Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
*	$NetBSD: setox.sa,v 1.5 2014/09/01 08:21:26 matt Exp $

*	MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
*	M68000 Hi-Performance Microprocessor Division
*	M68040 Software Package 
*
*	M68040 Software Package Copyright (c) 1993, 1994 Motorola Inc.
*	All rights reserved.
*
*	THE SOFTWARE is provided on an "AS IS" basis and without warranty.
*	To the maximum extent permitted by applicable law,
*	MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
*	INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
*	PARTICULAR PURPOSE and any warranty against infringement with
*	regard to the SOFTWARE (INCLUDING ANY MODIFIED VERSIONS THEREOF)
*	and any accompanying written materials. 
*
*	To the maximum extent permitted by applicable law,
*	IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
*	(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS
*	PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR
*	OTHER PECUNIARY LOSS) ARISING OF THE USE OR INABILITY TO USE THE
*	SOFTWARE.  Motorola assumes no responsibility for the maintenance
*	and support of the SOFTWARE.  
*
*	You are hereby granted a copyright license to use, modify, and
*	distribute the SOFTWARE so long as this entire notice is retained
*	without alteration in any modified and/or redistributed versions,
*	and that such modified versions are clearly identified as such.
*	No licenses are granted by implication, estoppel or otherwise
*	under any patents or trademarks of Motorola, Inc.

