Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
//===-- IteratorChecker.cpp ---------------------------------------*- C++ -*--//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Defines a checker for using iterators outside their range (past end). Usage
// means here dereferencing, incrementing etc.
//
//===----------------------------------------------------------------------===//
//
// In the code, iterator can be represented as a:
// * type-I: typedef-ed pointer. Operations over such iterator, such as
//           comparisons or increments, are modeled straightforwardly by the
//           analyzer.
// * type-II: structure with its method bodies available.  Operations over such
//            iterator are inlined by the analyzer, and results of modeling
//            these operations are exposing implementation details of the
//            iterators, which is not necessarily helping.
// * type-III: completely opaque structure. Operations over such iterator are
//             modeled conservatively, producing conjured symbols everywhere.
//
// To handle all these types in a common way we introduce a structure called
// IteratorPosition which is an abstraction of the position the iterator
// represents using symbolic expressions. The checker handles all the
// operations on this structure.
//
// Additionally, depending on the circumstances, operators of types II and III
// can be represented as:
// * type-IIa, type-IIIa: conjured structure symbols - when returned by value
//                        from conservatively evaluated methods such as
//                        `.begin()`.
// * type-IIb, type-IIIb: memory regions of iterator-typed objects, such as
//                        variables or temporaries, when the iterator object is
//                        currently treated as an lvalue.
// * type-IIc, type-IIIc: compound values of iterator-typed objects, when the
//                        iterator object is treated as an rvalue taken of a
//                        particular lvalue, eg. a copy of "type-a" iterator
//                        object, or an iterator that existed before the
//                        analysis has started.
//
// To handle any of these three different representations stored in an SVal we
// use setter and getters functions which separate the three cases. To store
// them we use a pointer union of symbol and memory region.
//
// The checker works the following way: We record the begin and the
// past-end iterator for all containers whenever their `.begin()` and `.end()`
// are called. Since the Constraint Manager cannot handle such SVals we need
// to take over its role. We post-check equality and non-equality comparisons
// and record that the two sides are equal if we are in the 'equal' branch
// (true-branch for `==` and false-branch for `!=`).
//
// In case of type-I or type-II iterators we get a concrete integer as a result
// of the comparison (1 or 0) but in case of type-III we only get a Symbol. In
// this latter case we record the symbol and reload it in evalAssume() and do
// the propagation there. We also handle (maybe double) negated comparisons
// which are represented in the form of (x == 0 or x != 0) where x is the
// comparison itself.
//
// Since `SimpleConstraintManager` cannot handle complex symbolic expressions
// we only use expressions of the format S, S+n or S-n for iterator positions
// where S is a conjured symbol and n is an unsigned concrete integer. When
// making an assumption e.g. `S1 + n == S2 + m` we store `S1 - S2 == m - n` as
// a constraint which we later retrieve when doing an actual comparison.

#include "ClangSACheckers.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"

using namespace clang;
using namespace ento;

namespace {

// Abstract position of an iterator. This helps to handle all three kinds
// of operators in a common way by using a symbolic position.
struct IteratorPosition {
private:

  // Container the iterator belongs to
  const MemRegion *Cont;

  // Abstract offset
  const SymbolRef Offset;

  IteratorPosition(const MemRegion *C, SymbolRef Of)
      : Cont(C), Offset(Of) {}

public:
  const MemRegion *getContainer() const { return Cont; }
  SymbolRef getOffset() const { return Offset; }

  static IteratorPosition getPosition(const MemRegion *C, SymbolRef Of) {
    return IteratorPosition(C, Of);
  }

  IteratorPosition setTo(SymbolRef NewOf) const {
    return IteratorPosition(Cont, NewOf);
  }

  bool operator==(const IteratorPosition &X) const {
    return Cont == X.Cont && Offset == X.Offset;
  }

  bool operator!=(const IteratorPosition &X) const {
    return Cont != X.Cont || Offset != X.Offset;
  }

  void Profile(llvm::FoldingSetNodeID &ID) const {
    ID.AddPointer(Cont);
    ID.Add(Offset);
  }
};

typedef llvm::PointerUnion<const MemRegion *, SymbolRef> RegionOrSymbol;

// Structure to record the symbolic begin and end position of a container
struct ContainerData {
private:
  const SymbolRef Begin, End;

  ContainerData(SymbolRef B, SymbolRef E) : Begin(B), End(E) {}

public:
  static ContainerData fromBegin(SymbolRef B) {
    return ContainerData(B, nullptr);
  }

  static ContainerData fromEnd(SymbolRef E) {
    return ContainerData(nullptr, E);
  }

  SymbolRef getBegin() const { return Begin; }
  SymbolRef getEnd() const { return End; }

  ContainerData newBegin(SymbolRef B) const { return ContainerData(B, End); }

  ContainerData newEnd(SymbolRef E) const { return ContainerData(Begin, E); }

  bool operator==(const ContainerData &X) const {
    return Begin == X.Begin && End == X.End;
  }

  bool operator!=(const ContainerData &X) const {
    return Begin != X.Begin || End != X.End;
  }

  void Profile(llvm::FoldingSetNodeID &ID) const {
    ID.Add(Begin);
    ID.Add(End);
  }
};

// Structure fo recording iterator comparisons. We needed to retrieve the
// original comparison expression in assumptions.
struct IteratorComparison {
private:
  RegionOrSymbol Left, Right;
  bool Equality;

public:
  IteratorComparison(RegionOrSymbol L, RegionOrSymbol R, bool Eq)
      : Left(L), Right(R), Equality(Eq) {}

