Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
/*	$NetBSD: rf_parityscan.c,v 1.35 2019/02/09 03:34:00 christos Exp $	*/
/*
 * Copyright (c) 1995 Carnegie-Mellon University.
 * All rights reserved.
 *
 * Author: Mark Holland
 *
 * Permission to use, copy, modify and distribute this software and
 * its documentation is hereby granted, provided that both the copyright
 * notice and this permission notice appear in all copies of the
 * software, derivative works or modified versions, and any portions
 * thereof, and that both notices appear in supporting documentation.
 *
 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
 *
 * Carnegie Mellon requests users of this software to return to
 *
 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
 *  School of Computer Science
 *  Carnegie Mellon University
 *  Pittsburgh PA 15213-3890
 *
 * any improvements or extensions that they make and grant Carnegie the
 * rights to redistribute these changes.
 */

/*****************************************************************************
 *
 * rf_parityscan.c -- misc utilities related to parity verification
 *
 ****************************************************************************/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: rf_parityscan.c,v 1.35 2019/02/09 03:34:00 christos Exp $");

#include <dev/raidframe/raidframevar.h>

#include "rf_raid.h"
#include "rf_dag.h"
#include "rf_dagfuncs.h"
#include "rf_dagutils.h"
#include "rf_mcpair.h"
#include "rf_general.h"
#include "rf_engine.h"
#include "rf_parityscan.h"
#include "rf_map.h"
#include "rf_paritymap.h"

/*****************************************************************************
 *
 * walk through the entire arry and write new parity.  This works by
 * creating two DAGs, one to read a stripe of data and one to write
 * new parity.  The first is executed, the data is xored together, and
 * then the second is executed.  To avoid constantly building and
 * tearing down the DAGs, we create them a priori and fill them in
 * with the mapping information as we go along.
 *
 * there should never be more than one thread running this.
 *
 ****************************************************************************/

int
rf_RewriteParity(RF_Raid_t *raidPtr)
{
	if (raidPtr->parity_map != NULL)
		return rf_paritymap_rewrite(raidPtr->parity_map);
	else
		return rf_RewriteParityRange(raidPtr, 0, raidPtr->totalSectors);
}

int
rf_RewriteParityRange(RF_Raid_t *raidPtr, RF_SectorNum_t sec_begin,
    RF_SectorNum_t sec_len)
{
	/* 
	 * Note: It is the caller's responsibility to ensure that
	 * sec_begin and sec_len are stripe-aligned.
	 */
	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
	RF_AccessStripeMapHeader_t *asm_h;
	int ret_val;
	int rc;
	RF_SectorNum_t i;

	if (raidPtr->Layout.map->faultsTolerated == 0) {
		/* There isn't any parity. Call it "okay." */
		return (RF_PARITY_OKAY);
	}
	if (raidPtr->status != rf_rs_optimal) {
		/*
		 * We're in degraded mode.  Don't try to verify parity now!
		 * XXX: this should be a "we don't want to", not a
		 * "we can't" error.
		 */
		return (RF_PARITY_COULD_NOT_VERIFY);
	}

	ret_val = 0;

	rc = RF_PARITY_OKAY;

	for (i = sec_begin; i < sec_begin + sec_len &&
		     rc <= RF_PARITY_CORRECTED;
	     i += layoutPtr->dataSectorsPerStripe) {
		if (raidPtr->waitShutdown) {
			/* Someone is pulling the plug on this set...
			   abort the re-write */
			return (1);
		}
		asm_h = rf_MapAccess(raidPtr, i,
				     layoutPtr->dataSectorsPerStripe,
				     NULL, RF_DONT_REMAP);
		raidPtr->parity_rewrite_stripes_done =
			i / layoutPtr->dataSectorsPerStripe ;
		rc = rf_VerifyParity(raidPtr, asm_h->stripeMap, 1, 0);