*
*	setox.sa 3.1 12/10/90
*
*	The entry point setox computes the exponential of a value.
*	setoxd does the same except the input value is a denormalized
*	number.	setoxm1 computes exp(X)-1, and setoxm1d computes
*	exp(X)-1 for denormalized X.
*
*	INPUT
*	-----
*	Double-extended value in memory location pointed to by address
*	register a0.
*
*	OUTPUT
*	------
*	exp(X) or exp(X)-1 returned in floating-point register fp0.
*
*	ACCURACY and MONOTONICITY
*	-------------------------
*	The returned result is within 0.85 ulps in 64 significant bit, i.e.
*	within 0.5001 ulp to 53 bits if the result is subsequently rounded
*	to double precision. The result is provably monotonic in double
*	precision.
*
*	SPEED
*	-----
*	Two timings are measured, both in the copy-back mode. The
*	first one is measured when the function is invoked the first time
*	(so the instructions and data are not in cache), and the
*	second one is measured when the function is reinvoked at the same
*	input argument.
*
*	The program setox takes approximately 210/190 cycles for input
*	argument X whose magnitude is less than 16380 log2, which
*	is the usual situation.	For the less common arguments,
*	depending on their values, the program may run faster or slower --
*	but no worse than 10% slower even in the extreme cases.
*
*	The program setoxm1 takes approximately ??? / ??? cycles for input
*	argument X, 0.25 <= |X| < 70log2. For |X| < 0.25, it takes
*	approximately ??? / ??? cycles. For the less common arguments,
*	depending on their values, the program may run faster or slower --
*	but no worse than 10% slower even in the extreme cases.
*
*	ALGORITHM and IMPLEMENTATION NOTES
*	----------------------------------
*
*	setoxd
*	------
*	Step 1.	Set ans := 1.0
*
*	Step 2.	Return	ans := ans + sign(X)*2^(-126). Exit.
*	Notes:	This will always generate one exception -- inexact.
*
*
*	setox
*	-----
*
*	Step 1.	Filter out extreme cases of input argument.
*		1.1	If |X| >= 2^(-65), go to Step 1.3.
*		1.2	Go to Step 7.
*		1.3	If |X| < 16380 log(2), go to Step 2.
*		1.4	Go to Step 8.
*	Notes:	The usual case should take the branches 1.1 -> 1.3 -> 2.
*		 To avoid the use of floating-point comparisons, a
*		 compact representation of |X| is used. This format is a
*		 32-bit integer, the upper (more significant) 16 bits are
*		 the sign and biased exponent field of |X|; the lower 16
*		 bits are the 16 most significant fraction (including the
*		 explicit bit) bits of |X|. Consequently, the comparisons
*		 in Steps 1.1 and 1.3 can be performed by integer comparison.
*		 Note also that the constant 16380 log(2) used in Step 1.3
*		 is also in the compact form. Thus taking the branch
*		 to Step 2 guarantees |X| < 16380 log(2). There is no harm
*		 to have a small number of cases where |X| is less than,
*		 but close to, 16380 log(2) and the branch to Step 9 is
*		 taken.
*
*	Step 2.	Calculate N = round-to-nearest-int( X * 64/log2 ).
*		2.1	Set AdjFlag := 0 (indicates the branch 1.3 -> 2 was taken)
*		2.2	N := round-to-nearest-integer( X * 64/log2 ).
*		2.3	Calculate	J = N mod 64; so J = 0,1,2,..., or 63.
*		2.4	Calculate	M = (N - J)/64; so N = 64M + J.
*		2.5	Calculate the address of the stored value of 2^(J/64).
*		2.6	Create the value Scale = 2^M.
*	Notes:	The calculation in 2.2 is really performed by
*
*			Z := X * constant
*			N := round-to-nearest-integer(Z)
*
*		 where
*
*			constant := single-precision( 64/log 2 ).
*
*		 Using a single-precision constant avoids memory access.
*		 Another effect of using a single-precision "constant" is
*		 that the calculated value Z is
*
*			Z = X*(64/log2)*(1+eps), |eps| <= 2^(-24).
*
*		 This error has to be considered later in Steps 3 and 4.
*
*	Step 3.	Calculate X - N*log2/64.
*		3.1	R := X + N*L1, where L1 := single-precision(-log2/64).
*		3.2	R := R + N*L2, L2 := extended-precision(-log2/64 - L1).
*	Notes:	a) The way L1 and L2 are chosen ensures L1+L2 approximate
*		 the value	-log2/64	to 88 bits of accuracy.
*		 b) N*L1 is exact because N is no longer than 22 bits and
*		 L1 is no longer than 24 bits.
*		 c) The calculation X+N*L1 is also exact due to cancellation.
*		 Thus, R is practically X+N(L1+L2) to full 64 bits.
*		 d) It is important to estimate how large can |R| be after
*		 Step 3.2.
*
*			N = rnd-to-int( X*64/log2 (1+eps) ), |eps|<=2^(-24)
*			X*64/log2 (1+eps)	=	N + f,	|f| <= 0.5
*			X*64/log2 - N	=	f - eps*X 64/log2
*			X - N*log2/64	=	f*log2/64 - eps*X
*
*
*		 Now |X| <= 16446 log2, thus
*
*			|X - N*log2/64| <= (0.5 + 16446/2^(18))*log2/64
*					<= 0.57 log2/64.
*		 This bound will be used in Step 4.
*
*	Step 4.	Approximate exp(R)-1 by a polynomial
*			p = R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5))))
*	Notes:	a) In order to reduce memory access, the coefficients are
*		 made as "short" as possible: A1 (which is 1/2), A4 and A5
*		 are single precision; A2 and A3 are double precision.
*		 b) Even with the restrictions above,
*			|p - (exp(R)-1)| < 2^(-68.8) for all |R| <= 0.0062.
*		 Note that 0.0062 is slightly bigger than 0.57 log2/64.
*		 c) To fully use the pipeline, p is separated into
*		 two independent pieces of roughly equal complexities
*			p = [ R + R*S*(A2 + S*A4) ]	+
*				[ S*(A1 + S*(A3 + S*A5)) ]
*		 where S = R*R.
*
*	Step 5.	Compute 2^(J/64)*exp(R) = 2^(J/64)*(1+p) by
*				ans := T + ( T*p + t)
*		 where T and t are the stored values for 2^(J/64).
*	Notes:	2^(J/64) is stored as T and t where T+t approximates
*		 2^(J/64) to roughly 85 bits; T is in extended precision
*		 and t is in single precision. Note also that T is rounded
*		 to 62 bits so that the last two bits of T are zero. The
*		 reason for such a special form is that T-1, T-2, and T-8
*		 will all be exact --- a property that will give much
*		 more accurate computation of the function EXPM1.
*
*	Step 6.	Reconstruction of exp(X)
*			exp(X) = 2^M * 2^(J/64) * exp(R).
*		6.1	If AdjFlag = 0, go to 6.3
*		6.2	ans := ans * AdjScale
*		6.3	Restore the user FPCR
*		6.4	Return ans := ans * Scale. Exit.
*	Notes:	If AdjFlag = 0, we have X = Mlog2 + Jlog2/64 + R,
*		 |M| <= 16380, and Scale = 2^M. Moreover, exp(X) will
*		 neither overflow nor underflow. If AdjFlag = 1, that
*		 means that
*			X = (M1+M)log2 + Jlog2/64 + R, |M1+M| >= 16380.
*		 Hence, exp(X) may overflow or underflow or neither.
*		 When that is the case, AdjScale = 2^(M1) where M1 is
*		 approximately M. Thus 6.2 will never cause over/underflow.
*		 Possible exception in 6.4 is overflow or underflow.
