/* $NetBSD: rf_parityscan.c,v 1.35 2019/02/09 03:34:00 christos Exp $ */
/*
* Copyright (c) 1995 Carnegie-Mellon University.
* All rights reserved.
*
* Author: Mark Holland
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
/*****************************************************************************
*
* rf_parityscan.c -- misc utilities related to parity verification
*
****************************************************************************/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: rf_parityscan.c,v 1.35 2019/02/09 03:34:00 christos Exp $");
#include <dev/raidframe/raidframevar.h>
#include "rf_raid.h"
#include "rf_dag.h"
#include "rf_dagfuncs.h"
#include "rf_dagutils.h"
#include "rf_mcpair.h"
#include "rf_general.h"
#include "rf_engine.h"
#include "rf_parityscan.h"
#include "rf_map.h"
#include "rf_paritymap.h"
/*****************************************************************************
*
* walk through the entire arry and write new parity. This works by
* creating two DAGs, one to read a stripe of data and one to write
* new parity. The first is executed, the data is xored together, and
* then the second is executed. To avoid constantly building and
* tearing down the DAGs, we create them a priori and fill them in
* with the mapping information as we go along.
*
* there should never be more than one thread running this.
*
****************************************************************************/
int
rf_RewriteParity(RF_Raid_t *raidPtr)
{
if (raidPtr->parity_map != NULL)
return rf_paritymap_rewrite(raidPtr->parity_map);
else
return rf_RewriteParityRange(raidPtr, 0, raidPtr->totalSectors);
}
int
rf_RewriteParityRange(RF_Raid_t *raidPtr, RF_SectorNum_t sec_begin,
RF_SectorNum_t sec_len)
{
/*
* Note: It is the caller's responsibility to ensure that
* sec_begin and sec_len are stripe-aligned.
*/
RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
RF_AccessStripeMapHeader_t *asm_h;
int ret_val;
int rc;
RF_SectorNum_t i;
if (raidPtr->Layout.map->faultsTolerated == 0) {
/* There isn't any parity. Call it "okay." */
return (RF_PARITY_OKAY);
}
if (raidPtr->status != rf_rs_optimal) {
/*
* We're in degraded mode. Don't try to verify parity now!
* XXX: this should be a "we don't want to", not a
* "we can't" error.
*/
return (RF_PARITY_COULD_NOT_VERIFY);
}
ret_val = 0;
rc = RF_PARITY_OKAY;
for (i = sec_begin; i < sec_begin + sec_len &&
rc <= RF_PARITY_CORRECTED;
i += layoutPtr->dataSectorsPerStripe) {
if (raidPtr->waitShutdown) {
/* Someone is pulling the plug on this set...
abort the re-write */
return (1);
}
asm_h = rf_MapAccess(raidPtr, i,
layoutPtr->dataSectorsPerStripe,
NULL, RF_DONT_REMAP);
raidPtr->parity_rewrite_stripes_done =
i / layoutPtr->dataSectorsPerStripe ;
rc = rf_VerifyParity(raidPtr, asm_h->stripeMap, 1, 0);
switch (rc) {
case RF_PARITY_OKAY:
case RF_PARITY_CORRECTED:
break;
case RF_PARITY_BAD:
printf("Parity bad during correction\n");
ret_val = 1;
break;
case RF_PARITY_COULD_NOT_CORRECT:
printf("Could not correct bad parity\n");
ret_val = 1;
break;
case RF_PARITY_COULD_NOT_VERIFY:
printf("Could not verify parity\n");
ret_val = 1;
break;
default:
printf("Bad rc=%d from VerifyParity in RewriteParity\n", rc);
ret_val = 1;
}
rf_FreeAccessStripeMap(asm_h);
}
return (ret_val);
}
/*****************************************************************************
*
* verify that the parity in a particular stripe is correct. we
* validate only the range of parity defined by parityPDA, since this
* is all we have locked. The way we do this is to create an asm that
* maps the whole stripe and then range-restrict it to the parity
* region defined by the parityPDA.
