//===------------------------- AddressSpace.hpp ---------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//
// Abstracts accessing local vs remote address spaces.
//
//===----------------------------------------------------------------------===//
#ifndef __ADDRESSSPACE_HPP__
#define __ADDRESSSPACE_HPP__
#include <sys/rbtree.h>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <cstring>
#include <dlfcn.h>
#include <elf.h>
#include <link.h>
#include <pthread.h>
#include "dwarf2.h"
namespace _Unwind {
static int rangeCmp(void *, const void *, const void *);
static int rangeCmpKey(void *, const void *, const void *);
static int dsoTableCmp(void *, const void *, const void *);
static int dsoTableCmpKey(void *, const void *, const void *);
static int phdr_callback(struct dl_phdr_info *, size_t, void *);
struct unw_proc_info_t {
uintptr_t data_base; // Base address for data-relative relocations
uintptr_t start_ip; // Start address of function
uintptr_t end_ip; // First address after end of function
uintptr_t lsda; // Address of Language Specific Data Area
uintptr_t handler; // Personality routine
uintptr_t extra_args; // Extra stack space for frameless routines
uintptr_t unwind_info; // Address of DWARF unwind info
};
/// LocalAddressSpace is used as a template parameter to UnwindCursor when
/// unwinding a thread in the same process. The wrappers compile away,
/// making local unwinds fast.
class LocalAddressSpace {
public:
typedef uintptr_t pint_t;
typedef intptr_t sint_t;
typedef void (*findPCRange_t)(LocalAddressSpace &, pint_t, pint_t &pcStart,
pint_t &pcEnd);
LocalAddressSpace(findPCRange_t findPCRange_)
: findPCRange(findPCRange_), needsReload(true) {
static const rb_tree_ops_t segmentTreeOps = {
rangeCmp, rangeCmpKey, offsetof(Range, range_link), NULL
};
static const rb_tree_ops_t dsoTreeOps = {
dsoTableCmp, dsoTableCmpKey, offsetof(Range, dso_link), NULL
};
rb_tree_init(&segmentTree, &segmentTreeOps);
rb_tree_init(&dsoTree, &dsoTreeOps);
pthread_rwlock_init(&fdeTreeLock, NULL);
}
uint8_t get8(pint_t addr) {
uint8_t val;
memcpy(&val, (void *)addr, sizeof(val));
return val;
}
uint16_t get16(pint_t addr) {
uint16_t val;
memcpy(&val, (void *)addr, sizeof(val));
return val;
}
uint32_t get32(pint_t addr) {
uint32_t val;
memcpy(&val, (void *)addr, sizeof(val));
return val;
}
uint64_t get64(pint_t addr) {
uint64_t val;
memcpy(&val, (void *)addr, sizeof(val));
return val;
}
uintptr_t getP(pint_t addr) {
if (sizeof(uintptr_t) == sizeof(uint32_t))
return get32(addr);
else
return get64(addr);
}
uint64_t getULEB128(pint_t &addr, pint_t end) {
uint64_t result = 0;
uint8_t byte;
int bit = 0;
do {
uint64_t b;
assert(addr != end);
byte = get8(addr++);
b = byte & 0x7f;
assert(bit < 64);
assert(b << bit >> bit == b);
result |= b << bit;
bit += 7;
} while (byte >= 0x80);
return result;
}
int64_t getSLEB128(pint_t &addr, pint_t end) {
uint64_t result = 0;
uint8_t byte;
int bit = 0;
do {
uint64_t b;
assert(addr != end);
byte = get8(addr++);
b = byte & 0x7f;
assert(bit < 64);
assert(b << bit >> bit == b);
result |= b << bit;
bit += 7;
} while (byte >= 0x80);
// sign extend negative numbers
if ((byte & 0x40) != 0)
result |= (~0ULL) << bit;
return result;
}
pint_t getEncodedP(pint_t &addr, pint_t end, uint8_t encoding,
const unw_proc_info_t *ctx) {
pint_t startAddr = addr;
const uint8_t *p = (uint8_t *)addr;
pint_t result;
if (encoding == DW_EH_PE_omit)
return 0;
if (encoding == DW_EH_PE_aligned) {
addr = (addr + sizeof(pint_t) - 1) & sizeof(pint_t);
return getP(addr);
}
// first get value
switch (encoding & 0x0F) {
case DW_EH_PE_ptr:
result = getP(addr);
p += sizeof(pint_t);
addr = (pint_t)p;
break;