*		 The inexact exception is not generated in 6.4. Although
*		 one can argue that the inexact flag should always be
*		 raised, to simulate that exception cost to much than the
*		 flag is worth in practical uses.
*
*	Step 7.	Return 1 + X.
*		7.1	ans := X
*		7.2	Restore user FPCR.
*		7.3	Return ans := 1 + ans. Exit
*	Notes:	For non-zero X, the inexact exception will always be
*		 raised by 7.3. That is the only exception raised by 7.3.
*		 Note also that we use the FMOVEM instruction to move X
*		 in Step 7.1 to avoid unnecessary trapping. (Although
*		 the FMOVEM may not seem relevant since X is normalized,
*		 the precaution will be useful in the library version of
*		 this code where the separate entry for denormalized inputs
*		 will be done away with.)
*
*	Step 8.	Handle exp(X) where |X| >= 16380log2.
*		8.1	If |X| > 16480 log2, go to Step 9.
*		(mimic 2.2 - 2.6)
*		8.2	N := round-to-integer( X * 64/log2 )
*		8.3	Calculate J = N mod 64, J = 0,1,...,63
*		8.4	K := (N-J)/64, M1 := truncate(K/2), M = K-M1, AdjFlag := 1.
*		8.5	Calculate the address of the stored value 2^(J/64).
*		8.6	Create the values Scale = 2^M, AdjScale = 2^M1.
*		8.7	Go to Step 3.
*	Notes:	Refer to notes for 2.2 - 2.6.
*
*	Step 9.	Handle exp(X), |X| > 16480 log2.
*		9.1	If X < 0, go to 9.3
*		9.2	ans := Huge, go to 9.4
*		9.3	ans := Tiny.
*		9.4	Restore user FPCR.
*		9.5	Return ans := ans * ans. Exit.
*	Notes:	Exp(X) will surely overflow or underflow, depending on
*		 X's sign. "Huge" and "Tiny" are respectively large/tiny
*		 extended-precision numbers whose square over/underflow
*		 with an inexact result. Thus, 9.5 always raises the
*		 inexact together with either overflow or underflow.
*
*
*	setoxm1d
*	--------
*
*	Step 1.	Set ans := 0
*
*	Step 2.	Return	ans := X + ans. Exit.
*	Notes:	This will return X with the appropriate rounding
*		 precision prescribed by the user FPCR.
*
*	setoxm1
*	-------
*
*	Step 1.	Check |X|
*		1.1	If |X| >= 1/4, go to Step 1.3.
*		1.2	Go to Step 7.
*		1.3	If |X| < 70 log(2), go to Step 2.
*		1.4	Go to Step 10.
*	Notes:	The usual case should take the branches 1.1 -> 1.3 -> 2.
*		 However, it is conceivable |X| can be small very often
*		 because EXPM1 is intended to evaluate exp(X)-1 accurately
*		 when |X| is small. For further details on the comparisons,
*		 see the notes on Step 1 of setox.
*
*	Step 2.	Calculate N = round-to-nearest-int( X * 64/log2 ).
*		2.1	N := round-to-nearest-integer( X * 64/log2 ).
*		2.2	Calculate	J = N mod 64; so J = 0,1,2,..., or 63.
*		2.3	Calculate	M = (N - J)/64; so N = 64M + J.
*		2.4	Calculate the address of the stored value of 2^(J/64).
*		2.5	Create the values Sc = 2^M and OnebySc := -2^(-M).
*	Notes:	See the notes on Step 2 of setox.
*
*	Step 3.	Calculate X - N*log2/64.
*		3.1	R := X + N*L1, where L1 := single-precision(-log2/64).
*		3.2	R := R + N*L2, L2 := extended-precision(-log2/64 - L1).
*	Notes:	Applying the analysis of Step 3 of setox in this case
*		 shows that |R| <= 0.0055 (note that |X| <= 70 log2 in
*		 this case).
*
*	Step 4.	Approximate exp(R)-1 by a polynomial
*			p = R+R*R*(A1+R*(A2+R*(A3+R*(A4+R*(A5+R*A6)))))
*	Notes:	a) In order to reduce memory access, the coefficients are
*		 made as "short" as possible: A1 (which is 1/2), A5 and A6
*		 are single precision; A2, A3 and A4 are double precision.
*		 b) Even with the restriction above,
*			|p - (exp(R)-1)| <	|R| * 2^(-72.7)
*		 for all |R| <= 0.0055.
*		 c) To fully use the pipeline, p is separated into
*		 two independent pieces of roughly equal complexity
*			p = [ R*S*(A2 + S*(A4 + S*A6)) ]	+
*				[ R + S*(A1 + S*(A3 + S*A5)) ]
*		 where S = R*R.
*
*	Step 5.	Compute 2^(J/64)*p by
*				p := T*p
*		 where T and t are the stored values for 2^(J/64).
*	Notes:	2^(J/64) is stored as T and t where T+t approximates
*		 2^(J/64) to roughly 85 bits; T is in extended precision
*		 and t is in single precision. Note also that T is rounded
*		 to 62 bits so that the last two bits of T are zero. The
*		 reason for such a special form is that T-1, T-2, and T-8
*		 will all be exact --- a property that will be exploited
*		 in Step 6 below. The total relative error in p is no
*		 bigger than 2^(-67.7) compared to the final result.
*
*	Step 6.	Reconstruction of exp(X)-1
*			exp(X)-1 = 2^M * ( 2^(J/64) + p - 2^(-M) ).
*		6.1	If M <= 63, go to Step 6.3.
*		6.2	ans := T + (p + (t + OnebySc)). Go to 6.6
*		6.3	If M >= -3, go to 6.5.
*		6.4	ans := (T + (p + t)) + OnebySc. Go to 6.6
*		6.5	ans := (T + OnebySc) + (p + t).
*		6.6	Restore user FPCR.
*		6.7	Return ans := Sc * ans. Exit.
*	Notes:	The various arrangements of the expressions give accurate
*		 evaluations.
*
*	Step 7.	exp(X)-1 for |X| < 1/4.
*		7.1	If |X| >= 2^(-65), go to Step 9.
*		7.2	Go to Step 8.
*
*	Step 8.	Calculate exp(X)-1, |X| < 2^(-65).
*		8.1	If |X| < 2^(-16312), goto 8.3
*		8.2	Restore FPCR; return ans := X - 2^(-16382). Exit.
*		8.3	X := X * 2^(140).
*		8.4	Restore FPCR; ans := ans - 2^(-16382).
*		 Return ans := ans*2^(140). Exit
*	Notes:	The idea is to return "X - tiny" under the user
*		 precision and rounding modes. To avoid unnecessary
*		 inefficiency, we stay away from denormalized numbers the
*		 best we can. For |X| >= 2^(-16312), the straightforward
*		 8.2 generates the inexact exception as the case warrants.
*
*	Step 9.	Calculate exp(X)-1, |X| < 1/4, by a polynomial
*			p = X + X*X*(B1 + X*(B2 + ... + X*B12))
*	Notes:	a) In order to reduce memory access, the coefficients are
*		 made as "short" as possible: B1 (which is 1/2), B9 to B12
*		 are single precision; B3 to B8 are double precision; and
*		 B2 is double extended.
*		 b) Even with the restriction above,
*			|p - (exp(X)-1)| < |X| 2^(-70.6)
*		 for all |X| <= 0.251.
*		 Note that 0.251 is slightly bigger than 1/4.
*		 c) To fully preserve accuracy, the polynomial is computed
*		 as	X + ( S*B1 +	Q ) where S = X*X and
*			Q	=	X*S*(B2 + X*(B3 + ... + X*B12))
*		 d) To fully use the pipeline, Q is separated into
*		 two independent pieces of roughly equal complexity
*			Q = [ X*S*(B2 + S*(B4 + ... + S*B12)) ] +
*				[ S*S*(B3 + S*(B5 + ... + S*B11)) ]
*
*	Step 10.	Calculate exp(X)-1 for |X| >= 70 log 2.
*		10.1 If X >= 70log2 , exp(X) - 1 = exp(X) for all practical
*		 purposes. Therefore, go to Step 1 of setox.
*		10.2 If X <= -70log2, exp(X) - 1 = -1 for all practical purposes.
*		 ans := -1
*		 Restore user FPCR
*		 Return ans := ans + 2^(-126). Exit.
*	Notes:	10.2 will always create an inexact and return -1 + tiny
*		 in the user rounding precision and mode.
*