  RegionOrSymbol getLeft() const { return Left; }
  RegionOrSymbol getRight() const { return Right; }
  bool isEquality() const { return Equality; }
  bool operator==(const IteratorComparison &X) const {
    return Left == X.Left && Right == X.Right && Equality == X.Equality;
  }
  bool operator!=(const IteratorComparison &X) const {
    return Left != X.Left || Right != X.Right || Equality != X.Equality;
  }
  void Profile(llvm::FoldingSetNodeID &ID) const { ID.AddInteger(Equality); }
};

class IteratorChecker
    : public Checker<check::PreCall, check::PostCall,
                     check::PreStmt<CXXOperatorCallExpr>,
                     check::PostStmt<MaterializeTemporaryExpr>,
                     check::LiveSymbols, check::DeadSymbols,
                     eval::Assume> {

  std::unique_ptr<BugType> OutOfRangeBugType;

  void handleComparison(CheckerContext &C, const SVal &RetVal, const SVal &LVal,
                        const SVal &RVal, OverloadedOperatorKind Op) const;
  void verifyDereference(CheckerContext &C, const SVal &Val) const;
  void handleIncrement(CheckerContext &C, const SVal &RetVal, const SVal &Iter,
                       bool Postfix) const;
  void handleDecrement(CheckerContext &C, const SVal &RetVal, const SVal &Iter,
                       bool Postfix) const;
  void handleRandomIncrOrDecr(CheckerContext &C, OverloadedOperatorKind Op,
                              const SVal &RetVal, const SVal &LHS,
                              const SVal &RHS) const;
  void handleBegin(CheckerContext &C, const Expr *CE, const SVal &RetVal,
                   const SVal &Cont) const;
  void handleEnd(CheckerContext &C, const Expr *CE, const SVal &RetVal,
                 const SVal &Cont) const;
  void assignToContainer(CheckerContext &C, const Expr *CE, const SVal &RetVal,
                         const MemRegion *Cont) const;
  void verifyRandomIncrOrDecr(CheckerContext &C, OverloadedOperatorKind Op,
                              const SVal &RetVal, const SVal &LHS,
                              const SVal &RHS) const;
  void reportOutOfRangeBug(const StringRef &Message, const SVal &Val,
                           CheckerContext &C, ExplodedNode *ErrNode) const;

public:
  IteratorChecker();

  enum CheckKind {
    CK_IteratorRangeChecker,
    CK_NumCheckKinds
  };

  DefaultBool ChecksEnabled[CK_NumCheckKinds];
  CheckName CheckNames[CK_NumCheckKinds];

  void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
  void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
  void checkPreStmt(const CXXOperatorCallExpr *COCE, CheckerContext &C) const;
  void checkPostStmt(const MaterializeTemporaryExpr *MTE,
                     CheckerContext &C) const;
  void checkLiveSymbols(ProgramStateRef State, SymbolReaper &SR) const;
  void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
  ProgramStateRef evalAssume(ProgramStateRef State, SVal Cond,
                             bool Assumption) const;
};
} // namespace

REGISTER_MAP_WITH_PROGRAMSTATE(IteratorSymbolMap, SymbolRef, IteratorPosition)
REGISTER_MAP_WITH_PROGRAMSTATE(IteratorRegionMap, const MemRegion *,
                               IteratorPosition)

REGISTER_MAP_WITH_PROGRAMSTATE(ContainerMap, const MemRegion *, ContainerData)

REGISTER_MAP_WITH_PROGRAMSTATE(IteratorComparisonMap, const SymExpr *,
                               IteratorComparison)

namespace {

bool isIteratorType(const QualType &Type);
bool isIterator(const CXXRecordDecl *CRD);
bool isBeginCall(const FunctionDecl *Func);
bool isEndCall(const FunctionDecl *Func);
bool isSimpleComparisonOperator(OverloadedOperatorKind OK);
bool isDereferenceOperator(OverloadedOperatorKind OK);
bool isIncrementOperator(OverloadedOperatorKind OK);
bool isDecrementOperator(OverloadedOperatorKind OK);
bool isRandomIncrOrDecrOperator(OverloadedOperatorKind OK);
BinaryOperator::Opcode getOpcode(const SymExpr *SE);
const RegionOrSymbol getRegionOrSymbol(const SVal &Val);
const ProgramStateRef processComparison(ProgramStateRef State,
                                        RegionOrSymbol LVal,
                                        RegionOrSymbol RVal, bool Equal);
const ProgramStateRef saveComparison(ProgramStateRef State,
                                     const SymExpr *Condition, const SVal &LVal,
                                     const SVal &RVal, bool Eq);
const IteratorComparison *loadComparison(ProgramStateRef State,
                                         const SymExpr *Condition);
SymbolRef getContainerBegin(ProgramStateRef State, const MemRegion *Cont);
SymbolRef getContainerEnd(ProgramStateRef State, const MemRegion *Cont);
ProgramStateRef createContainerBegin(ProgramStateRef State,
                                     const MemRegion *Cont,
                                     const SymbolRef Sym);
ProgramStateRef createContainerEnd(ProgramStateRef State, const MemRegion *Cont,
                                   const SymbolRef Sym);
const IteratorPosition *getIteratorPosition(ProgramStateRef State,
                                            const SVal &Val);
const IteratorPosition *getIteratorPosition(ProgramStateRef State,
                                            RegionOrSymbol RegOrSym);
ProgramStateRef setIteratorPosition(ProgramStateRef State, const SVal &Val,
                                    const IteratorPosition &Pos);
ProgramStateRef setIteratorPosition(ProgramStateRef State,
                                    RegionOrSymbol RegOrSym,
                                    const IteratorPosition &Pos);
ProgramStateRef removeIteratorPosition(ProgramStateRef State, const SVal &Val);
ProgramStateRef adjustIteratorPosition(ProgramStateRef State,
                                       RegionOrSymbol RegOrSym,
                                       const IteratorPosition &Pos, bool Equal);
ProgramStateRef relateIteratorPositions(ProgramStateRef State,
                                        const IteratorPosition &Pos1,
                                        const IteratorPosition &Pos2,
                                        bool Equal);
const ContainerData *getContainerData(ProgramStateRef State,
                                      const MemRegion *Cont);
ProgramStateRef setContainerData(ProgramStateRef State, const MemRegion *Cont,
                                 const ContainerData &CData);
bool isOutOfRange(ProgramStateRef State, const IteratorPosition &Pos);
bool isZero(ProgramStateRef State, const NonLoc &Val);
} // namespace

