
		mask = __BIT(bit - 1);
		pend &= ~mask;
		type = ((bit - 1) / 2) / 8;
		index = ((bit - 1) / 2) % 8;

		if (sc->sc_chan[type][index].ch_callback == NULL)
			continue;
		sc->sc_chan[type][index].ch_callback(
		    sc->sc_chan[type][index].ch_callbackarg);
	}

	return 1;
}

static int
sun4idma_match(device_t parent, cfdata_t cf, void *aux)
{
	struct fdt_attach_args * const faa = aux;

	return of_match_compat_data(faa->faa_phandle, compat_data);
}

static void
sun4idma_attach(device_t parent, device_t self, void *aux)
{
	struct sun4idma_softc * const sc = device_private(self);
	struct fdt_attach_args * const faa = aux;
	const int phandle = faa->faa_phandle;
	struct clk *clk;
	char intrstr[128];
	bus_addr_t addr;
	bus_size_t size;
	u_int index, type;

	if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0) {
		aprint_error(": couldn't get registers\n");
		return;
	}

	if ((clk = fdtbus_clock_get_index(phandle, 0)) == NULL ||
	    clk_enable(clk) != 0) {
		aprint_error(": couldn't enable clock\n");
		return;
	}

	sc->sc_dev = self;
	sc->sc_phandle = phandle;
	sc->sc_dmat = faa->faa_dmat;
	sc->sc_bst = faa->faa_bst;
	if (bus_space_map(sc->sc_bst, addr, size, 0, &sc->sc_bsh) != 0) {
		aprint_error(": couldn't map registers\n");
		return;
	}
	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SCHED);

	if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
		aprint_error(": failed to decode interrupt\n");
		return;
	}

	aprint_naive("\n");
	aprint_normal(": DMA controller\n");

	DMA_WRITE(sc, DMA_IRQ_EN_REG, 0);
	DMA_WRITE(sc, DMA_IRQ_PEND_STAS_REG, ~0);

	for (type = 0; type < DMA_MAX_TYPES; type++) {
		for (index = 0; index < DMA_MAX_CHANNELS; index++) {
			struct sun4idma_channel *ch = &sc->sc_chan[type][index];
			ch->ch_type = type;
			ch->ch_index = index;
			ch->ch_irqmask = __BIT((type * 16) + (index * 2) + 1);
			ch->ch_callback = NULL;
			ch->ch_callbackarg = NULL;

			if (type == DMA_TYPE_NORMAL)
				DMA_WRITE(sc, NDMA_CTRL_REG(index), 0);
			else
				DMA_WRITE(sc, DDMA_CTRL_REG(index), 0);
		}
	}

	sc->sc_ih = fdtbus_intr_establish(phandle, 0, IPL_SCHED,
	    FDT_INTR_MPSAFE, sun4idma_intr, sc);
	if (sc->sc_ih == NULL) {
		aprint_error_dev(sc->sc_dev,
		    "couldn't establish interrupt on %s\n", intrstr);
		return;
	}
	aprint_normal_dev(sc->sc_dev, "interrupting on %s\n", intrstr);

	fdtbus_register_dma_controller(self, phandle, &sun4idma_funcs);
}

CFATTACH_DECL_NEW(sun4i_dma, sizeof(struct sun4idma_softc),
        sun4idma_match, sun4idma_attach, NULL, NULL);