Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

//===- HexagonTargetTransformInfo.cpp - Hexagon specific TTI pass ---------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
/// \file
/// This file implements a TargetTransformInfo analysis pass specific to the
/// Hexagon target machine. It uses the target's detailed information to provide
/// more precise answers to certain TTI queries, while letting the target
/// independent and default TTI implementations handle the rest.
///
//===----------------------------------------------------------------------===//

#include "HexagonTargetTransformInfo.h"
#include "HexagonSubtarget.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/User.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Transforms/Utils/UnrollLoop.h"

using namespace llvm;

#define DEBUG_TYPE "hexagontti"

static cl::opt<bool> HexagonAutoHVX("hexagon-autohvx", cl::init(false),
  cl::Hidden, cl::desc("Enable loop vectorizer for HVX"));

static cl::opt<bool> EmitLookupTables("hexagon-emit-lookup-tables",
  cl::init(true), cl::Hidden,
  cl::desc("Control lookup table emission on Hexagon target"));

// Constant "cost factor" to make floating point operations more expensive
// in terms of vectorization cost. This isn't the best way, but it should
// do. Ultimately, the cost should use cycles.
static const unsigned FloatFactor = 4;

bool HexagonTTIImpl::useHVX() const {
  return ST.useHVXOps() && HexagonAutoHVX;
}

bool HexagonTTIImpl::isTypeForHVX(Type *VecTy) const {
  assert(VecTy->isVectorTy());
  // Avoid types like <2 x i32*>.
  if (!cast<VectorType>(VecTy)->getElementType()->isIntegerTy())
    return false;
  EVT VecVT = EVT::getEVT(VecTy);
  if (!VecVT.isSimple() || VecVT.getSizeInBits() <= 64)
    return false;
  if (ST.isHVXVectorType(VecVT.getSimpleVT()))
    return true;
  auto Action = TLI.getPreferredVectorAction(VecVT);
  return Action == TargetLoweringBase::TypeWidenVector;
}

unsigned HexagonTTIImpl::getTypeNumElements(Type *Ty) const {
  if (Ty->isVectorTy())
    return Ty->getVectorNumElements();
  assert((Ty->isIntegerTy() || Ty->isFloatingPointTy()) &&
         "Expecting scalar type");
  return 1;
}

TargetTransformInfo::PopcntSupportKind
HexagonTTIImpl::getPopcntSupport(unsigned IntTyWidthInBit) const {
  // Return fast hardware support as every input < 64 bits will be promoted
  // to 64 bits.
  return TargetTransformInfo::PSK_FastHardware;
}

// The Hexagon target can unroll loops with run-time trip counts.
void HexagonTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
                                             TTI::UnrollingPreferences &UP) {
  UP.Runtime = UP.Partial = true;
  // Only try to peel innermost loops with small runtime trip counts.
  if (L && L->empty() && canPeel(L) &&
      SE.getSmallConstantTripCount(L) == 0 &&
      SE.getSmallConstantMaxTripCount(L) > 0 &&
      SE.getSmallConstantMaxTripCount(L) <= 5) {
    UP.PeelCount = 2;
  }
}

bool HexagonTTIImpl::shouldFavorPostInc() const {
  return true;
}

/// --- Vector TTI begin ---

unsigned HexagonTTIImpl::getNumberOfRegisters(bool Vector) const {
  if (Vector)
    return useHVX() ? 32 : 0;
  return 32;
}

unsigned HexagonTTIImpl::getMaxInterleaveFactor(unsigned VF) {
  return useHVX() ? 2 : 0;
}

unsigned HexagonTTIImpl::getRegisterBitWidth(bool Vector) const {
  return Vector ? getMinVectorRegisterBitWidth() : 32;
}

unsigned HexagonTTIImpl::getMinVectorRegisterBitWidth() const {
  return useHVX() ? ST.getVectorLength()*8 : 0;
}