IteratorChecker::IteratorChecker() {
  OutOfRangeBugType.reset(
      new BugType(this, "Iterator out of range", "Misuse of STL APIs"));
  OutOfRangeBugType->setSuppressOnSink(true);
}

void IteratorChecker::checkPreCall(const CallEvent &Call,
                                   CheckerContext &C) const {
  // Check for out of range access
  const auto *Func = dyn_cast_or_null<FunctionDecl>(Call.getDecl());
  if (!Func)
    return;

  if (Func->isOverloadedOperator()) {
    if (ChecksEnabled[CK_IteratorRangeChecker] &&
        isRandomIncrOrDecrOperator(Func->getOverloadedOperator())) {
      if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
        // Check for out-of-range incrementions and decrementions
        if (Call.getNumArgs() >= 1) {
          verifyRandomIncrOrDecr(C, Func->getOverloadedOperator(),
                                 Call.getReturnValue(),
                                 InstCall->getCXXThisVal(), Call.getArgSVal(0));
        }
      } else {
        if (Call.getNumArgs() >= 2) {
          verifyRandomIncrOrDecr(C, Func->getOverloadedOperator(),
                                 Call.getReturnValue(), Call.getArgSVal(0),
                                 Call.getArgSVal(1));
        }
      }
    } else if (ChecksEnabled[CK_IteratorRangeChecker] &&
               isDereferenceOperator(Func->getOverloadedOperator())) {
      // Check for dereference of out-of-range iterators
      if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
        verifyDereference(C, InstCall->getCXXThisVal());
      } else {
        verifyDereference(C, Call.getArgSVal(0));
      }
    }
  }
}

void IteratorChecker::checkPostCall(const CallEvent &Call,
                                    CheckerContext &C) const {
  // Record new iterator positions and iterator position changes
  const auto *Func = dyn_cast_or_null<FunctionDecl>(Call.getDecl());
  if (!Func)
    return;

  if (Func->isOverloadedOperator()) {
    const auto Op = Func->getOverloadedOperator();
    if (isSimpleComparisonOperator(Op)) {
      if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
        handleComparison(C, Call.getReturnValue(), InstCall->getCXXThisVal(),
                         Call.getArgSVal(0), Op);
      } else {
        handleComparison(C, Call.getReturnValue(), Call.getArgSVal(0),
                         Call.getArgSVal(1), Op);
      }
    } else if (isRandomIncrOrDecrOperator(Func->getOverloadedOperator())) {
      if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
        if (Call.getNumArgs() >= 1) {
          handleRandomIncrOrDecr(C, Func->getOverloadedOperator(),
                                 Call.getReturnValue(),
                                 InstCall->getCXXThisVal(), Call.getArgSVal(0));
        }
      } else {
        if (Call.getNumArgs() >= 2) {
          handleRandomIncrOrDecr(C, Func->getOverloadedOperator(),
                                 Call.getReturnValue(), Call.getArgSVal(0),
                                 Call.getArgSVal(1));
        }
      }
    } else if (isIncrementOperator(Func->getOverloadedOperator())) {
      if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
        handleIncrement(C, Call.getReturnValue(), InstCall->getCXXThisVal(),
                        Call.getNumArgs());
      } else {
        handleIncrement(C, Call.getReturnValue(), Call.getArgSVal(0),
                        Call.getNumArgs());
      }
    } else if (isDecrementOperator(Func->getOverloadedOperator())) {
      if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
        handleDecrement(C, Call.getReturnValue(), InstCall->getCXXThisVal(),
                        Call.getNumArgs());
      } else {
        handleDecrement(C, Call.getReturnValue(), Call.getArgSVal(0),
                        Call.getNumArgs());
      }
    }
  } else {
    const auto *OrigExpr = Call.getOriginExpr();
    if (!OrigExpr)
      return;

    if (!isIteratorType(Call.getResultType()))
      return;

    auto State = C.getState();
    // Already bound to container?
    if (getIteratorPosition(State, Call.getReturnValue()))
      return;

    if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
      if (isBeginCall(Func)) {
        handleBegin(C, OrigExpr, Call.getReturnValue(),
                    InstCall->getCXXThisVal());
        return;
      }
      if (isEndCall(Func)) {
        handleEnd(C, OrigExpr, Call.getReturnValue(),
                  InstCall->getCXXThisVal());
        return;
      }
    }

    // Copy-like and move constructors
    if (isa<CXXConstructorCall>(&Call) && Call.getNumArgs() == 1) {
      if (const auto *Pos = getIteratorPosition(State, Call.getArgSVal(0))) {
        State = setIteratorPosition(State, Call.getReturnValue(), *Pos);
        if (cast<CXXConstructorDecl>(Func)->isMoveConstructor()) {
          State = removeIteratorPosition(State, Call.getArgSVal(0));
        }
        C.addTransition(State);
        return;
      }
    }

    // Assumption: if return value is an iterator which is not yet bound to a
    //             container, then look for the first iterator argument, and
    //             bind the return value to the same container. This approach
    //             works for STL algorithms.
    // FIXME: Add a more conservative mode
    for (unsigned i = 0; i < Call.getNumArgs(); ++i) {
      if (isIteratorType(Call.getArgExpr(i)->getType())) {
        if (const auto *Pos = getIteratorPosition(State, Call.getArgSVal(i))) {
          assignToContainer(C, OrigExpr, Call.getReturnValue(),
                            Pos->getContainer());
          return;
        }
      }
    }
  }
}

void IteratorChecker::checkPreStmt(const CXXOperatorCallExpr *COCE,
                                   CheckerContext &C) const {
  const auto *ThisExpr = COCE->getArg(0);

  auto State = C.getState();
  const auto *LCtx = C.getLocationContext();

  const auto CurrentThis = State->getSVal(ThisExpr, LCtx);
  if (const auto *Reg = CurrentThis.getAsRegion()) {
    if (!Reg->getAs<CXXTempObjectRegion>())
      return;
    const auto OldState = C.getPredecessor()->getFirstPred()->getState();
    const auto OldThis = OldState->getSVal(ThisExpr, LCtx);
    // FIXME: This solution is unreliable. It may happen that another checker
    //        subscribes to the pre-statement check of `CXXOperatorCallExpr`
    //        and adds a transition before us. The proper fix is to make the
    //        CFG provide a `ConstructionContext` for the `CXXOperatorCallExpr`,
    //        which would turn the corresponding `CFGStmt` element into a
    //        `CFGCXXRecordTypedCall` element, which will allow `ExprEngine` to
    //        foresee that the `begin()`/`end()` call constructs the object
    //        directly in the temporary region that `CXXOperatorCallExpr` takes
    //        as its implicit object argument.
    const auto *Pos = getIteratorPosition(OldState, OldThis);
    if (!Pos)
      return;
    State = setIteratorPosition(State, CurrentThis, *Pos);
    C.addTransition(State);
  }
}