		switch (rc) {
		case RF_PARITY_OKAY:
		case RF_PARITY_CORRECTED:
			break;
		case RF_PARITY_BAD:
			printf("Parity bad during correction\n");
			ret_val = 1;
			break;
		case RF_PARITY_COULD_NOT_CORRECT:
			printf("Could not correct bad parity\n");
			ret_val = 1;
			break;
		case RF_PARITY_COULD_NOT_VERIFY:
			printf("Could not verify parity\n");
			ret_val = 1;
			break;
		default:
			printf("Bad rc=%d from VerifyParity in RewriteParity\n", rc);
			ret_val = 1;
		}
		rf_FreeAccessStripeMap(asm_h);
	}
	return (ret_val);
}
/*****************************************************************************
 *
 * verify that the parity in a particular stripe is correct.  we
 * validate only the range of parity defined by parityPDA, since this
 * is all we have locked.  The way we do this is to create an asm that
 * maps the whole stripe and then range-restrict it to the parity
 * region defined by the parityPDA.
 *
 ****************************************************************************/
int
rf_VerifyParity(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *aasm,
		int correct_it, RF_RaidAccessFlags_t flags)
{
	RF_PhysDiskAddr_t *parityPDA;
	RF_AccessStripeMap_t *doasm;
	const RF_LayoutSW_t *lp;
	int     lrc, rc;

	lp = raidPtr->Layout.map;
	if (lp->faultsTolerated == 0) {
		/*
	         * There isn't any parity. Call it "okay."
	         */
		return (RF_PARITY_OKAY);
	}
	rc = RF_PARITY_OKAY;
	if (lp->VerifyParity) {
		for (doasm = aasm; doasm; doasm = doasm->next) {
			for (parityPDA = doasm->parityInfo; parityPDA;
			     parityPDA = parityPDA->next) {
				lrc = lp->VerifyParity(raidPtr,
						       doasm->raidAddress,
						       parityPDA,
						       correct_it, flags);
				if (lrc > rc) {
					/* see rf_parityscan.h for why this
					 * works */
					rc = lrc;
				}
			}
		}
	} else {
		rc = RF_PARITY_COULD_NOT_VERIFY;
	}
	return (rc);
}

int
rf_VerifyParityBasic(RF_Raid_t *raidPtr, RF_RaidAddr_t raidAddr,
		     RF_PhysDiskAddr_t *parityPDA, int correct_it,
		     RF_RaidAccessFlags_t flags)
{
	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
	RF_RaidAddr_t startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr,
								     raidAddr);
	RF_SectorCount_t numsector = parityPDA->numSector;
	int     numbytes = rf_RaidAddressToByte(raidPtr, numsector);
	int     bytesPerStripe = numbytes * layoutPtr->numDataCol;
	RF_DagHeader_t *rd_dag_h, *wr_dag_h;	/* read, write dag */
	RF_DagNode_t *blockNode, *wrBlock;
	RF_AccessStripeMapHeader_t *asm_h;
	RF_AccessStripeMap_t *asmap;
	RF_AllocListElem_t *alloclist;
	RF_PhysDiskAddr_t *pda;
	char   *pbuf, *bf, *end_p, *p;
	int     i, retcode;
	RF_ReconUnitNum_t which_ru;
	RF_StripeNum_t psID = rf_RaidAddressToParityStripeID(layoutPtr,
							     raidAddr,
							     &which_ru);
	int     stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
#if RF_ACC_TRACE > 0
	RF_AccTraceEntry_t tracerec;
#endif
	RF_MCPair_t *mcpair;

	retcode = RF_PARITY_OKAY;

	mcpair = rf_AllocMCPair();
	rf_MakeAllocList(alloclist);
	bf = RF_MallocAndAdd(numbytes
	    * (layoutPtr->numDataCol + layoutPtr->numParityCol), alloclist);
	pbuf = RF_MallocAndAdd(numbytes, alloclist);
	end_p = bf + bytesPerStripe;

	rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, numbytes, bf, rf_DiskReadFunc, rf_DiskReadUndoFunc,
	    "Rod", alloclist, flags, RF_IO_NORMAL_PRIORITY);
	blockNode = rd_dag_h->succedents[0];

	/* map the stripe and fill in the PDAs in the dag */
	asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe, bf, RF_DONT_REMAP);
	asmap = asm_h->stripeMap;

	for (pda = asmap->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) {
		RF_ASSERT(pda);
		rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
		RF_ASSERT(pda->numSector != 0);
		if (rf_TryToRedirectPDA(raidPtr, pda, 0))
			goto out;	/* no way to verify parity if disk is
					 * dead.  return w/ good status */
		blockNode->succedents[i]->params[0].p = pda;
		blockNode->succedents[i]->params[2].v = psID;
		blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
	}

	RF_ASSERT(!asmap->parityInfo->next);
	rf_RangeRestrictPDA(raidPtr, parityPDA, asmap->parityInfo, 0, 1);
	RF_ASSERT(asmap->parityInfo->numSector != 0);
	if (rf_TryToRedirectPDA(raidPtr, asmap->parityInfo, 1))
		goto out;
	blockNode->succedents[layoutPtr->numDataCol]->params[0].p = asmap->parityInfo;