case DW_EH_PE_uleb128:
result = getULEB128(addr, end);
break;
case DW_EH_PE_udata2:
result = get16(addr);
p += 2;
addr = (pint_t)p;
break;
case DW_EH_PE_udata4:
result = get32(addr);
p += 4;
addr = (pint_t)p;
break;
case DW_EH_PE_udata8:
result = get64(addr);
p += 8;
addr = (pint_t)p;
break;
case DW_EH_PE_sleb128:
result = getSLEB128(addr, end);
break;
case DW_EH_PE_sdata2:
result = (int16_t)get16(addr);
p += 2;
addr = (pint_t)p;
break;
case DW_EH_PE_sdata4:
result = (int32_t)get32(addr);
p += 4;
addr = (pint_t)p;
break;
case DW_EH_PE_sdata8:
result = get64(addr);
p += 8;
addr = (pint_t)p;
break;
case DW_EH_PE_omit:
result = 0;
break;
default:
assert(0 && "unknown pointer encoding");
}
// then add relative offset
switch (encoding & 0x70) {
case DW_EH_PE_absptr:
// do nothing
break;
case DW_EH_PE_pcrel:
result += startAddr;
break;
case DW_EH_PE_textrel:
assert(0 && "DW_EH_PE_textrel pointer encoding not supported");
break;
case DW_EH_PE_datarel:
assert(ctx != NULL && "DW_EH_PE_datarel without context");
if (ctx)
result += ctx->data_base;
break;
case DW_EH_PE_funcrel:
assert(ctx != NULL && "DW_EH_PE_funcrel without context");
if (ctx)
result += ctx->start_ip;
break;
case DW_EH_PE_aligned:
__builtin_unreachable();
default:
assert(0 && "unknown pointer encoding");
break;
}
if (encoding & DW_EH_PE_indirect)
result = getP(result);
return result;
}
bool findFDE(pint_t pc, pint_t &fdeStart, pint_t &data_base) {
Range *n;
for (;;) {
pthread_rwlock_rdlock(&fdeTreeLock);
n = (Range *)rb_tree_find_node(&segmentTree, &pc);
pthread_rwlock_unlock(&fdeTreeLock);
if (n != NULL)
break;
if (!needsReload)
break;
lazyReload();
}
if (n == NULL)
return false;
if (n->hdr_start == 0) {
fdeStart = n->hdr_base;
data_base = n->data_base;
return true;
}
pint_t base = n->hdr_base;
pint_t first = n->hdr_start;
for (pint_t len = n->hdr_entries; len > 1; ) {
pint_t next = first + (len / 2) * 8;
pint_t nextPC = base + (int32_t)get32(next);
if (nextPC == pc) {
first = next;
break;
}
if (nextPC < pc) {
first = next;
len -= (len / 2);
} else {
len /= 2;
}
}
fdeStart = base + (int32_t)get32(first + 4);
data_base = n->data_base;
return true;
}
bool addFDE(pint_t pcStart, pint_t pcEnd, pint_t fde) {
pthread_rwlock_wrlock(&fdeTreeLock);
Range *n = (Range *)malloc(sizeof(*n));
n->hdr_base = fde;
n->hdr_start = 0;
n->hdr_entries = 0;
n->first_pc = pcStart;
n->last_pc = pcEnd;
n->data_base = 0;
n->ehframe_base = 0;
if (static_cast<Range *>(rb_tree_insert_node(&segmentTree, n)) == n) {
pthread_rwlock_unlock(&fdeTreeLock);
return true;
}
free(n);
pthread_rwlock_unlock(&fdeTreeLock);
return false;
}
bool removeFDE(pint_t pcStart, pint_t pcEnd, pint_t fde) {
pthread_rwlock_wrlock(&fdeTreeLock);
Range *n = static_cast<Range *>(rb_tree_find_node(&segmentTree, &pcStart));
if (n == NULL) {
pthread_rwlock_unlock(&fdeTreeLock);
return false;
}
assert(n->first_pc == pcStart);
assert(n->last_pc == pcEnd);
assert(n->hdr_base == fde);
assert(n->hdr_start == 0);
assert(n->hdr_entries == 0);
assert(n->data_base == 0);
assert(n->ehframe_base == 0);
rb_tree_remove_node(&segmentTree, n);
free(n);
pthread_rwlock_unlock(&fdeTreeLock);
return true;
}
void removeDSO(pint_t ehFrameBase) {
pthread_rwlock_wrlock(&fdeTreeLock);
Range *n;
n = (Range *)rb_tree_find_node(&dsoTree, &ehFrameBase);
if (n == NULL) {
pthread_rwlock_unlock(&fdeTreeLock);
return;
}
rb_tree_remove_node(&dsoTree, n);
rb_tree_remove_node(&segmentTree, n);
free(n);
pthread_rwlock_unlock(&fdeTreeLock);
}
void setLazyReload() {
pthread_rwlock_wrlock(&fdeTreeLock);
needsReload = true;
pthread_rwlock_unlock(&fdeTreeLock);
}
private:
findPCRange_t findPCRange;
bool needsReload;
pthread_rwlock_t fdeTreeLock;
