#define JEMALLOC_MUTEX_C_
#include "jemalloc/internal/jemalloc_preamble.h"
#include "jemalloc/internal/jemalloc_internal_includes.h"
#include "jemalloc/internal/assert.h"
#include "jemalloc/internal/malloc_io.h"
#include "jemalloc/internal/spin.h"
#ifndef _CRT_SPINCOUNT
#define _CRT_SPINCOUNT 4000
#endif
/******************************************************************************/
/* Data. */
#ifdef JEMALLOC_LAZY_LOCK
bool isthreaded = false;
#endif
#ifdef JEMALLOC_MUTEX_INIT_CB
static bool postpone_init = true;
static malloc_mutex_t *postponed_mutexes = NULL;
#endif
/******************************************************************************/
/*
* We intercept pthread_create() calls in order to toggle isthreaded if the
* process goes multi-threaded.
*/
#if defined(JEMALLOC_LAZY_LOCK) && !defined(_WIN32)
JEMALLOC_EXPORT int
pthread_create(pthread_t *__restrict thread,
const pthread_attr_t *__restrict attr, void *(*start_routine)(void *),
void *__restrict arg) {
return pthread_create_wrapper(thread, attr, start_routine, arg);
}
#endif
/******************************************************************************/
#ifdef JEMALLOC_MUTEX_INIT_CB
JEMALLOC_EXPORT int _pthread_mutex_init_calloc_cb(pthread_mutex_t *mutex,
void *(calloc_cb)(size_t, size_t));
#endif
void
malloc_mutex_lock_slow(malloc_mutex_t *mutex) {
mutex_prof_data_t *data = &mutex->prof_data;
UNUSED nstime_t before = NSTIME_INITIALIZER;
if (ncpus == 1) {
goto label_spin_done;
}
int cnt = 0, max_cnt = MALLOC_MUTEX_MAX_SPIN;
do {
spin_cpu_spinwait();
if (!malloc_mutex_trylock_final(mutex)) {
data->n_spin_acquired++;
return;
}
} while (cnt++ < max_cnt);
if (!config_stats) {
/* Only spin is useful when stats is off. */
malloc_mutex_lock_final(mutex);
return;
}
label_spin_done:
nstime_update(&before);
/* Copy before to after to avoid clock skews. */
nstime_t after;
nstime_copy(&after, &before);
uint32_t n_thds = atomic_fetch_add_u32(&data->n_waiting_thds, 1,
ATOMIC_RELAXED) + 1;
/* One last try as above two calls may take quite some cycles. */
if (!malloc_mutex_trylock_final(mutex)) {
atomic_fetch_sub_u32(&data->n_waiting_thds, 1, ATOMIC_RELAXED);
data->n_spin_acquired++;
return;
}
/* True slow path. */
malloc_mutex_lock_final(mutex);
/* Update more slow-path only counters. */
atomic_fetch_sub_u32(&data->n_waiting_thds, 1, ATOMIC_RELAXED);
nstime_update(&after);
nstime_t delta;
nstime_copy(&delta, &after);
nstime_subtract(&delta, &before);
data->n_wait_times++;
nstime_add(&data->tot_wait_time, &delta);
if (nstime_compare(&data->max_wait_time, &delta) < 0) {
nstime_copy(&data->max_wait_time, &delta);
}
if (n_thds > data->max_n_thds) {
data->max_n_thds = n_thds;
}
}
static void
mutex_prof_data_init(mutex_prof_data_t *data) {
memset(data, 0, sizeof(mutex_prof_data_t));
nstime_init(&data->max_wait_time, 0);
nstime_init(&data->tot_wait_time, 0);
data->prev_owner = NULL;
}
void
malloc_mutex_prof_data_reset(tsdn_t *tsdn, malloc_mutex_t *mutex) {
malloc_mutex_assert_owner(tsdn, mutex);
mutex_prof_data_init(&mutex->prof_data);
}
static int
mutex_addr_comp(const witness_t *witness1, void *mutex1,
const witness_t *witness2, void *mutex2) {
assert(mutex1 != NULL);
assert(mutex2 != NULL);
uintptr_t mu1int = (uintptr_t)mutex1;
uintptr_t mu2int = (uintptr_t)mutex2;
if (mu1int < mu2int) {
return -1;
} else if (mu1int == mu2int) {
return 0;
} else {
return 1;
}
}
bool
malloc_mutex_init(malloc_mutex_t *mutex, const char *name,
witness_rank_t rank, malloc_mutex_lock_order_t lock_order) {
mutex_prof_data_init(&mutex->prof_data);
#ifdef _WIN32
# if _WIN32_WINNT >= 0x0600
InitializeSRWLock(&mutex->lock);
# else
if (!InitializeCriticalSectionAndSpinCount(&mutex->lock,
_CRT_SPINCOUNT)) {
return true;
}
# endif
#elif (defined(JEMALLOC_OS_UNFAIR_LOCK))
mutex->lock = OS_UNFAIR_LOCK_INIT;
#elif (defined(JEMALLOC_OSSPIN))
mutex->lock = 0;
#elif (defined(JEMALLOC_MUTEX_INIT_CB))
if (postpone_init) {
mutex->postponed_next = postponed_mutexes;
postponed_mutexes = mutex;
} else {
if (_pthread_mutex_init_calloc_cb(&mutex->lock,
bootstrap_calloc) != 0) {
return true;
}
}
#else
pthread_mutexattr_t attr;
if (pthread_mutexattr_init(&attr) != 0) {
return true;
}
pthread_mutexattr_settype(&attr, MALLOC_MUTEX_TYPE);
if (pthread_mutex_init(&mutex->lock, &attr) != 0) {
pthread_mutexattr_destroy(&attr);
return true;
}
pthread_mutexattr_destroy(&attr);
#endif
if (config_debug) {
mutex->lock_order = lock_order;
if (lock_order == malloc_mutex_address_ordered) {
witness_init(&mutex->witness, name, rank,
mutex_addr_comp, mutex);
} else {
witness_init(&mutex->witness, name, rank, NULL, NULL);
}
}
return false;
}
void
malloc_mutex_prefork(tsdn_t *tsdn, malloc_mutex_t *mutex) {
malloc_mutex_lock(tsdn, mutex);
}
void
malloc_mutex_postfork_parent(tsdn_t *tsdn, malloc_mutex_t *mutex) {
malloc_mutex_unlock(tsdn, mutex);
}
void
malloc_mutex_postfork_child(tsdn_t *tsdn, malloc_mutex_t *mutex) {
#ifdef JEMALLOC_MUTEX_INIT_CB
malloc_mutex_unlock(tsdn, mutex);
#else
if (malloc_mutex_init(mutex, mutex->witness.name,
mutex->witness.rank, mutex->lock_order)) {
malloc_printf("<jemalloc>: Error re-initializing mutex in "
"child\n");
if (opt_abort) {
abort();
}
}
#endif
}
bool
malloc_mutex_boot(void) {
#ifdef JEMALLOC_MUTEX_INIT_CB
postpone_init = false;
while (postponed_mutexes != NULL) {
if (_pthread_mutex_init_calloc_cb(&postponed_mutexes->lock,
bootstrap_calloc) != 0) {
return true;
}
postponed_mutexes = postponed_mutexes->postponed_next;
}
#endif
return false;
}