void IteratorChecker::checkPostStmt(const MaterializeTemporaryExpr *MTE,
                                    CheckerContext &C) const {
  /* Transfer iterator state to temporary objects */
  auto State = C.getState();
  const auto *Pos =
      getIteratorPosition(State, C.getSVal(MTE->GetTemporaryExpr()));
  if (!Pos)
    return;
  State = setIteratorPosition(State, C.getSVal(MTE), *Pos);
  C.addTransition(State);
}

void IteratorChecker::checkLiveSymbols(ProgramStateRef State,
                                       SymbolReaper &SR) const {
  // Keep symbolic expressions of iterator positions, container begins and ends
  // alive
  auto RegionMap = State->get<IteratorRegionMap>();
  for (const auto Reg : RegionMap) {
    const auto Offset = Reg.second.getOffset();
    for (auto i = Offset->symbol_begin(); i != Offset->symbol_end(); ++i)
      if (isa<SymbolData>(*i))
        SR.markLive(*i);
  }

  auto SymbolMap = State->get<IteratorSymbolMap>();
  for (const auto Sym : SymbolMap) {
    const auto Offset = Sym.second.getOffset();
    for (auto i = Offset->symbol_begin(); i != Offset->symbol_end(); ++i)
      if (isa<SymbolData>(*i))
        SR.markLive(*i);
  }

  auto ContMap = State->get<ContainerMap>();
  for (const auto Cont : ContMap) {
    const auto CData = Cont.second;
    if (CData.getBegin()) {
      SR.markLive(CData.getBegin());
    }
    if (CData.getEnd()) {
      SR.markLive(CData.getEnd());
    }
  }
}

void IteratorChecker::checkDeadSymbols(SymbolReaper &SR,
                                       CheckerContext &C) const {
  // Cleanup
  auto State = C.getState();

  auto RegionMap = State->get<IteratorRegionMap>();
  for (const auto Reg : RegionMap) {
    if (!SR.isLiveRegion(Reg.first)) {
      State = State->remove<IteratorRegionMap>(Reg.first);
    }
  }

  auto SymbolMap = State->get<IteratorSymbolMap>();
  for (const auto Sym : SymbolMap) {
    if (!SR.isLive(Sym.first)) {
      State = State->remove<IteratorSymbolMap>(Sym.first);
    }
  }

  auto ContMap = State->get<ContainerMap>();
  for (const auto Cont : ContMap) {
    if (!SR.isLiveRegion(Cont.first)) {
      State = State->remove<ContainerMap>(Cont.first);
    }
  }

  auto ComparisonMap = State->get<IteratorComparisonMap>();
  for (const auto Comp : ComparisonMap) {
    if (!SR.isLive(Comp.first)) {
      State = State->remove<IteratorComparisonMap>(Comp.first);
    }
  }
}

ProgramStateRef IteratorChecker::evalAssume(ProgramStateRef State, SVal Cond,
                                            bool Assumption) const {
  // Load recorded comparison and transfer iterator state between sides
  // according to comparison operator and assumption
  const auto *SE = Cond.getAsSymExpr();
  if (!SE)
    return State;

  auto Opc = getOpcode(SE);
  if (Opc != BO_EQ && Opc != BO_NE)
    return State;

  bool Negated = false;
  const auto *Comp = loadComparison(State, SE);
  if (!Comp) {
    // Try negated comparison, which is a SymExpr to 0 integer comparison
    const auto *SIE = dyn_cast<SymIntExpr>(SE);
    if (!SIE)
      return State;

    if (SIE->getRHS() != 0)
      return State;

    SE = SIE->getLHS();
    Negated = SIE->getOpcode() == BO_EQ; // Equal to zero means negation
    Opc = getOpcode(SE);
    if (Opc != BO_EQ && Opc != BO_NE)
      return State;

    Comp = loadComparison(State, SE);
    if (!Comp)
      return State;
  }

  return processComparison(State, Comp->getLeft(), Comp->getRight(),
                           (Comp->isEquality() == Assumption) != Negated);
}

void IteratorChecker::handleComparison(CheckerContext &C, const SVal &RetVal,
                                       const SVal &LVal, const SVal &RVal,
                                       OverloadedOperatorKind Op) const {
  // Record the operands and the operator of the comparison for the next
  // evalAssume, if the result is a symbolic expression. If it is a concrete
  // value (only one branch is possible), then transfer the state between
  // the operands according to the operator and the result
  auto State = C.getState();
  if (const auto *Condition = RetVal.getAsSymbolicExpression()) {
    const auto *LPos = getIteratorPosition(State, LVal);
    const auto *RPos = getIteratorPosition(State, RVal);
    if (!LPos && !RPos)
      return;
    State = saveComparison(State, Condition, LVal, RVal, Op == OO_EqualEqual);
    C.addTransition(State);
  } else if (const auto TruthVal = RetVal.getAs<nonloc::ConcreteInt>()) {
    if ((State = processComparison(
             State, getRegionOrSymbol(LVal), getRegionOrSymbol(RVal),
             (Op == OO_EqualEqual) == (TruthVal->getValue() != 0)))) {
      C.addTransition(State);
    } else {
      C.generateSink(State, C.getPredecessor());
    }
  }
}

void IteratorChecker::verifyDereference(CheckerContext &C,
                                        const SVal &Val) const {
  auto State = C.getState();
  const auto *Pos = getIteratorPosition(State, Val);
  if (Pos && isOutOfRange(State, *Pos)) {
    // If I do not put a tag here, some range tests will fail
    static CheckerProgramPointTag Tag("IteratorRangeChecker",
                                      "IteratorOutOfRange");
    auto *N = C.generateNonFatalErrorNode(State, &Tag);
    if (!N)
      return;
    reportOutOfRangeBug("Iterator accessed outside of its range.", Val, C, N);
  }
}