setox	IDNT	2,1 Motorola 040 Floating Point Software Package

	section	8

	include	fpsp.h

L2	DC.L	$3FDC0000,$82E30865,$4361C4C6,$00000000

EXPA3	DC.L	$3FA55555,$55554431
EXPA2	DC.L	$3FC55555,$55554018

HUGE	DC.L	$7FFE0000,$FFFFFFFF,$FFFFFFFF,$00000000
TINY	DC.L	$00010000,$FFFFFFFF,$FFFFFFFF,$00000000

EM1A4	DC.L	$3F811111,$11174385
EM1A3	DC.L	$3FA55555,$55554F5A

EM1A2	DC.L	$3FC55555,$55555555,$00000000,$00000000

EM1B8	DC.L	$3EC71DE3,$A5774682
EM1B7	DC.L	$3EFA01A0,$19D7CB68

EM1B6	DC.L	$3F2A01A0,$1A019DF3
EM1B5	DC.L	$3F56C16C,$16C170E2

EM1B4	DC.L	$3F811111,$11111111
EM1B3	DC.L	$3FA55555,$55555555

EM1B2	DC.L	$3FFC0000,$AAAAAAAA,$AAAAAAAB
	DC.L	$00000000

TWO140	DC.L	$48B00000,$00000000
TWON140	DC.L	$37300000,$00000000

EXPTBL
	DC.L	$3FFF0000,$80000000,$00000000,$00000000
	DC.L	$3FFF0000,$8164D1F3,$BC030774,$9F841A9B
	DC.L	$3FFF0000,$82CD8698,$AC2BA1D8,$9FC1D5B9
	DC.L	$3FFF0000,$843A28C3,$ACDE4048,$A0728369
	DC.L	$3FFF0000,$85AAC367,$CC487B14,$1FC5C95C
	DC.L	$3FFF0000,$871F6196,$9E8D1010,$1EE85C9F
	DC.L	$3FFF0000,$88980E80,$92DA8528,$9FA20729
	DC.L	$3FFF0000,$8A14D575,$496EFD9C,$A07BF9AF
	DC.L	$3FFF0000,$8B95C1E3,$EA8BD6E8,$A0020DCF
	DC.L	$3FFF0000,$8D1ADF5B,$7E5BA9E4,$205A63DA
	DC.L	$3FFF0000,$8EA4398B,$45CD53C0,$1EB70051
	DC.L	$3FFF0000,$9031DC43,$1466B1DC,$1F6EB029
	DC.L	$3FFF0000,$91C3D373,$AB11C338,$A0781494
	DC.L	$3FFF0000,$935A2B2F,$13E6E92C,$9EB319B0
	DC.L	$3FFF0000,$94F4EFA8,$FEF70960,$2017457D
	DC.L	$3FFF0000,$96942D37,$20185A00,$1F11D537
	DC.L	$3FFF0000,$9837F051,$8DB8A970,$9FB952DD
	DC.L	$3FFF0000,$99E04593,$20B7FA64,$1FE43087
	DC.L	$3FFF0000,$9B8D39B9,$D54E5538,$1FA2A818
	DC.L	$3FFF0000,$9D3ED9A7,$2CFFB750,$1FDE494D
	DC.L	$3FFF0000,$9EF53260,$91A111AC,$20504890
	DC.L	$3FFF0000,$A0B0510F,$B9714FC4,$A073691C
	DC.L	$3FFF0000,$A2704303,$0C496818,$1F9B7A05
	DC.L	$3FFF0000,$A43515AE,$09E680A0,$A0797126
	DC.L	$3FFF0000,$A5FED6A9,$B15138EC,$A071A140
	DC.L	$3FFF0000,$A7CD93B4,$E9653568,$204F62DA
	DC.L	$3FFF0000,$A9A15AB4,$EA7C0EF8,$1F283C4A
	DC.L	$3FFF0000,$AB7A39B5,$A93ED338,$9F9A7FDC
	DC.L	$3FFF0000,$AD583EEA,$42A14AC8,$A05B3FAC
	DC.L	$3FFF0000,$AF3B78AD,$690A4374,$1FDF2610
	DC.L	$3FFF0000,$B123F581,$D2AC2590,$9F705F90
	DC.L	$3FFF0000,$B311C412,$A9112488,$201F678A
	DC.L	$3FFF0000,$B504F333,$F9DE6484,$1F32FB13
	DC.L	$3FFF0000,$B6FD91E3,$28D17790,$20038B30
	DC.L	$3FFF0000,$B8FBAF47,$62FB9EE8,$200DC3CC
	DC.L	$3FFF0000,$BAFF5AB2,$133E45FC,$9F8B2AE6
	DC.L	$3FFF0000,$BD08A39F,$580C36C0,$A02BBF70
	DC.L	$3FFF0000,$BF1799B6,$7A731084,$A00BF518
	DC.L	$3FFF0000,$C12C4CCA,$66709458,$A041DD41
	DC.L	$3FFF0000,$C346CCDA,$24976408,$9FDF137B
	DC.L	$3FFF0000,$C5672A11,$5506DADC,$201F1568
	DC.L	$3FFF0000,$C78D74C8,$ABB9B15C,$1FC13A2E
	DC.L	$3FFF0000,$C9B9BD86,$6E2F27A4,$A03F8F03
	DC.L	$3FFF0000,$CBEC14FE,$F2727C5C,$1FF4907D
	DC.L	$3FFF0000,$CE248C15,$1F8480E4,$9E6E53E4
	DC.L	$3FFF0000,$D06333DA,$EF2B2594,$1FD6D45C
	DC.L	$3FFF0000,$D2A81D91,$F12AE45C,$A076EDB9
	DC.L	$3FFF0000,$D4F35AAB,$CFEDFA20,$9FA6DE21
	DC.L	$3FFF0000,$D744FCCA,$D69D6AF4,$1EE69A2F
	DC.L	$3FFF0000,$D99D15C2,$78AFD7B4,$207F439F
	DC.L	$3FFF0000,$DBFBB797,$DAF23754,$201EC207
	DC.L	$3FFF0000,$DE60F482,$5E0E9124,$9E8BE175
	DC.L	$3FFF0000,$E0CCDEEC,$2A94E110,$20032C4B
	DC.L	$3FFF0000,$E33F8972,$BE8A5A50,$2004DFF5
	DC.L	$3FFF0000,$E5B906E7,$7C8348A8,$1E72F47A
	DC.L	$3FFF0000,$E8396A50,$3C4BDC68,$1F722F22
	DC.L	$3FFF0000,$EAC0C6E7,$DD243930,$A017E945
	DC.L	$3FFF0000,$ED4F301E,$D9942B84,$1F401A5B
	DC.L	$3FFF0000,$EFE4B99B,$DCDAF5CC,$9FB9A9E3
	DC.L	$3FFF0000,$F281773C,$59FFB138,$20744C05
	DC.L	$3FFF0000,$F5257D15,$2486CC2C,$1F773A19
	DC.L	$3FFF0000,$F7D0DF73,$0AD13BB8,$1FFE90D5
	DC.L	$3FFF0000,$FA83B2DB,$722A033C,$A041ED22
	DC.L	$3FFF0000,$FD3E0C0C,$F486C174,$1F853F3A