*
****************************************************************************/
int
rf_VerifyParity(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *aasm,
int correct_it, RF_RaidAccessFlags_t flags)
{
RF_PhysDiskAddr_t *parityPDA;
RF_AccessStripeMap_t *doasm;
const RF_LayoutSW_t *lp;
int lrc, rc;
lp = raidPtr->Layout.map;
if (lp->faultsTolerated == 0) {
/*
* There isn't any parity. Call it "okay."
*/
return (RF_PARITY_OKAY);
}
rc = RF_PARITY_OKAY;
if (lp->VerifyParity) {
for (doasm = aasm; doasm; doasm = doasm->next) {
for (parityPDA = doasm->parityInfo; parityPDA;
parityPDA = parityPDA->next) {
lrc = lp->VerifyParity(raidPtr,
doasm->raidAddress,
parityPDA,
correct_it, flags);
if (lrc > rc) {
/* see rf_parityscan.h for why this
* works */
rc = lrc;
}
}
}
} else {
rc = RF_PARITY_COULD_NOT_VERIFY;
}
return (rc);
}
int
rf_VerifyParityBasic(RF_Raid_t *raidPtr, RF_RaidAddr_t raidAddr,
RF_PhysDiskAddr_t *parityPDA, int correct_it,
RF_RaidAccessFlags_t flags)
{
RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
RF_RaidAddr_t startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr,
raidAddr);
RF_SectorCount_t numsector = parityPDA->numSector;
int numbytes = rf_RaidAddressToByte(raidPtr, numsector);
int bytesPerStripe = numbytes * layoutPtr->numDataCol;
RF_DagHeader_t *rd_dag_h, *wr_dag_h; /* read, write dag */
RF_DagNode_t *blockNode, *wrBlock;
RF_AccessStripeMapHeader_t *asm_h;
RF_AccessStripeMap_t *asmap;
RF_AllocListElem_t *alloclist;
RF_PhysDiskAddr_t *pda;
char *pbuf, *bf, *end_p, *p;
int i, retcode;
RF_ReconUnitNum_t which_ru;
RF_StripeNum_t psID = rf_RaidAddressToParityStripeID(layoutPtr,
raidAddr,
&which_ru);
int stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
#if RF_ACC_TRACE > 0
RF_AccTraceEntry_t tracerec;
#endif
RF_MCPair_t *mcpair;
retcode = RF_PARITY_OKAY;
mcpair = rf_AllocMCPair();
rf_MakeAllocList(alloclist);
bf = RF_MallocAndAdd(numbytes
* (layoutPtr->numDataCol + layoutPtr->numParityCol), alloclist);
pbuf = RF_MallocAndAdd(numbytes, alloclist);
end_p = bf + bytesPerStripe;
rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, numbytes, bf, rf_DiskReadFunc, rf_DiskReadUndoFunc,
"Rod", alloclist, flags, RF_IO_NORMAL_PRIORITY);
blockNode = rd_dag_h->succedents[0];
/* map the stripe and fill in the PDAs in the dag */
asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe, bf, RF_DONT_REMAP);
asmap = asm_h->stripeMap;
for (pda = asmap->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) {
RF_ASSERT(pda);
rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
RF_ASSERT(pda->numSector != 0);
if (rf_TryToRedirectPDA(raidPtr, pda, 0))
goto out; /* no way to verify parity if disk is
* dead. return w/ good status */
blockNode->succedents[i]->params[0].p = pda;
blockNode->succedents[i]->params[2].v = psID;
blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
}
RF_ASSERT(!asmap->parityInfo->next);
rf_RangeRestrictPDA(raidPtr, parityPDA, asmap->parityInfo, 0, 1);
RF_ASSERT(asmap->parityInfo->numSector != 0);
if (rf_TryToRedirectPDA(raidPtr, asmap->parityInfo, 1))
goto out;
blockNode->succedents[layoutPtr->numDataCol]->params[0].p = asmap->parityInfo;
/* fire off the DAG */
#if RF_ACC_TRACE > 0
memset(&tracerec, 0, sizeof(tracerec));
rd_dag_h->tracerec = &tracerec;
#endif