rb_tree_t segmentTree;
rb_tree_t dsoTree;
friend int phdr_callback(struct dl_phdr_info *, size_t, void *);
friend int rangeCmp(void *, const void *, const void *);
friend int rangeCmpKey(void *, const void *, const void *);
friend int dsoTableCmp(void *, const void *, const void *);
friend int dsoTableCmpKey(void *, const void *, const void *);
void updateRange();
struct Range {
rb_node_t range_link;
rb_node_t dso_link;
pint_t hdr_base; // Pointer to FDE if hdr_start == 0
pint_t hdr_start;
pint_t hdr_entries;
pint_t first_pc;
pint_t last_pc;
pint_t data_base;
pint_t ehframe_base;
};
void lazyReload() {
pthread_rwlock_wrlock(&fdeTreeLock);
dl_iterate_phdr(phdr_callback, this);
needsReload = false;
pthread_rwlock_unlock(&fdeTreeLock);
}
void addDSO(pint_t header, pint_t data_base) {
if (header == 0)
return;
if (get8(header) != 1)
return;
if (get8(header + 3) != (DW_EH_PE_datarel | DW_EH_PE_sdata4))
return;
pint_t end = header + 4;
pint_t ehframe_base = getEncodedP(end, 0, get8(header + 1), NULL);
pint_t entries = getEncodedP(end, 0, get8(header + 2), NULL);
pint_t start = (end + 3) & ~pint_t(3);
if (entries == 0)
return;
Range *n = (Range *)malloc(sizeof(*n));
n->hdr_base = header;
n->hdr_start = start;
n->hdr_entries = entries;
n->first_pc = header + (int32_t)get32(n->hdr_start);
pint_t tmp;
(*findPCRange)(
*this, header + (int32_t)get32(n->hdr_start + (entries - 1) * 8 + 4),
tmp, n->last_pc);
n->data_base = data_base;
n->ehframe_base = ehframe_base;
if (static_cast<Range *>(rb_tree_insert_node(&segmentTree, n)) != n) {
free(n);
return;
}
rb_tree_insert_node(&dsoTree, n);
}
};
static int phdr_callback(struct dl_phdr_info *info, size_t size, void *data_) {
LocalAddressSpace *data = (LocalAddressSpace *)data_;
size_t eh_frame = 0, data_base = 0;
const Elf_Phdr *hdr = info->dlpi_phdr;
const Elf_Phdr *last_hdr = hdr + info->dlpi_phnum;
const Elf_Dyn *dyn;
for (; hdr != last_hdr; ++hdr) {
switch (hdr->p_type) {
case PT_GNU_EH_FRAME:
eh_frame = info->dlpi_addr + hdr->p_vaddr;
break;
case PT_DYNAMIC:
dyn = (const Elf_Dyn *)(info->dlpi_addr + hdr->p_vaddr);
while (dyn->d_tag != DT_NULL) {
if (dyn->d_tag == DT_PLTGOT) {
data_base = info->dlpi_addr + dyn->d_un.d_ptr;
break;
}
++dyn;
}
}
}
if (eh_frame)
data->addDSO(eh_frame, data_base);
return 0;
}
static int rangeCmp(void *context, const void *n1_, const void *n2_) {
const LocalAddressSpace::Range *n1 = (const LocalAddressSpace::Range *)n1_;
const LocalAddressSpace::Range *n2 = (const LocalAddressSpace::Range *)n2_;
if (n1->first_pc < n2->first_pc)
return -1;
if (n1->first_pc > n2->first_pc)
return 1;
assert(n1->last_pc == n2->last_pc);
return 0;
}
static int rangeCmpKey(void *context, const void *n_, const void *pc_) {
const LocalAddressSpace::Range *n = (const LocalAddressSpace::Range *)n_;
const LocalAddressSpace::pint_t *pc = (const LocalAddressSpace::pint_t *)pc_;
if (n->last_pc < *pc)
return -1;
if (n->first_pc > *pc)
return 1;
return 0;
}
static int dsoTableCmp(void *context, const void *n1_, const void *n2_) {
const LocalAddressSpace::Range *n1 = (const LocalAddressSpace::Range *)n1_;
const LocalAddressSpace::Range *n2 = (const LocalAddressSpace::Range *)n2_;
if (n1->ehframe_base < n2->ehframe_base)
return -1;
if (n1->ehframe_base > n2->ehframe_base)
return 1;
return 0;
}
static int dsoTableCmpKey(void *context, const void *n_, const void *ptr_) {
const LocalAddressSpace::Range *n = (const LocalAddressSpace::Range *)n_;
const LocalAddressSpace::pint_t *ptr = (const LocalAddressSpace::pint_t *)ptr_;
if (n->ehframe_base < *ptr)
return -1;
if (n->ehframe_base > *ptr)
return 1;
return 0;
}
} // namespace _Unwind
#endif // __ADDRESSSPACE_HPP__