/* $NetBSD: clock.c,v 1.60 2019/06/29 16:37:49 tsutsui Exp $ */
/*
* Copyright (c) 1988 University of Utah.
* Copyright (c) 1982, 1990 The Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: Utah $Hdr: clock.c 1.18 91/01/21$
*
* @(#)clock.c 7.6 (Berkeley) 5/7/91
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: clock.c,v 1.60 2019/06/29 16:37:49 tsutsui Exp $");
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/uio.h>
#include <sys/conf.h>
#include <sys/proc.h>
#include <sys/event.h>
#include <sys/timetc.h>
#include <dev/clock_subr.h>
#include <machine/psl.h>
#include <machine/cpu.h>
#include <machine/iomap.h>
#include <machine/mfp.h>
#include <atari/dev/clockreg.h>
#include <atari/dev/clockvar.h>
#include <atari/atari/device.h>
#if defined(GPROF) && defined(PROFTIMER)
#include <machine/profile.h>
#endif
#include "ioconf.h"
static int atari_rtc_get(todr_chip_handle_t, struct clock_ymdhms *);
static int atari_rtc_set(todr_chip_handle_t, struct clock_ymdhms *);
/*
* The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
* of 200. Therefore the timer runs at an effective rate of:
* 2457600/200 = 12288Hz.
*/
#define CLOCK_HZ 12288
static u_int clk_getcounter(struct timecounter *);
static struct timecounter clk_timecounter = {
clk_getcounter, /* get_timecount */
0, /* no poll_pps */
~0u, /* counter_mask */
CLOCK_HZ, /* frequency */
"clock", /* name, overriden later */
100, /* quality */
NULL, /* prev */
NULL, /* next */
};
/*
* Machine-dependent clock routines.
*
* Inittodr initializes the time of day hardware which provides
* date functions.
*
* Resettodr restores the time of day hardware after a time change.
*/
struct clock_softc {
device_t sc_dev;
int sc_flags;
struct todr_chip_handle sc_handle;
};
/*
* 'sc_flags' state info. Only used by the rtc-device functions.
*/
#define RTC_OPEN 1
dev_type_open(rtcopen);
dev_type_close(rtcclose);
dev_type_read(rtcread);
dev_type_write(rtcwrite);
static void clockattach(device_t, device_t, void *);
static int clockmatch(device_t, cfdata_t, void *);
CFATTACH_DECL_NEW(clock, sizeof(struct clock_softc),
clockmatch, clockattach, NULL, NULL);
const struct cdevsw rtc_cdevsw = {
.d_open = rtcopen,
.d_close = rtcclose,
.d_read = rtcread,
.d_write = rtcwrite,
.d_ioctl = noioctl,
.d_stop = nostop,
.d_tty = notty,
.d_poll = nopoll,
.d_mmap = nommap,
.d_kqfilter = nokqfilter,
.d_discard = nodiscard,
.d_flag = 0
};
void statintr(struct clockframe);
static int twodigits(char *, int);
static int divisor; /* Systemclock divisor */
/*
* Statistics and profile clock intervals and variances. Variance must
* be a power of 2. Since this gives us an even number, not an odd number,
* we discard one case and compensate. That is, a variance of 64 would
* give us offsets in [0..63]. Instead, we take offsets in [1..63].
* This is symmetric around the point 32, or statvar/2, and thus averages
* to that value (assuming uniform random numbers).
*/
#ifdef STATCLOCK
static int statvar = 32; /* {stat,prof}clock variance */
static int statmin; /* statclock divisor - variance/2 */
static int profmin; /* profclock divisor - variance/2 */
static int clk2min; /* current, from above choices */
#endif
static int
clockmatch(device_t parent, cfdata_t cf, void *aux)
{
if (!strcmp("clock", aux))
return 1;
return 0;
}
/*
* Start the real-time clock.