void IteratorChecker::handleIncrement(CheckerContext &C, const SVal &RetVal,
                                      const SVal &Iter, bool Postfix) const {
  // Increment the symbolic expressions which represents the position of the
  // iterator
  auto State = C.getState();
  const auto *Pos = getIteratorPosition(State, Iter);
  if (Pos) {
    auto &SymMgr = C.getSymbolManager();
    auto &BVF = SymMgr.getBasicVals();
    auto &SVB = C.getSValBuilder();
    const auto OldOffset = Pos->getOffset();
    auto NewOffset =
      SVB.evalBinOp(State, BO_Add,
                    nonloc::SymbolVal(OldOffset),
                    nonloc::ConcreteInt(BVF.getValue(llvm::APSInt::get(1))),
                    SymMgr.getType(OldOffset)).getAsSymbol();
    auto NewPos = Pos->setTo(NewOffset);
    State = setIteratorPosition(State, Iter, NewPos);
    State = setIteratorPosition(State, RetVal, Postfix ? *Pos : NewPos);
    C.addTransition(State);
  }
}

void IteratorChecker::handleDecrement(CheckerContext &C, const SVal &RetVal,
                                      const SVal &Iter, bool Postfix) const {
  // Decrement the symbolic expressions which represents the position of the
  // iterator
  auto State = C.getState();
  const auto *Pos = getIteratorPosition(State, Iter);
  if (Pos) {
    auto &SymMgr = C.getSymbolManager();
    auto &BVF = SymMgr.getBasicVals();
    auto &SVB = C.getSValBuilder();
    const auto OldOffset = Pos->getOffset();
    auto NewOffset =
      SVB.evalBinOp(State, BO_Sub,
                    nonloc::SymbolVal(OldOffset),
                    nonloc::ConcreteInt(BVF.getValue(llvm::APSInt::get(1))),
                    SymMgr.getType(OldOffset)).getAsSymbol();
    auto NewPos = Pos->setTo(NewOffset);
    State = setIteratorPosition(State, Iter, NewPos);
    State = setIteratorPosition(State, RetVal, Postfix ? *Pos : NewPos);
    C.addTransition(State);
  }
}

// This function tells the analyzer's engine that symbols produced by our
// checker, most notably iterator positions, are relatively small.
// A distance between items in the container should not be very large.
// By assuming that it is within around 1/8 of the address space,
// we can help the analyzer perform operations on these symbols
// without being afraid of integer overflows.
// FIXME: Should we provide it as an API, so that all checkers could use it?
static ProgramStateRef assumeNoOverflow(ProgramStateRef State, SymbolRef Sym,
                                        long Scale) {
  SValBuilder &SVB = State->getStateManager().getSValBuilder();
  BasicValueFactory &BV = SVB.getBasicValueFactory();

  QualType T = Sym->getType();
  assert(T->isSignedIntegerOrEnumerationType());
  APSIntType AT = BV.getAPSIntType(T);

  ProgramStateRef NewState = State;

  llvm::APSInt Max = AT.getMaxValue() / AT.getValue(Scale);
  SVal IsCappedFromAbove =
      SVB.evalBinOpNN(State, BO_LE, nonloc::SymbolVal(Sym),
                      nonloc::ConcreteInt(Max), SVB.getConditionType());
  if (auto DV = IsCappedFromAbove.getAs<DefinedSVal>()) {
    NewState = NewState->assume(*DV, true);
    if (!NewState)
      return State;
  }

  llvm::APSInt Min = -Max;
  SVal IsCappedFromBelow =
      SVB.evalBinOpNN(State, BO_GE, nonloc::SymbolVal(Sym),
                      nonloc::ConcreteInt(Min), SVB.getConditionType());
  if (auto DV = IsCappedFromBelow.getAs<DefinedSVal>()) {
    NewState = NewState->assume(*DV, true);
    if (!NewState)
      return State;
  }

  return NewState;
}

void IteratorChecker::handleRandomIncrOrDecr(CheckerContext &C,
                                             OverloadedOperatorKind Op,
                                             const SVal &RetVal,
                                             const SVal &LHS,
                                             const SVal &RHS) const {
  // Increment or decrement the symbolic expressions which represents the
  // position of the iterator
  auto State = C.getState();
  const auto *Pos = getIteratorPosition(State, LHS);
  if (!Pos)
    return;

  const auto *value = &RHS;
  if (auto loc = RHS.getAs<Loc>()) {
    const auto val = State->getRawSVal(*loc);
    value = &val;
  }

  auto &SymMgr = C.getSymbolManager();
  auto &SVB = C.getSValBuilder();
  auto BinOp = (Op == OO_Plus || Op == OO_PlusEqual) ? BO_Add : BO_Sub;
  const auto OldOffset = Pos->getOffset();
  SymbolRef NewOffset;
  if (const auto intValue = value->getAs<nonloc::ConcreteInt>()) {
    // For concrete integers we can calculate the new position
    NewOffset = SVB.evalBinOp(State, BinOp, nonloc::SymbolVal(OldOffset),
                              *intValue,
                              SymMgr.getType(OldOffset)).getAsSymbol();
  } else {
    // For other symbols create a new symbol to keep expressions simple
    const auto &LCtx = C.getLocationContext();
    NewOffset = SymMgr.conjureSymbol(nullptr, LCtx, SymMgr.getType(OldOffset),
                                     C.blockCount());
    State = assumeNoOverflow(State, NewOffset, 4);
  }
  auto NewPos = Pos->setTo(NewOffset);
  auto &TgtVal = (Op == OO_PlusEqual || Op == OO_MinusEqual) ? LHS : RetVal;
  State = setIteratorPosition(State, TgtVal, NewPos);
  C.addTransition(State);
}

void IteratorChecker::verifyRandomIncrOrDecr(CheckerContext &C,
                                             OverloadedOperatorKind Op,
                                             const SVal &RetVal,
                                             const SVal &LHS,
                                             const SVal &RHS) const {
  auto State = C.getState();

  // If the iterator is initially inside its range, then the operation is valid
  const auto *Pos = getIteratorPosition(State, LHS);
  if (!Pos || !isOutOfRange(State, *Pos))
    return;

  auto value = RHS;
  if (auto loc = RHS.getAs<Loc>()) {
    value = State->getRawSVal(*loc);
  }