#if 0
if (rf_verifyParityDebug) {
printf("Parity verify read dag:\n");
rf_PrintDAGList(rd_dag_h);
}
#endif
RF_LOCK_MCPAIR(mcpair);
mcpair->flag = 0;
RF_UNLOCK_MCPAIR(mcpair);
rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
(void *) mcpair);
RF_LOCK_MCPAIR(mcpair);
while (!mcpair->flag)
RF_WAIT_MCPAIR(mcpair);
RF_UNLOCK_MCPAIR(mcpair);
if (rd_dag_h->status != rf_enable) {
RF_ERRORMSG("Unable to verify parity: can't read the stripe\n");
retcode = RF_PARITY_COULD_NOT_VERIFY;
goto out;
}
for (p = bf; p < end_p; p += numbytes) {
rf_bxor(p, pbuf, numbytes);
}
for (i = 0; i < numbytes; i++) {
if (pbuf[i] != bf[bytesPerStripe + i]) {
if (!correct_it)
RF_ERRORMSG3("Parity verify error: byte %d of parity is 0x%x should be 0x%x\n",
i, (u_char) bf[bytesPerStripe + i], (u_char) pbuf[i]);
retcode = RF_PARITY_BAD;
break;
}
}
if (retcode && correct_it) {
wr_dag_h = rf_MakeSimpleDAG(raidPtr, 1, numbytes, pbuf, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
"Wnp", alloclist, flags, RF_IO_NORMAL_PRIORITY);
wrBlock = wr_dag_h->succedents[0];
wrBlock->succedents[0]->params[0].p = asmap->parityInfo;
wrBlock->succedents[0]->params[2].v = psID;
wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
#if RF_ACC_TRACE > 0
memset(&tracerec, 0, sizeof(tracerec));
wr_dag_h->tracerec = &tracerec;
#endif
#if 0
if (rf_verifyParityDebug) {
printf("Parity verify write dag:\n");
rf_PrintDAGList(wr_dag_h);
}
#endif
RF_LOCK_MCPAIR(mcpair);
mcpair->flag = 0;
RF_UNLOCK_MCPAIR(mcpair);
rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
(void *) mcpair);
RF_LOCK_MCPAIR(mcpair);
while (!mcpair->flag)
RF_WAIT_MCPAIR(mcpair);
RF_UNLOCK_MCPAIR(mcpair);
if (wr_dag_h->status != rf_enable) {
RF_ERRORMSG("Unable to correct parity in VerifyParity: can't write the stripe\n");
retcode = RF_PARITY_COULD_NOT_CORRECT;
}
rf_FreeDAG(wr_dag_h);
if (retcode == RF_PARITY_BAD)
retcode = RF_PARITY_CORRECTED;
}
out:
rf_FreeAccessStripeMap(asm_h);
rf_FreeAllocList(alloclist);
rf_FreeDAG(rd_dag_h);
rf_FreeMCPair(mcpair);
return (retcode);
}
int
rf_TryToRedirectPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda,
int parity)
{
if (raidPtr->Disks[pda->col].status == rf_ds_reconstructing) {
if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) {
#if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
#if RF_DEBUG_VERIFYPARITY
RF_RowCol_t oc = pda->col;
RF_SectorNum_t os = pda->startSector;
#endif
if (parity) {
(raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
#if RF_DEBUG_VERIFYPARITY
if (rf_verifyParityDebug)
printf("VerifyParity: Redir P c %d sect %ld -> c %d sect %ld\n",
oc, (long) os, pda->col, (long) pda->startSector);
#endif
} else {
(raidPtr->Layout.map->MapSector) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
#if RF_DEBUG_VERIFYPARITY
if (rf_verifyParityDebug)
printf("VerifyParity: Redir D c %d sect %ld -> c %d sect %ld\n",
oc, (long) os, pda->col, (long) pda->startSector);
#endif
}
} else {
#endif
RF_RowCol_t spCol = raidPtr->Disks[pda->col].spareCol;
pda->col = spCol;
#if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
}
#endif
}
}
if (RF_DEAD_DISK(raidPtr->Disks[pda->col].status))
return (1);
return (0);
}
/*****************************************************************************
*
* currently a stub.