	/* fire off the DAG */
#if RF_ACC_TRACE > 0
	memset(&tracerec, 0, sizeof(tracerec));
	rd_dag_h->tracerec = &tracerec;
#endif
#if 0
	if (rf_verifyParityDebug) {
		printf("Parity verify read dag:\n");
		rf_PrintDAGList(rd_dag_h);
	}
#endif
	RF_LOCK_MCPAIR(mcpair);
	mcpair->flag = 0;
	RF_UNLOCK_MCPAIR(mcpair);

	rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
	    (void *) mcpair);

	RF_LOCK_MCPAIR(mcpair);
	while (!mcpair->flag)
		RF_WAIT_MCPAIR(mcpair);
	RF_UNLOCK_MCPAIR(mcpair);
	if (rd_dag_h->status != rf_enable) {
		RF_ERRORMSG("Unable to verify parity:  can't read the stripe\n");
		retcode = RF_PARITY_COULD_NOT_VERIFY;
		goto out;
	}
	for (p = bf; p < end_p; p += numbytes) {
		rf_bxor(p, pbuf, numbytes);
	}
	for (i = 0; i < numbytes; i++) {
		if (pbuf[i] != bf[bytesPerStripe + i]) {
			if (!correct_it)
				RF_ERRORMSG3("Parity verify error: byte %d of parity is 0x%x should be 0x%x\n",
				    i, (u_char) bf[bytesPerStripe + i], (u_char) pbuf[i]);
			retcode = RF_PARITY_BAD;
			break;
		}
	}

	if (retcode && correct_it) {
		wr_dag_h = rf_MakeSimpleDAG(raidPtr, 1, numbytes, pbuf, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
		    "Wnp", alloclist, flags, RF_IO_NORMAL_PRIORITY);
		wrBlock = wr_dag_h->succedents[0];
		wrBlock->succedents[0]->params[0].p = asmap->parityInfo;
		wrBlock->succedents[0]->params[2].v = psID;
		wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
#if RF_ACC_TRACE > 0
		memset(&tracerec, 0, sizeof(tracerec));
		wr_dag_h->tracerec = &tracerec;
#endif
#if 0
		if (rf_verifyParityDebug) {
			printf("Parity verify write dag:\n");
			rf_PrintDAGList(wr_dag_h);
		}
#endif
		RF_LOCK_MCPAIR(mcpair);
		mcpair->flag = 0;
		RF_UNLOCK_MCPAIR(mcpair);

		rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
		    (void *) mcpair);

		RF_LOCK_MCPAIR(mcpair);
		while (!mcpair->flag)
			RF_WAIT_MCPAIR(mcpair);
		RF_UNLOCK_MCPAIR(mcpair);
		if (wr_dag_h->status != rf_enable) {
			RF_ERRORMSG("Unable to correct parity in VerifyParity:  can't write the stripe\n");
			retcode = RF_PARITY_COULD_NOT_CORRECT;
		}
		rf_FreeDAG(wr_dag_h);
		if (retcode == RF_PARITY_BAD)
			retcode = RF_PARITY_CORRECTED;
	}
out:
	rf_FreeAccessStripeMap(asm_h);
	rf_FreeAllocList(alloclist);
	rf_FreeDAG(rd_dag_h);
	rf_FreeMCPair(mcpair);
	return (retcode);
}