*/
static void
clockattach(device_t parent, device_t self, void *aux)
{
struct clock_softc *sc = device_private(self);
struct todr_chip_handle *tch;
sc->sc_dev = self;
tch = &sc->sc_handle;
tch->todr_gettime_ymdhms = atari_rtc_get;
tch->todr_settime_ymdhms = atari_rtc_set;
tch->todr_setwen = NULL;
todr_attach(tch);
sc->sc_flags = 0;
/*
* Initialize Timer-A in the ST-MFP. We use a divisor of 200.
* The MFP clock runs at 2457600Hz. Therefore the timer runs
* at an effective rate of: 2457600/200 = 12288Hz. The
* following expression works for 48, 64 or 96 hz.
*/
divisor = CLOCK_HZ/hz;
MFP->mf_tacr = 0; /* Stop timer */
MFP->mf_iera &= ~IA_TIMA; /* Disable timer interrupts */
MFP->mf_tadr = divisor; /* Set divisor */
clk_timecounter.tc_frequency = CLOCK_HZ;
if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
printf (": illegal value %d for systemclock, reset to %d\n\t",
hz, 64);
hz = 64;
}
printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
tc_init(&clk_timecounter);
#ifdef STATCLOCK
if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
stathz = hz;
if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
profhz = hz << 1;
MFP->mf_tcdcr &= 0x7; /* Stop timer */
MFP->mf_ierb &= ~IB_TIMC; /* Disable timer inter. */
MFP->mf_tcdr = CLOCK_HZ/stathz; /* Set divisor */
statmin = (CLOCK_HZ/stathz) - (statvar >> 1);
profmin = (CLOCK_HZ/profhz) - (statvar >> 1);
clk2min = statmin;
#endif /* STATCLOCK */
}
void
cpu_initclocks(void)
{
MFP->mf_tacr = T_Q200; /* Start timer */
MFP->mf_ipra = (u_int8_t)~IA_TIMA;/* Clear pending interrupts */
MFP->mf_iera |= IA_TIMA; /* Enable timer interrupts */
MFP->mf_imra |= IA_TIMA; /* ..... */
#ifdef STATCLOCK
MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start */
MFP->mf_iprb = (u_int8_t)~IB_TIMC;/* Clear pending interrupts */
MFP->mf_ierb |= IB_TIMC; /* Enable timer interrupts */
MFP->mf_imrb |= IB_TIMC; /* ..... */
#endif /* STATCLOCK */
}
void
setstatclockrate(int newhz)
{
#ifdef STATCLOCK
if (newhz == stathz)
clk2min = statmin;
else clk2min = profmin;
#endif /* STATCLOCK */
}
#ifdef STATCLOCK
void
statintr(struct clockframe frame)
{
register int var, r;
var = statvar - 1;
do {
r = random() & var;
} while (r == 0);
/*
* Note that we are always lagging behind as the new divisor
* value will not be loaded until the next interrupt. This
* shouldn't disturb the median frequency (I think ;-) ) as
* only the value used when switching frequencies is used
* twice. This shouldn't happen very often.
*/
MFP->mf_tcdr = clk2min + r;
statclock(&frame);
}
#endif /* STATCLOCK */
static u_int
clk_getcounter(struct timecounter *tc)
{
uint32_t delta, count, cur_hardclock;
uint8_t ipra, tadr;
int s;
static uint32_t lastcount;
s = splhigh();
cur_hardclock = hardclock_ticks;
ipra = MFP->mf_ipra;
tadr = MFP->mf_tadr;
delta = divisor - tadr;
if (ipra & IA_TIMA)
delta += divisor;
splx(s);
count = (divisor * cur_hardclock) + delta;
if ((int32_t)(count - lastcount) < 0) {
/* XXX wrapped; maybe hardclock() is blocked more than 2/HZ */
count = lastcount + 1;
}
lastcount = count;
return count;
}
#define TIMB_FREQ 614400
#define TIMB_LIMIT 256
void
init_delay(void)
{
/*
* Initialize Timer-B in the ST-MFP. This timer is used by
* the 'delay' function below. This timer is setup to be
* continueously counting from 255 back to zero at a
* frequency of 614400Hz. We do this *early* in the
* initialisation process.