ADJFLAG	equ L_SCR2
SCALE	equ FP_SCR1
ADJSCALE equ FP_SCR2
SC	equ FP_SCR3
ONEBYSC	equ FP_SCR4

	xref	t_frcinx
	xref	t_extdnrm
	xref	t_unfl
	xref	t_ovfl

	xdef	setoxd
setoxd:
*--entry point for EXP(X), X is denormalized
	MOVE.L		(a0),d0
	ANDI.L		#$80000000,d0
	ORI.L		#$00800000,d0		...sign(X)*2^(-126)
	MOVE.L		d0,-(sp)
	FMOVE.S		#:3F800000,fp0
	fmove.l		d1,fpcr
	FADD.S		(sp)+,fp0
	bra		t_frcinx

	xdef	setox
setox:
*--entry point for EXP(X), here X is finite, non-zero, and not NaN's

*--Step 1.
	MOVE.L		(a0),d0	 ...load part of input X
	ANDI.L		#$7FFF0000,d0	...biased expo. of X
	CMPI.L		#$3FBE0000,d0	...2^(-65)
	BGE.B		EXPC1		...normal case
	BRA.W		EXPSM

EXPC1:
*--The case |X| >= 2^(-65)
	MOVE.W		4(a0),d0	...expo. and partial sig. of |X|
	CMPI.L		#$400CB167,d0	...16380 log2 trunc. 16 bits
	BLT.B		EXPMAIN	 ...normal case
	BRA.W		EXPBIG

EXPMAIN:
*--Step 2.
*--This is the normal branch:	2^(-65) <= |X| < 16380 log2.
	FMOVE.X		(a0),fp0	...load input from (a0)

	FMOVE.X		fp0,fp1
	FMUL.S		#:42B8AA3B,fp0	...64/log2 * X
	fmovem.x	fp2/fp3,-(a7)		...save fp2
	CLR.L		ADJFLAG(a6)
	FMOVE.L		fp0,d0		...N = int( X * 64/log2 )
	LEA		EXPTBL,a1
	FMOVE.L		d0,fp0		...convert to floating-format

	MOVE.L		d0,L_SCR1(a6)	...save N temporarily
	ANDI.L		#$3F,d0		...D0 is J = N mod 64
	LSL.L		#4,d0
	ADDA.L		d0,a1		...address of 2^(J/64)
	MOVE.L		L_SCR1(a6),d0
	ASR.L		#6,d0		...D0 is M
	ADDI.W		#$3FFF,d0	...biased expo. of 2^(M)
	MOVE.W		L2,L_SCR1(a6)	...prefetch L2, no need in CB