unsigned HexagonTTIImpl::getMinimumVF(unsigned ElemWidth) const {
  return (8 * ST.getVectorLength()) / ElemWidth;
}

unsigned HexagonTTIImpl::getScalarizationOverhead(Type *Ty, bool Insert,
      bool Extract) {
  return BaseT::getScalarizationOverhead(Ty, Insert, Extract);
}

unsigned HexagonTTIImpl::getOperandsScalarizationOverhead(
      ArrayRef<const Value*> Args, unsigned VF) {
  return BaseT::getOperandsScalarizationOverhead(Args, VF);
}

unsigned HexagonTTIImpl::getCallInstrCost(Function *F, Type *RetTy,
      ArrayRef<Type*> Tys) {
  return BaseT::getCallInstrCost(F, RetTy, Tys);
}

unsigned HexagonTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
      ArrayRef<Value*> Args, FastMathFlags FMF, unsigned VF) {
  return BaseT::getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF);
}

unsigned HexagonTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
      ArrayRef<Type*> Tys, FastMathFlags FMF,
      unsigned ScalarizationCostPassed) {
  if (ID == Intrinsic::bswap) {
    std::pair<int, MVT> LT = TLI.getTypeLegalizationCost(DL, RetTy);
    return LT.first + 2;
  }
  return BaseT::getIntrinsicInstrCost(ID, RetTy, Tys, FMF,
                                      ScalarizationCostPassed);
}

unsigned HexagonTTIImpl::getAddressComputationCost(Type *Tp,
      ScalarEvolution *SE, const SCEV *S) {
  return 0;
}

unsigned HexagonTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
      unsigned Alignment, unsigned AddressSpace, const Instruction *I) {
  assert(Opcode == Instruction::Load || Opcode == Instruction::Store);
  if (Opcode == Instruction::Store)
    return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I);

  if (Src->isVectorTy()) {
    VectorType *VecTy = cast<VectorType>(Src);
    unsigned VecWidth = VecTy->getBitWidth();
    if (useHVX() && isTypeForHVX(VecTy)) {
      unsigned RegWidth = getRegisterBitWidth(true);
      Alignment = std::min(Alignment, RegWidth/8);
      // Cost of HVX loads.
      if (VecWidth % RegWidth == 0)
        return VecWidth / RegWidth;
      // Cost of constructing HVX vector from scalar loads.
      unsigned AlignWidth = 8 * std::max(1u, Alignment);
      unsigned NumLoads = alignTo(VecWidth, AlignWidth) / AlignWidth;
      return 3*NumLoads;
    }

    // Non-HVX vectors.
    // Add extra cost for floating point types.
    unsigned Cost = VecTy->getElementType()->isFloatingPointTy() ? FloatFactor
                                                                 : 1;
    Alignment = std::min(Alignment, 8u);
    unsigned AlignWidth = 8 * std::max(1u, Alignment);
    unsigned NumLoads = alignTo(VecWidth, AlignWidth) / AlignWidth;
    if (Alignment == 4 || Alignment == 8)
      return Cost * NumLoads;
    // Loads of less than 32 bits will need extra inserts to compose a vector.
    unsigned LogA = Log2_32(Alignment);
    return (3 - LogA) * Cost * NumLoads;
  }

  return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I);
}

unsigned HexagonTTIImpl::getMaskedMemoryOpCost(unsigned Opcode,
      Type *Src, unsigned Alignment, unsigned AddressSpace) {
  return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
}

unsigned HexagonTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp,
      int Index, Type *SubTp) {
  return 1;
}

unsigned HexagonTTIImpl::getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
      Value *Ptr, bool VariableMask, unsigned Alignment) {
  return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
                                       Alignment);
}

unsigned HexagonTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode,
      Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
      unsigned Alignment, unsigned AddressSpace) {
  return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
                                           Alignment, AddressSpace);
}