*/
MFP->mf_tbcr = 0; /* Stop timer */
MFP->mf_iera &= ~IA_TIMB; /* Disable timer interrupts */
MFP->mf_tbdr = 0;
MFP->mf_tbcr = T_Q004; /* Start timer */
}
/*
* Wait "n" microseconds.
* Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
* Note: timer had better have been programmed before this is first used!
*/
void
delay(unsigned int n)
{
int ticks, otick, remaining;
/*
* Read the counter first, so that the rest of the setup overhead is
* counted.
*/
otick = MFP->mf_tbdr;
if (n <= UINT_MAX / TIMB_FREQ) {
/*
* For unsigned arithmetic, division can be replaced with
* multiplication with the inverse and a shift.
*/
remaining = n * TIMB_FREQ / 1000000;
} else {
/* This is a very long delay.
* Being slow here doesn't matter.
*/
remaining = (unsigned long long) n * TIMB_FREQ / 1000000;
}
while (remaining > 0) {
ticks = MFP->mf_tbdr;
if (ticks > otick)
remaining -= TIMB_LIMIT - (ticks - otick);
else
remaining -= otick - ticks;
otick = ticks;
}
}
#ifdef GPROF
/*
* profclock() is expanded in line in lev6intr() unless profiling kernel.
* Assumes it is called with clock interrupts blocked.
*/
profclock(void *pc, int ps)
{
/*
* Came from user mode.
* If this process is being profiled record the tick.
*/
if (USERMODE(ps)) {
if (p->p_stats.p_prof.pr_scale)
addupc(pc, &curproc->p_stats.p_prof, 1);
}
/*
* Came from kernel (supervisor) mode.
* If we are profiling the kernel, record the tick.
*/
else if (profiling < 2) {
register int s = pc - s_lowpc;
if (s < s_textsize)
kcount[s / (HISTFRACTION * sizeof(*kcount))]++;
}
/*
* Kernel profiling was on but has been disabled.
* Mark as no longer profiling kernel and if all profiling done,
* disable the clock.
*/
if (profiling && (profon & PRF_KERNEL)) {
profon &= ~PRF_KERNEL;
if (profon == PRF_NONE)
stopprofclock();
}
}
#endif
/***********************************************************************
* Real Time Clock support *
***********************************************************************/
u_int mc146818_read(void *cookie, u_int regno)
{
struct rtc *rtc = cookie;
rtc->rtc_regno = regno;
return rtc->rtc_data & 0xff;
}
void mc146818_write(void *cookie, u_int regno, u_int value)
{
struct rtc *rtc = cookie;
rtc->rtc_regno = regno;
rtc->rtc_data = value;
}
static int
atari_rtc_get(todr_chip_handle_t todr, struct clock_ymdhms *dtp)
{
int sps;
mc_todregs clkregs;
u_int regb;
sps = splhigh();
regb = mc146818_read(RTC, MC_REGB);
MC146818_GETTOD(RTC, &clkregs);
splx(sps);
regb &= MC_REGB_24HR|MC_REGB_BINARY;
if (regb != (MC_REGB_24HR|MC_REGB_BINARY)) {
printf("Error: Nonstandard RealTimeClock Configuration -"
" value ignored\n"
" A write to /dev/rtc will correct this.\n");
return 0;
}
if (clkregs[MC_SEC] > 59)
return -1;
if (clkregs[MC_MIN] > 59)
return -1;
if (clkregs[MC_HOUR] > 23)
return -1;
if (range_test(clkregs[MC_DOM], 1, 31))
return -1;
if (range_test(clkregs[MC_MONTH], 1, 12))
return -1;
if (clkregs[MC_YEAR] > 99)
return -1;