  // Incremention or decremention by 0 is never bug
  if (isZero(State, value.castAs<NonLoc>()))
    return;

  auto &SymMgr = C.getSymbolManager();
  auto &SVB = C.getSValBuilder();
  auto BinOp = (Op == OO_Plus || Op == OO_PlusEqual) ? BO_Add : BO_Sub;
  const auto OldOffset = Pos->getOffset();
  const auto intValue = value.getAs<nonloc::ConcreteInt>();
  if (!intValue)
    return;

  auto NewOffset = SVB.evalBinOp(State, BinOp, nonloc::SymbolVal(OldOffset),
                                 *intValue,
                                 SymMgr.getType(OldOffset)).getAsSymbol();
  auto NewPos = Pos->setTo(NewOffset);

  // If out of range, the only valid operation is to step into the range
  if (isOutOfRange(State, NewPos)) {
    auto *N = C.generateNonFatalErrorNode(State);
    if (!N)
      return;
    reportOutOfRangeBug("Iterator accessed past its end.", LHS, C, N);
  }
}

void IteratorChecker::handleBegin(CheckerContext &C, const Expr *CE,
                                  const SVal &RetVal, const SVal &Cont) const {
  const auto *ContReg = Cont.getAsRegion();
  if (!ContReg)
    return;

  while (const auto *CBOR = ContReg->getAs<CXXBaseObjectRegion>()) {
    ContReg = CBOR->getSuperRegion();
  }

  // If the container already has a begin symbol then use it. Otherwise first
  // create a new one.
  auto State = C.getState();
  auto BeginSym = getContainerBegin(State, ContReg);
  if (!BeginSym) {
    auto &SymMgr = C.getSymbolManager();
    BeginSym = SymMgr.conjureSymbol(CE, C.getLocationContext(),
                                    C.getASTContext().LongTy, C.blockCount());
    State = assumeNoOverflow(State, BeginSym, 4);
    State = createContainerBegin(State, ContReg, BeginSym);
  }
  State = setIteratorPosition(State, RetVal,
                              IteratorPosition::getPosition(ContReg, BeginSym));
  C.addTransition(State);
}

void IteratorChecker::handleEnd(CheckerContext &C, const Expr *CE,
                                const SVal &RetVal, const SVal &Cont) const {
  const auto *ContReg = Cont.getAsRegion();
  if (!ContReg)
    return;

  while (const auto *CBOR = ContReg->getAs<CXXBaseObjectRegion>()) {
    ContReg = CBOR->getSuperRegion();
  }

  // If the container already has an end symbol then use it. Otherwise first
  // create a new one.
  auto State = C.getState();
  auto EndSym = getContainerEnd(State, ContReg);
  if (!EndSym) {
    auto &SymMgr = C.getSymbolManager();
    EndSym = SymMgr.conjureSymbol(CE, C.getLocationContext(),
                                  C.getASTContext().LongTy, C.blockCount());
    State = assumeNoOverflow(State, EndSym, 4);
    State = createContainerEnd(State, ContReg, EndSym);
  }
  State = setIteratorPosition(State, RetVal,
                              IteratorPosition::getPosition(ContReg, EndSym));
  C.addTransition(State);
}

void IteratorChecker::assignToContainer(CheckerContext &C, const Expr *CE,
                                        const SVal &RetVal,
                                        const MemRegion *Cont) const {
  while (const auto *CBOR = Cont->getAs<CXXBaseObjectRegion>()) {
    Cont = CBOR->getSuperRegion();
  }

  auto State = C.getState();
  auto &SymMgr = C.getSymbolManager();
  auto Sym = SymMgr.conjureSymbol(CE, C.getLocationContext(),
                                  C.getASTContext().LongTy, C.blockCount());
  State = assumeNoOverflow(State, Sym, 4);
  State = setIteratorPosition(State, RetVal,
                              IteratorPosition::getPosition(Cont, Sym));
  C.addTransition(State);
}

void IteratorChecker::reportOutOfRangeBug(const StringRef &Message,
                                          const SVal &Val, CheckerContext &C,
                                          ExplodedNode *ErrNode) const {
  auto R = llvm::make_unique<BugReport>(*OutOfRangeBugType, Message, ErrNode);
  R->markInteresting(Val);
  C.emitReport(std::move(R));
}

namespace {

bool isLess(ProgramStateRef State, SymbolRef Sym1, SymbolRef Sym2);
bool isGreaterOrEqual(ProgramStateRef State, SymbolRef Sym1, SymbolRef Sym2);
bool compare(ProgramStateRef State, SymbolRef Sym1, SymbolRef Sym2,
             BinaryOperator::Opcode Opc);
bool compare(ProgramStateRef State, NonLoc NL1, NonLoc NL2,
             BinaryOperator::Opcode Opc);

bool isIteratorType(const QualType &Type) {
  if (Type->isPointerType())
    return true;

  const auto *CRD = Type->getUnqualifiedDesugaredType()->getAsCXXRecordDecl();
  return isIterator(CRD);
}

bool isIterator(const CXXRecordDecl *CRD) {
  if (!CRD)
    return false;

  const auto Name = CRD->getName();
  if (!(Name.endswith_lower("iterator") || Name.endswith_lower("iter") ||
        Name.endswith_lower("it")))
    return false;

  bool HasCopyCtor = false, HasCopyAssign = true, HasDtor = false,
       HasPreIncrOp = false, HasPostIncrOp = false, HasDerefOp = false;
  for (const auto *Method : CRD->methods()) {
    if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(Method)) {
      if (Ctor->isCopyConstructor()) {
        HasCopyCtor = !Ctor->isDeleted() && Ctor->getAccess() == AS_public;
      }
      continue;
    }
    if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(Method)) {
      HasDtor = !Dtor->isDeleted() && Dtor->getAccess() == AS_public;
      continue;
    }
    if (Method->isCopyAssignmentOperator()) {
      HasCopyAssign = !Method->isDeleted() && Method->getAccess() == AS_public;
      continue;
    }
    if (!Method->isOverloadedOperator())
      continue;
    const auto OPK = Method->getOverloadedOperator();
    if (OPK == OO_PlusPlus) {
      HasPreIncrOp = HasPreIncrOp || (Method->getNumParams() == 0);
      HasPostIncrOp = HasPostIncrOp || (Method->getNumParams() == 1);
      continue;
    }
    if (OPK == OO_Star) {
      HasDerefOp = (Method->getNumParams() == 0);
      continue;
    }
  }

  return HasCopyCtor && HasCopyAssign && HasDtor && HasPreIncrOp &&
         HasPostIncrOp && HasDerefOp;
}