unsigned HexagonTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
      Type *CondTy, const Instruction *I) {
  if (ValTy->isVectorTy()) {
    std::pair<int, MVT> LT = TLI.getTypeLegalizationCost(DL, ValTy);
    if (Opcode == Instruction::FCmp)
      return LT.first + FloatFactor * getTypeNumElements(ValTy);
  }
  return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
}

unsigned HexagonTTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
      TTI::OperandValueKind Opd1Info, TTI::OperandValueKind Opd2Info,
      TTI::OperandValueProperties Opd1PropInfo,
      TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value*> Args) {
  if (Ty->isVectorTy()) {
    std::pair<int, MVT> LT = TLI.getTypeLegalizationCost(DL, Ty);
    if (LT.second.isFloatingPoint())
      return LT.first + FloatFactor * getTypeNumElements(Ty);
  }
  return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
                                       Opd1PropInfo, Opd2PropInfo, Args);
}

unsigned HexagonTTIImpl::getCastInstrCost(unsigned Opcode, Type *DstTy,
      Type *SrcTy, const Instruction *I) {
  if (SrcTy->isFPOrFPVectorTy() || DstTy->isFPOrFPVectorTy()) {
    unsigned SrcN = SrcTy->isFPOrFPVectorTy() ? getTypeNumElements(SrcTy) : 0;
    unsigned DstN = DstTy->isFPOrFPVectorTy() ? getTypeNumElements(DstTy) : 0;

    std::pair<int, MVT> SrcLT = TLI.getTypeLegalizationCost(DL, SrcTy);
    std::pair<int, MVT> DstLT = TLI.getTypeLegalizationCost(DL, DstTy);
    return std::max(SrcLT.first, DstLT.first) + FloatFactor * (SrcN + DstN);
  }
  return 1;
}

unsigned HexagonTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
      unsigned Index) {
  Type *ElemTy = Val->isVectorTy() ? cast<VectorType>(Val)->getElementType()
                                   : Val;
  if (Opcode == Instruction::InsertElement) {
    // Need two rotations for non-zero index.
    unsigned Cost = (Index != 0) ? 2 : 0;
    if (ElemTy->isIntegerTy(32))
      return Cost;
    // If it's not a 32-bit value, there will need to be an extract.
    return Cost + getVectorInstrCost(Instruction::ExtractElement, Val, Index);
  }

  if (Opcode == Instruction::ExtractElement)
    return 2;

  return 1;
}

/// --- Vector TTI end ---

unsigned HexagonTTIImpl::getPrefetchDistance() const {
  return ST.getL1PrefetchDistance();
}

unsigned HexagonTTIImpl::getCacheLineSize() const {
  return ST.getL1CacheLineSize();
}

int HexagonTTIImpl::getUserCost(const User *U,
                                ArrayRef<const Value *> Operands) {
  auto isCastFoldedIntoLoad = [this](const CastInst *CI) -> bool {
    if (!CI->isIntegerCast())
      return false;
    // Only extensions from an integer type shorter than 32-bit to i32
    // can be folded into the load.
    const DataLayout &DL = getDataLayout();
    unsigned SBW = DL.getTypeSizeInBits(CI->getSrcTy());
    unsigned DBW = DL.getTypeSizeInBits(CI->getDestTy());
    if (DBW != 32 || SBW >= DBW)
      return false;

    const LoadInst *LI = dyn_cast<const LoadInst>(CI->getOperand(0));
    // Technically, this code could allow multiple uses of the load, and
    // check if all the uses are the same extension operation, but this
    // should be sufficient for most cases.
    return LI && LI->hasOneUse();
  };

  if (const CastInst *CI = dyn_cast<const CastInst>(U))
    if (isCastFoldedIntoLoad(CI))
      return TargetTransformInfo::TCC_Free;
  return BaseT::getUserCost(U, Operands);
}

bool HexagonTTIImpl::shouldBuildLookupTables() const {
  return EmitLookupTables;
}