EXPCONT1:
*--Step 3.
*--fp1,fp2 saved on the stack. fp0 is N, fp1 is X,
*--a0 points to 2^(J/64), D0 is biased expo. of 2^(M)
	FMOVE.X		fp0,fp2
	FMUL.S		#:BC317218,fp0	...N * L1, L1 = lead(-log2/64)
	FMUL.X		L2,fp2		...N * L2, L1+L2 = -log2/64
	FADD.X		fp1,fp0	 	...X + N*L1
	FADD.X		fp2,fp0		...fp0 is R, reduced arg.
*	MOVE.W		#$3FA5,EXPA3	...load EXPA3 in cache

*--Step 4.
*--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL
*-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5))))
*--TO FULLY USE THE PIPELINE, WE COMPUTE S = R*R
*--[R+R*S*(A2+S*A4)] + [S*(A1+S*(A3+S*A5))]

	FMOVE.X		fp0,fp1
	FMUL.X		fp1,fp1	 	...fp1 IS S = R*R

	FMOVE.S		#:3AB60B70,fp2	...fp2 IS A5
*	CLR.W		2(a1)		...load 2^(J/64) in cache

	FMUL.X		fp1,fp2	 	...fp2 IS S*A5
	FMOVE.X		fp1,fp3
	FMUL.S		#:3C088895,fp3	...fp3 IS S*A4

	FADD.D		EXPA3,fp2	...fp2 IS A3+S*A5
	FADD.D		EXPA2,fp3	...fp3 IS A2+S*A4

	FMUL.X		fp1,fp2	 	...fp2 IS S*(A3+S*A5)
	MOVE.W		d0,SCALE(a6)	...SCALE is 2^(M) in extended
	clr.w		SCALE+2(a6)
	move.l		#$80000000,SCALE+4(a6)
	clr.l		SCALE+8(a6)

	FMUL.X		fp1,fp3	 	...fp3 IS S*(A2+S*A4)

	FADD.S		#:3F000000,fp2	...fp2 IS A1+S*(A3+S*A5)
	FMUL.X		fp0,fp3	 	...fp3 IS R*S*(A2+S*A4)

	FMUL.X		fp1,fp2	 	...fp2 IS S*(A1+S*(A3+S*A5))
	FADD.X		fp3,fp0	 	...fp0 IS R+R*S*(A2+S*A4),
*					...fp3 released

	FMOVE.X		(a1)+,fp1	...fp1 is lead. pt. of 2^(J/64)
	FADD.X		fp2,fp0	 	...fp0 is EXP(R) - 1
*					...fp2 released

*--Step 5
*--final reconstruction process
*--EXP(X) = 2^M * ( 2^(J/64) + 2^(J/64)*(EXP(R)-1) )

	FMUL.X		fp1,fp0	 	...2^(J/64)*(Exp(R)-1)
	fmovem.x	(a7)+,fp2/fp3	...fp2 restored
	FADD.S		(a1),fp0	...accurate 2^(J/64)

	FADD.X		fp1,fp0	 	...2^(J/64) + 2^(J/64)*...
	MOVE.L		ADJFLAG(a6),d0

*--Step 6
	TST.L		D0
	BEQ.B		NORMAL
ADJUST:
	FMUL.X		ADJSCALE(a6),fp0
NORMAL:
	FMOVE.L		d1,FPCR	 	...restore user FPCR
	FMUL.X		SCALE(a6),fp0	...multiply 2^(M)
	bra		t_frcinx

EXPSM:
*--Step 7
	FMOVEM.X	(a0),fp0	...in case X is denormalized
	FMOVE.L		d1,FPCR
	FADD.S		#:3F800000,fp0	...1+X in user mode
	bra		t_frcinx

EXPBIG:
*--Step 8
	CMPI.L		#$400CB27C,d0	...16480 log2
	BGT.B		EXP2BIG
*--Steps 8.2 -- 8.6
	FMOVE.X		(a0),fp0	...load input from (a0)

	FMOVE.X		fp0,fp1
	FMUL.S		#:42B8AA3B,fp0	...64/log2 * X
	fmovem.x	 fp2/fp3,-(a7)		...save fp2
	MOVE.L		#1,ADJFLAG(a6)
	FMOVE.L		fp0,d0		...N = int( X * 64/log2 )
	LEA		EXPTBL,a1
	FMOVE.L		d0,fp0		...convert to floating-format
	MOVE.L		d0,L_SCR1(a6)			...save N temporarily
	ANDI.L		#$3F,d0		 ...D0 is J = N mod 64
	LSL.L		#4,d0
	ADDA.L		d0,a1			...address of 2^(J/64)
	MOVE.L		L_SCR1(a6),d0
	ASR.L		#6,d0			...D0 is K
	MOVE.L		d0,L_SCR1(a6)			...save K temporarily
	ASR.L		#1,d0			...D0 is M1
	SUB.L		d0,L_SCR1(a6)			...a1 is M
	ADDI.W		#$3FFF,d0		...biased expo. of 2^(M1)
	MOVE.W		d0,ADJSCALE(a6)		...ADJSCALE := 2^(M1)
	clr.w		ADJSCALE+2(a6)
	move.l		#$80000000,ADJSCALE+4(a6)
	clr.l		ADJSCALE+8(a6)
	MOVE.L		L_SCR1(a6),d0			...D0 is M
	ADDI.W		#$3FFF,d0		...biased expo. of 2^(M)
	BRA.W		EXPCONT1		...go back to Step 3

EXP2BIG:
*--Step 9
	FMOVE.L		d1,FPCR
	MOVE.L		(a0),d0
	bclr.b		#sign_bit,(a0)		...setox always returns positive
	TST.L		d0
	BLT		t_unfl
	BRA		t_ovfl

	xdef	setoxm1d
setoxm1d:
*--entry point for EXPM1(X), here X is denormalized
*--Step 0.
	bra		t_extdnrm


	xdef	setoxm1
setoxm1:
*--entry point for EXPM1(X), here X is finite, non-zero, non-NaN