dtp->dt_year = clkregs[MC_YEAR] + GEMSTARTOFTIME;
dtp->dt_mon = clkregs[MC_MONTH];
dtp->dt_day = clkregs[MC_DOM];
dtp->dt_hour = clkregs[MC_HOUR];
dtp->dt_min = clkregs[MC_MIN];
dtp->dt_sec = clkregs[MC_SEC];
return 0;
}
static int
atari_rtc_set(todr_chip_handle_t todr, struct clock_ymdhms *dtp)
{
int s;
mc_todregs clkregs;
clkregs[MC_YEAR] = dtp->dt_year - GEMSTARTOFTIME;
clkregs[MC_MONTH] = dtp->dt_mon;
clkregs[MC_DOM] = dtp->dt_day;
clkregs[MC_HOUR] = dtp->dt_hour;
clkregs[MC_MIN] = dtp->dt_min;
clkregs[MC_SEC] = dtp->dt_sec;
s = splclock();
MC146818_PUTTOD(RTC, &clkregs);
splx(s);
return 0;
}
/***********************************************************************
* RTC-device support *
***********************************************************************/
int
rtcopen(dev_t dev, int flag, int mode, struct lwp *l)
{
int unit = minor(dev);
struct clock_softc *sc;
sc = device_lookup_private(&clock_cd, unit);
if (sc == NULL)
return ENXIO;
if (sc->sc_flags & RTC_OPEN)
return EBUSY;
sc->sc_flags = RTC_OPEN;
return 0;
}
int
rtcclose(dev_t dev, int flag, int mode, struct lwp *l)
{
int unit = minor(dev);
struct clock_softc *sc = device_lookup_private(&clock_cd, unit);
sc->sc_flags = 0;
return 0;
}
int
rtcread(dev_t dev, struct uio *uio, int flags)
{
mc_todregs clkregs;
int s, length;
char buffer[16 + 1];
s = splhigh();
MC146818_GETTOD(RTC, &clkregs);
splx(s);
snprintf(buffer, sizeof(buffer), "%4d%02d%02d%02d%02d.%02d\n",
clkregs[MC_YEAR] + GEMSTARTOFTIME,
clkregs[MC_MONTH], clkregs[MC_DOM],
clkregs[MC_HOUR], clkregs[MC_MIN], clkregs[MC_SEC]);
if (uio->uio_offset > strlen(buffer))
return 0;
length = strlen(buffer) - uio->uio_offset;
if (length > uio->uio_resid)
length = uio->uio_resid;
return uiomove((void *)buffer, length, uio);
}
static int
twodigits(char *buffer, int pos)
{
int result = 0;
if (buffer[pos] >= '0' && buffer[pos] <= '9')
result = (buffer[pos] - '0') * 10;
if (buffer[pos+1] >= '0' && buffer[pos+1] <= '9')
result += (buffer[pos+1] - '0');
return result;
}
int
rtcwrite(dev_t dev, struct uio *uio, int flags)
{
mc_todregs clkregs;
int s, length, error;
char buffer[16];
/*
* We require atomic updates!
*/
length = uio->uio_resid;
if (uio->uio_offset || (length != sizeof(buffer)
&& length != sizeof(buffer) - 1))
return EINVAL;
if ((error = uiomove((void *)buffer, sizeof(buffer), uio)))
return error;
if (length == sizeof(buffer) && buffer[sizeof(buffer) - 1] != '\n')
return EINVAL;
s = splclock();
mc146818_write(RTC, MC_REGB,
mc146818_read(RTC, MC_REGB) | MC_REGB_24HR | MC_REGB_BINARY);
MC146818_GETTOD(RTC, &clkregs);
splx(s);
clkregs[MC_SEC] = twodigits(buffer, 13);
clkregs[MC_MIN] = twodigits(buffer, 10);
clkregs[MC_HOUR] = twodigits(buffer, 8);
clkregs[MC_DOM] = twodigits(buffer, 6);
clkregs[MC_MONTH] = twodigits(buffer, 4);
s = twodigits(buffer, 0) * 100 + twodigits(buffer, 2);
clkregs[MC_YEAR] = s - GEMSTARTOFTIME;
s = splclock();
MC146818_PUTTOD(RTC, &clkregs);
splx(s);
return 0;
}