bool isBeginCall(const FunctionDecl *Func) {
  const auto *IdInfo = Func->getIdentifier();
  if (!IdInfo)
    return false;
  return IdInfo->getName().endswith_lower("begin");
}

bool isEndCall(const FunctionDecl *Func) {
  const auto *IdInfo = Func->getIdentifier();
  if (!IdInfo)
    return false;
  return IdInfo->getName().endswith_lower("end");
}

bool isSimpleComparisonOperator(OverloadedOperatorKind OK) {
  return OK == OO_EqualEqual || OK == OO_ExclaimEqual;
}

bool isDereferenceOperator(OverloadedOperatorKind OK) {
  return OK == OO_Star || OK == OO_Arrow || OK == OO_ArrowStar ||
         OK == OO_Subscript;
}

bool isIncrementOperator(OverloadedOperatorKind OK) {
  return OK == OO_PlusPlus;
}

bool isDecrementOperator(OverloadedOperatorKind OK) {
  return OK == OO_MinusMinus;
}

bool isRandomIncrOrDecrOperator(OverloadedOperatorKind OK) {
  return OK == OO_Plus || OK == OO_PlusEqual || OK == OO_Minus ||
         OK == OO_MinusEqual;
}

BinaryOperator::Opcode getOpcode(const SymExpr *SE) {
  if (const auto *BSE = dyn_cast<BinarySymExpr>(SE)) {
    return BSE->getOpcode();
  } else if (const auto *SC = dyn_cast<SymbolConjured>(SE)) {
    const auto *COE = dyn_cast_or_null<CXXOperatorCallExpr>(SC->getStmt());
    if (!COE)
      return BO_Comma; // Extremal value, neither EQ nor NE
    if (COE->getOperator() == OO_EqualEqual) {
      return BO_EQ;
    } else if (COE->getOperator() == OO_ExclaimEqual) {
      return BO_NE;
    }
    return BO_Comma; // Extremal value, neither EQ nor NE
  }
  return BO_Comma; // Extremal value, neither EQ nor NE
}

const RegionOrSymbol getRegionOrSymbol(const SVal &Val) {
  if (const auto Reg = Val.getAsRegion()) {
    return Reg;
  } else if (const auto Sym = Val.getAsSymbol()) {
    return Sym;
  } else if (const auto LCVal = Val.getAs<nonloc::LazyCompoundVal>()) {
    return LCVal->getRegion();
  }
  return RegionOrSymbol();
}

const ProgramStateRef processComparison(ProgramStateRef State,
                                        RegionOrSymbol LVal,
                                        RegionOrSymbol RVal, bool Equal) {
  const auto *LPos = getIteratorPosition(State, LVal);
  const auto *RPos = getIteratorPosition(State, RVal);
  if (LPos && !RPos) {
    State = adjustIteratorPosition(State, RVal, *LPos, Equal);
  } else if (!LPos && RPos) {
    State = adjustIteratorPosition(State, LVal, *RPos, Equal);
  } else if (LPos && RPos) {
    State = relateIteratorPositions(State, *LPos, *RPos, Equal);
  }
  return State;
}

const ProgramStateRef saveComparison(ProgramStateRef State,
                                     const SymExpr *Condition, const SVal &LVal,
                                     const SVal &RVal, bool Eq) {
  const auto Left = getRegionOrSymbol(LVal);
  const auto Right = getRegionOrSymbol(RVal);
  if (!Left || !Right)
    return State;
  return State->set<IteratorComparisonMap>(Condition,
                                           IteratorComparison(Left, Right, Eq));
}

const IteratorComparison *loadComparison(ProgramStateRef State,
                                         const SymExpr *Condition) {
  return State->get<IteratorComparisonMap>(Condition);
}

SymbolRef getContainerBegin(ProgramStateRef State, const MemRegion *Cont) {
  const auto *CDataPtr = getContainerData(State, Cont);
  if (!CDataPtr)
    return nullptr;

  return CDataPtr->getBegin();
}

SymbolRef getContainerEnd(ProgramStateRef State, const MemRegion *Cont) {
  const auto *CDataPtr = getContainerData(State, Cont);
  if (!CDataPtr)
    return nullptr;

  return CDataPtr->getEnd();
}

ProgramStateRef createContainerBegin(ProgramStateRef State,
                                     const MemRegion *Cont,
                                     const SymbolRef Sym) {
  // Only create if it does not exist
  const auto *CDataPtr = getContainerData(State, Cont);
  if (CDataPtr) {
    if (CDataPtr->getBegin()) {
      return State;
    }
    const auto CData = CDataPtr->newBegin(Sym);
    return setContainerData(State, Cont, CData);
  }
  const auto CData = ContainerData::fromBegin(Sym);
  return setContainerData(State, Cont, CData);
}

ProgramStateRef createContainerEnd(ProgramStateRef State, const MemRegion *Cont,
                                   const SymbolRef Sym) {
  // Only create if it does not exist
  const auto *CDataPtr = getContainerData(State, Cont);
  if (CDataPtr) {
    if (CDataPtr->getEnd()) {
      return State;
    }
    const auto CData = CDataPtr->newEnd(Sym);
    return setContainerData(State, Cont, CData);
  }
  const auto CData = ContainerData::fromEnd(Sym);
  return setContainerData(State, Cont, CData);
}

const ContainerData *getContainerData(ProgramStateRef State,
                                      const MemRegion *Cont) {
  return State->get<ContainerMap>(Cont);
}

ProgramStateRef setContainerData(ProgramStateRef State, const MemRegion *Cont,
                                 const ContainerData &CData) {
  return State->set<ContainerMap>(Cont, CData);
}

const IteratorPosition *getIteratorPosition(ProgramStateRef State,
                                            const SVal &Val) {
  if (const auto Reg = Val.getAsRegion()) {
    return State->get<IteratorRegionMap>(Reg);
  } else if (const auto Sym = Val.getAsSymbol()) {
    return State->get<IteratorSymbolMap>(Sym);
  } else if (const auto LCVal = Val.getAs<nonloc::LazyCompoundVal>()) {
    return State->get<IteratorRegionMap>(LCVal->getRegion());
  }
  return nullptr;
}

const IteratorPosition *getIteratorPosition(ProgramStateRef State,
                                            RegionOrSymbol RegOrSym) {
  if (RegOrSym.is<const MemRegion *>()) {
    return State->get<IteratorRegionMap>(RegOrSym.get<const MemRegion *>());
  } else if (RegOrSym.is<SymbolRef>()) {
    return State->get<IteratorSymbolMap>(RegOrSym.get<SymbolRef>());
  }
  return nullptr;
}