*--Step 1.
*--Step 1.1
	MOVE.L		(a0),d0	 ...load part of input X
	ANDI.L		#$7FFF0000,d0	...biased expo. of X
	CMPI.L		#$3FFD0000,d0	...1/4
	BGE.B		EM1CON1	 ...|X| >= 1/4
	BRA.W		EM1SM

EM1CON1:
*--Step 1.3
*--The case |X| >= 1/4
	MOVE.W		4(a0),d0	...expo. and partial sig. of |X|
	CMPI.L		#$4004C215,d0	...70log2 rounded up to 16 bits
	BLE.B		EM1MAIN	 ...1/4 <= |X| <= 70log2
	BRA.W		EM1BIG

EM1MAIN:
*--Step 2.
*--This is the case:	1/4 <= |X| <= 70 log2.
	FMOVE.X		(a0),fp0	...load input from (a0)

	FMOVE.X		fp0,fp1
	FMUL.S		#:42B8AA3B,fp0	...64/log2 * X
	fmovem.x	fp2/fp3,-(a7)		...save fp2
*	MOVE.W		#$3F81,EM1A4		...prefetch in CB mode
	FMOVE.L		fp0,d0		...N = int( X * 64/log2 )
	LEA		EXPTBL,a1
	FMOVE.L		d0,fp0		...convert to floating-format

	MOVE.L		d0,L_SCR1(a6)			...save N temporarily
	ANDI.L		#$3F,d0		 ...D0 is J = N mod 64
	LSL.L		#4,d0
	ADDA.L		d0,a1			...address of 2^(J/64)
	MOVE.L		L_SCR1(a6),d0
	ASR.L		#6,d0			...D0 is M
	MOVE.L		d0,L_SCR1(a6)			...save a copy of M
*	MOVE.W		#$3FDC,L2		...prefetch L2 in CB mode

*--Step 3.
*--fp1,fp2 saved on the stack. fp0 is N, fp1 is X,
*--a0 points to 2^(J/64), D0 and a1 both contain M
	FMOVE.X		fp0,fp2
	FMUL.S		#:BC317218,fp0	...N * L1, L1 = lead(-log2/64)
	FMUL.X		L2,fp2		...N * L2, L1+L2 = -log2/64
	FADD.X		fp1,fp0	 ...X + N*L1
	FADD.X		fp2,fp0	 ...fp0 is R, reduced arg.
*	MOVE.W		#$3FC5,EM1A2		...load EM1A2 in cache
	ADDI.W		#$3FFF,d0		...D0 is biased expo. of 2^M

*--Step 4.
*--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL
*-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*(A5 + R*A6)))))
*--TO FULLY USE THE PIPELINE, WE COMPUTE S = R*R
*--[R*S*(A2+S*(A4+S*A6))] + [R+S*(A1+S*(A3+S*A5))]

	FMOVE.X		fp0,fp1
	FMUL.X		fp1,fp1		...fp1 IS S = R*R

	FMOVE.S		#:3950097B,fp2	...fp2 IS a6
*	CLR.W		2(a1)		...load 2^(J/64) in cache

	FMUL.X		fp1,fp2		...fp2 IS S*A6
	FMOVE.X		fp1,fp3
	FMUL.S		#:3AB60B6A,fp3	...fp3 IS S*A5

	FADD.D		EM1A4,fp2	...fp2 IS A4+S*A6
	FADD.D		EM1A3,fp3	...fp3 IS A3+S*A5
	MOVE.W		d0,SC(a6)		...SC is 2^(M) in extended
	clr.w		SC+2(a6)
	move.l		#$80000000,SC+4(a6)
	clr.l		SC+8(a6)

	FMUL.X		fp1,fp2		...fp2 IS S*(A4+S*A6)
	MOVE.L		L_SCR1(a6),d0		...D0 is	M
	NEG.W		D0		...D0 is -M
	FMUL.X		fp1,fp3		...fp3 IS S*(A3+S*A5)
	ADDI.W		#$3FFF,d0	...biased expo. of 2^(-M)
	FADD.D		EM1A2,fp2	...fp2 IS A2+S*(A4+S*A6)
	FADD.S		#:3F000000,fp3	...fp3 IS A1+S*(A3+S*A5)

	FMUL.X		fp1,fp2		...fp2 IS S*(A2+S*(A4+S*A6))
	ORI.W		#$8000,d0	...signed/expo. of -2^(-M)
	MOVE.W		d0,ONEBYSC(a6)	...OnebySc is -2^(-M)
	clr.w		ONEBYSC+2(a6)
	move.l		#$80000000,ONEBYSC+4(a6)
	clr.l		ONEBYSC+8(a6)
	FMUL.X		fp3,fp1		...fp1 IS S*(A1+S*(A3+S*A5))
*					...fp3 released

	FMUL.X		fp0,fp2		...fp2 IS R*S*(A2+S*(A4+S*A6))
	FADD.X		fp1,fp0		...fp0 IS R+S*(A1+S*(A3+S*A5))
*					...fp1 released

	FADD.X		fp2,fp0		...fp0 IS EXP(R)-1
*					...fp2 released
	fmovem.x	(a7)+,fp2/fp3	...fp2 restored

*--Step 5
*--Compute 2^(J/64)*p

	FMUL.X		(a1),fp0	...2^(J/64)*(Exp(R)-1)