*
* takes as input an ASM describing a write operation and containing
* one failure, and verifies that the parity was correctly updated to
* reflect the write.
*
* if it's a data unit that's failed, we read the other data units in
* the stripe and the parity unit, XOR them together, and verify that
* we get the data intended for the failed disk. Since it's easy, we
* also validate that the right data got written to the surviving data
* disks.
*
* If it's the parity that failed, there's really no validation we can
* do except the above verification that the right data got written to
* all disks. This is because the new data intended for the failed
* disk is supplied in the ASM, but this is of course not the case for
* the new parity.
*
****************************************************************************/
#if 0
int
rf_VerifyDegrModeWrite(RF_Raid_t *raidPtr, RF_AccessStripeMapHeader_t *asmh)
{
return (0);
}
#endif
/* creates a simple DAG with a header, a block-recon node at level 1,
* nNodes nodes at level 2, an unblock-recon node at level 3, and a
* terminator node at level 4. The stripe address field in the block
* and unblock nodes are not touched, nor are the pda fields in the
* second-level nodes, so they must be filled in later.
*
* commit point is established at unblock node - this means that any
* failure during dag execution causes the dag to fail
*
* name - node names at the second level
*/
RF_DagHeader_t *
rf_MakeSimpleDAG(RF_Raid_t *raidPtr, int nNodes, int bytesPerSU, char *databuf,
int (*doFunc) (RF_DagNode_t * node),
int (*undoFunc) (RF_DagNode_t * node),
const char *name, RF_AllocListElem_t *alloclist,
RF_RaidAccessFlags_t flags, int priority)
{
RF_DagHeader_t *dag_h;
RF_DagNode_t *nodes, *termNode, *blockNode, *unblockNode, *tmpNode;
int i;
/* grab a DAG header... */
dag_h = rf_AllocDAGHeader();
dag_h->raidPtr = (void *) raidPtr;
dag_h->allocList = NULL;/* we won't use this alloc list */
dag_h->status = rf_enable;
dag_h->numSuccedents = 1;
dag_h->creator = "SimpleDAG";
/* this dag can not commit until the unblock node is reached errors
* prior to the commit point imply the dag has failed */
dag_h->numCommitNodes = 1;
dag_h->numCommits = 0;
/* create the nodes, the block & unblock nodes, and the terminator
* node */
for (i = 0; i < nNodes; i++) {
tmpNode = rf_AllocDAGNode();
tmpNode->list_next = dag_h->nodes;
dag_h->nodes = tmpNode;
}
nodes = dag_h->nodes;
blockNode = rf_AllocDAGNode();
blockNode->list_next = dag_h->nodes;
dag_h->nodes = blockNode;
unblockNode = rf_AllocDAGNode();
unblockNode->list_next = dag_h->nodes;
dag_h->nodes = unblockNode;
termNode = rf_AllocDAGNode();
termNode->list_next = dag_h->nodes;
dag_h->nodes = termNode;
dag_h->succedents[0] = blockNode;
rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", alloclist);
rf_InitNode(unblockNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nNodes, 0, 0, dag_h, "Nil", alloclist);
unblockNode->succedents[0] = termNode;
tmpNode = nodes;
for (i = 0; i < nNodes; i++) {
blockNode->succedents[i] = unblockNode->antecedents[i] = tmpNode;
unblockNode->antType[i] = rf_control;
rf_InitNode(tmpNode, rf_wait, RF_FALSE, doFunc, undoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, alloclist);
tmpNode->succedents[0] = unblockNode;
tmpNode->antecedents[0] = blockNode;
tmpNode->antType[0] = rf_control;
tmpNode->params[1].p = (databuf + (i * bytesPerSU));
tmpNode = tmpNode->list_next;
}
rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", alloclist);
termNode->antecedents[0] = unblockNode;
termNode->antType[0] = rf_control;
return (dag_h);
}