ProgramStateRef setIteratorPosition(ProgramStateRef State, const SVal &Val,
                                    const IteratorPosition &Pos) {
  if (const auto Reg = Val.getAsRegion()) {
    return State->set<IteratorRegionMap>(Reg, Pos);
  } else if (const auto Sym = Val.getAsSymbol()) {
    return State->set<IteratorSymbolMap>(Sym, Pos);
  } else if (const auto LCVal = Val.getAs<nonloc::LazyCompoundVal>()) {
    return State->set<IteratorRegionMap>(LCVal->getRegion(), Pos);
  }
  return nullptr;
}

ProgramStateRef setIteratorPosition(ProgramStateRef State,
                                    RegionOrSymbol RegOrSym,
                                    const IteratorPosition &Pos) {
  if (RegOrSym.is<const MemRegion *>()) {
    return State->set<IteratorRegionMap>(RegOrSym.get<const MemRegion *>(),
                                         Pos);
  } else if (RegOrSym.is<SymbolRef>()) {
    return State->set<IteratorSymbolMap>(RegOrSym.get<SymbolRef>(), Pos);
  }
  return nullptr;
}

ProgramStateRef removeIteratorPosition(ProgramStateRef State, const SVal &Val) {
  if (const auto Reg = Val.getAsRegion()) {
    return State->remove<IteratorRegionMap>(Reg);
  } else if (const auto Sym = Val.getAsSymbol()) {
    return State->remove<IteratorSymbolMap>(Sym);
  } else if (const auto LCVal = Val.getAs<nonloc::LazyCompoundVal>()) {
    return State->remove<IteratorRegionMap>(LCVal->getRegion());
  }
  return nullptr;
}

ProgramStateRef adjustIteratorPosition(ProgramStateRef State,
                                       RegionOrSymbol RegOrSym,
                                       const IteratorPosition &Pos,
                                       bool Equal) {
  if (Equal) {
    return setIteratorPosition(State, RegOrSym, Pos);
  } else {
    return State;
  }
}

ProgramStateRef relateIteratorPositions(ProgramStateRef State,
                                        const IteratorPosition &Pos1,
                                        const IteratorPosition &Pos2,
                                        bool Equal) {
  auto &SVB = State->getStateManager().getSValBuilder();

  // FIXME: This code should be reworked as follows:
  // 1. Subtract the operands using evalBinOp().
  // 2. Assume that the result doesn't overflow.
  // 3. Compare the result to 0.
  // 4. Assume the result of the comparison.
  const auto comparison =
      SVB.evalBinOp(State, BO_EQ, nonloc::SymbolVal(Pos1.getOffset()),
                    nonloc::SymbolVal(Pos2.getOffset()),
                    SVB.getConditionType());

  assert(comparison.getAs<DefinedSVal>() &&
    "Symbol comparison must be a `DefinedSVal`");

  auto NewState = State->assume(comparison.castAs<DefinedSVal>(), Equal);
  if (const auto CompSym = comparison.getAsSymbol()) {
    assert(isa<SymIntExpr>(CompSym) &&
           "Symbol comparison must be a `SymIntExpr`");
    assert(BinaryOperator::isComparisonOp(
               cast<SymIntExpr>(CompSym)->getOpcode()) &&
           "Symbol comparison must be a comparison");
    return assumeNoOverflow(NewState, cast<SymIntExpr>(CompSym)->getLHS(), 2);
  }

  return NewState;
}

bool isZero(ProgramStateRef State, const NonLoc &Val) {
  auto &BVF = State->getBasicVals();
  return compare(State, Val,
                 nonloc::ConcreteInt(BVF.getValue(llvm::APSInt::get(0))),
                 BO_EQ);
}

bool isOutOfRange(ProgramStateRef State, const IteratorPosition &Pos) {
  const auto *Cont = Pos.getContainer();
  const auto *CData = getContainerData(State, Cont);
  if (!CData)
    return false;

  // Out of range means less than the begin symbol or greater or equal to the
  // end symbol.

  const auto Beg = CData->getBegin();
  if (Beg) {
    if (isLess(State, Pos.getOffset(), Beg)) {
      return true;
    }
  }

  const auto End = CData->getEnd();
  if (End) {
    if (isGreaterOrEqual(State, Pos.getOffset(), End)) {
      return true;
    }
  }

  return false;
}

bool isLess(ProgramStateRef State, SymbolRef Sym1, SymbolRef Sym2) {
  return compare(State, Sym1, Sym2, BO_LT);
}

bool isGreaterOrEqual(ProgramStateRef State, SymbolRef Sym1, SymbolRef Sym2) {
  return compare(State, Sym1, Sym2, BO_GE);
}

bool compare(ProgramStateRef State, SymbolRef Sym1, SymbolRef Sym2,
             BinaryOperator::Opcode Opc) {
  return compare(State, nonloc::SymbolVal(Sym1), nonloc::SymbolVal(Sym2), Opc);
}

bool compare(ProgramStateRef State, NonLoc NL1, NonLoc NL2,
             BinaryOperator::Opcode Opc) {
  auto &SVB = State->getStateManager().getSValBuilder();

  const auto comparison =
    SVB.evalBinOp(State, Opc, NL1, NL2, SVB.getConditionType());

  assert(comparison.getAs<DefinedSVal>() &&
    "Symbol comparison must be a `DefinedSVal`");

  return !State->assume(comparison.castAs<DefinedSVal>(), false);
}

} // namespace

#define REGISTER_CHECKER(name)                                                 \
  void ento::register##name(CheckerManager &Mgr) {                             \
    auto *checker = Mgr.registerChecker<IteratorChecker>();                    \
    checker->ChecksEnabled[IteratorChecker::CK_##name] = true;                 \
    checker->CheckNames[IteratorChecker::CK_##name] =                          \
        Mgr.getCurrentCheckName();                                             \
  }

REGISTER_CHECKER(IteratorRangeChecker)