*--Step 6
*--Step 6.1
	MOVE.L		L_SCR1(a6),d0		...retrieve M
	CMPI.L		#63,d0
	BLE.B		MLE63
*--Step 6.2	M >= 64
	FMOVE.S		12(a1),fp1	...fp1 is t
	FADD.X		ONEBYSC(a6),fp1	...fp1 is t+OnebySc
	FADD.X		fp1,fp0		...p+(t+OnebySc), fp1 released
	FADD.X		(a1),fp0	...T+(p+(t+OnebySc))
	BRA.B		EM1SCALE
MLE63:
*--Step 6.3	M <= 63
	CMPI.L		#-3,d0
	BGE.B		MGEN3
MLTN3:
*--Step 6.4	M <= -4
	FADD.S		12(a1),fp0	...p+t
	FADD.X		(a1),fp0	...T+(p+t)
	FADD.X		ONEBYSC(a6),fp0	...OnebySc + (T+(p+t))
	BRA.B		EM1SCALE
MGEN3:
*--Step 6.5	-3 <= M <= 63
	FMOVE.X		(a1)+,fp1	...fp1 is T
	FADD.S		(a1),fp0	...fp0 is p+t
	FADD.X		ONEBYSC(a6),fp1	...fp1 is T+OnebySc
	FADD.X		fp1,fp0		...(T+OnebySc)+(p+t)

EM1SCALE:
*--Step 6.6
	FMOVE.L		d1,FPCR
	FMUL.X		SC(a6),fp0

	bra		t_frcinx

EM1SM:
*--Step 7	|X| < 1/4.
	CMPI.L		#$3FBE0000,d0	...2^(-65)
	BGE.B		EM1POLY

EM1TINY:
*--Step 8	|X| < 2^(-65)
	CMPI.L		#$00330000,d0	...2^(-16312)
	BLT.B		EM12TINY
*--Step 8.2
	MOVE.L		#$80010000,SC(a6)	...SC is -2^(-16382)
	move.l		#$80000000,SC+4(a6)
	clr.l		SC+8(a6)
	FMOVE.X		(a0),fp0
	FMOVE.L		d1,FPCR
	FADD.X		SC(a6),fp0

	bra		t_frcinx

EM12TINY:
*--Step 8.3
	FMOVE.X		(a0),fp0
	FMUL.D		TWO140,fp0
	MOVE.L		#$80010000,SC(a6)
	move.l		#$80000000,SC+4(a6)
	clr.l		SC+8(a6)
	FADD.X		SC(a6),fp0
	FMOVE.L		d1,FPCR
	FMUL.D		TWON140,fp0

	bra		t_frcinx

EM1POLY:
*--Step 9	exp(X)-1 by a simple polynomial
	FMOVE.X		(a0),fp0	...fp0 is X
	FMUL.X		fp0,fp0		...fp0 is S := X*X
	fmovem.x	fp2/fp3,-(a7)	...save fp2
	FMOVE.S		#:2F30CAA8,fp1	...fp1 is B12
	FMUL.X		fp0,fp1		...fp1 is S*B12
	FMOVE.S		#:310F8290,fp2	...fp2 is B11
	FADD.S		#:32D73220,fp1	...fp1 is B10+S*B12

	FMUL.X		fp0,fp2		...fp2 is S*B11
	FMUL.X		fp0,fp1		...fp1 is S*(B10 + ...

	FADD.S		#:3493F281,fp2	...fp2 is B9+S*...
	FADD.D		EM1B8,fp1	...fp1 is B8+S*...

	FMUL.X		fp0,fp2		...fp2 is S*(B9+...
	FMUL.X		fp0,fp1		...fp1 is S*(B8+...

	FADD.D		EM1B7,fp2	...fp2 is B7+S*...
	FADD.D		EM1B6,fp1	...fp1 is B6+S*...

	FMUL.X		fp0,fp2		...fp2 is S*(B7+...
	FMUL.X		fp0,fp1		...fp1 is S*(B6+...

	FADD.D		EM1B5,fp2	...fp2 is B5+S*...
	FADD.D		EM1B4,fp1	...fp1 is B4+S*...

	FMUL.X		fp0,fp2		...fp2 is S*(B5+...
	FMUL.X		fp0,fp1		...fp1 is S*(B4+...

	FADD.D		EM1B3,fp2	...fp2 is B3+S*...
	FADD.X		EM1B2,fp1	...fp1 is B2+S*...

	FMUL.X		fp0,fp2		...fp2 is S*(B3+...
	FMUL.X		fp0,fp1		...fp1 is S*(B2+...

	FMUL.X		fp0,fp2		...fp2 is S*S*(B3+...)
	FMUL.X		(a0),fp1	...fp1 is X*S*(B2...

	FMUL.S		#:3F000000,fp0	...fp0 is S*B1
	FADD.X		fp2,fp1		...fp1 is Q
*					...fp2 released

	fmovem.x	(a7)+,fp2/fp3	...fp2 restored

	FADD.X		fp1,fp0		...fp0 is S*B1+Q
*					...fp1 released

	FMOVE.L		d1,FPCR
	FADD.X		(a0),fp0

	bra		t_frcinx

EM1BIG:
*--Step 10	|X| > 70 log2
	MOVE.L		(a0),d0
	TST.L		d0
	BGT.W		EXPC1
*--Step 10.2
	FMOVE.S		#:BF800000,fp0	...fp0 is -1
	FMOVE.L		d1,FPCR
	FADD.S		#:00800000,fp0	...-1 + 2^(-126)

	bra		t_frcinx

	end