int
rf_TryToRedirectPDA(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda,
    int parity)
{
	if (raidPtr->Disks[pda->col].status == rf_ds_reconstructing) {
		if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, pda->startSector)) {
#if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
			if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
#if RF_DEBUG_VERIFYPARITY
				RF_RowCol_t oc = pda->col;
				RF_SectorNum_t os = pda->startSector;
#endif
				if (parity) {
					(raidPtr->Layout.map->MapParity) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
#if RF_DEBUG_VERIFYPARITY
					if (rf_verifyParityDebug)
						printf("VerifyParity: Redir P c %d sect %ld -> c %d sect %ld\n",
						    oc, (long) os, pda->col, (long) pda->startSector);
#endif
				} else {
					(raidPtr->Layout.map->MapSector) (raidPtr, pda->raidAddress, &pda->col, &pda->startSector, RF_REMAP);
#if RF_DEBUG_VERIFYPARITY
					if (rf_verifyParityDebug)
						printf("VerifyParity: Redir D c %d sect %ld -> c %d sect %ld\n",
						   oc, (long) os, pda->col, (long) pda->startSector);
#endif
				}
			} else {
#endif
				RF_RowCol_t spCol = raidPtr->Disks[pda->col].spareCol;
				pda->col = spCol;
#if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
			}
#endif
		}
	}
	if (RF_DEAD_DISK(raidPtr->Disks[pda->col].status))
		return (1);
	return (0);
}
/*****************************************************************************
 *
 * currently a stub.
 *
 * takes as input an ASM describing a write operation and containing
 * one failure, and verifies that the parity was correctly updated to
 * reflect the write.
 *
 * if it's a data unit that's failed, we read the other data units in
 * the stripe and the parity unit, XOR them together, and verify that
 * we get the data intended for the failed disk.  Since it's easy, we
 * also validate that the right data got written to the surviving data
 * disks.
 *
 * If it's the parity that failed, there's really no validation we can
 * do except the above verification that the right data got written to
 * all disks.  This is because the new data intended for the failed
 * disk is supplied in the ASM, but this is of course not the case for
 * the new parity.
 *
 ****************************************************************************/
#if 0
int
rf_VerifyDegrModeWrite(RF_Raid_t *raidPtr, RF_AccessStripeMapHeader_t *asmh)
{
	return (0);
}
#endif
/* creates a simple DAG with a header, a block-recon node at level 1,
 * nNodes nodes at level 2, an unblock-recon node at level 3, and a
 * terminator node at level 4.  The stripe address field in the block
 * and unblock nodes are not touched, nor are the pda fields in the
 * second-level nodes, so they must be filled in later.
 *
 * commit point is established at unblock node - this means that any
 * failure during dag execution causes the dag to fail
 *
 * name - node names at the second level
 */
RF_DagHeader_t *
rf_MakeSimpleDAG(RF_Raid_t *raidPtr, int nNodes, int bytesPerSU, char *databuf,
		 int (*doFunc) (RF_DagNode_t * node),
		 int (*undoFunc) (RF_DagNode_t * node),
		 const char *name, RF_AllocListElem_t *alloclist,
		 RF_RaidAccessFlags_t flags, int priority)
{
	RF_DagHeader_t *dag_h;
	RF_DagNode_t *nodes, *termNode, *blockNode, *unblockNode, *tmpNode;
	int     i;

	/* grab a DAG header... */

	dag_h = rf_AllocDAGHeader();
	dag_h->raidPtr = (void *) raidPtr;
	dag_h->allocList = NULL;/* we won't use this alloc list */
	dag_h->status = rf_enable;
	dag_h->numSuccedents = 1;
	dag_h->creator = "SimpleDAG";

	/* this dag can not commit until the unblock node is reached errors
	 * prior to the commit point imply the dag has failed */
	dag_h->numCommitNodes = 1;
	dag_h->numCommits = 0;

	/* create the nodes, the block & unblock nodes, and the terminator
	 * node */

	for (i = 0; i < nNodes; i++) {
		tmpNode = rf_AllocDAGNode();
		tmpNode->list_next = dag_h->nodes;
		dag_h->nodes = tmpNode;
	}
	nodes = dag_h->nodes;

	blockNode = rf_AllocDAGNode();
	blockNode->list_next = dag_h->nodes;
	dag_h->nodes = blockNode;

	unblockNode = rf_AllocDAGNode();
	unblockNode->list_next = dag_h->nodes;
	dag_h->nodes = unblockNode;

	termNode = rf_AllocDAGNode();
	termNode->list_next = dag_h->nodes;
	dag_h->nodes = termNode;

	dag_h->succedents[0] = blockNode;
	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", alloclist);
	rf_InitNode(unblockNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nNodes, 0, 0, dag_h, "Nil", alloclist);
	unblockNode->succedents[0] = termNode;
	tmpNode = nodes;
	for (i = 0; i < nNodes; i++) {
		blockNode->succedents[i] = unblockNode->antecedents[i] = tmpNode;
		unblockNode->antType[i] = rf_control;
		rf_InitNode(tmpNode, rf_wait, RF_FALSE, doFunc, undoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, alloclist);
		tmpNode->succedents[0] = unblockNode;
		tmpNode->antecedents[0] = blockNode;
		tmpNode->antType[0] = rf_control;
		tmpNode->params[1].p = (databuf + (i * bytesPerSU));
		tmpNode = tmpNode->list_next;
	}
	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", alloclist);
	termNode->antecedents[0] = unblockNode;
	termNode->antType[0] = rf_control;
	return (dag_h);
}