Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
//===- ArgumentPromotion.cpp - Promote by-reference arguments -------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass promotes "by reference" arguments to be "by value" arguments.  In
// practice, this means looking for internal functions that have pointer
// arguments.  If it can prove, through the use of alias analysis, that an
// argument is *only* loaded, then it can pass the value into the function
// instead of the address of the value.  This can cause recursive simplification
// of code and lead to the elimination of allocas (especially in C++ template
// code like the STL).
//
// This pass also handles aggregate arguments that are passed into a function,
// scalarizing them if the elements of the aggregate are only loaded.  Note that
// by default it refuses to scalarize aggregates which would require passing in
// more than three operands to the function, because passing thousands of
// operands for a large array or structure is unprofitable! This limit can be
// configured or disabled, however.
//
// Note that this transformation could also be done for arguments that are only
// stored to (returning the value instead), but does not currently.  This case
// would be best handled when and if LLVM begins supporting multiple return
// values from functions.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/IPO/ArgumentPromotion.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/CGSCCPassManager.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/CallGraphSCCPass.h"
#include "llvm/Analysis/LazyCallGraph.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/IPO.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <functional>
#include <iterator>
#include <map>
#include <set>
#include <string>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "argpromotion"

STATISTIC(NumArgumentsPromoted, "Number of pointer arguments promoted");
STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
STATISTIC(NumByValArgsPromoted, "Number of byval arguments promoted");
STATISTIC(NumArgumentsDead, "Number of dead pointer args eliminated");

/// A vector used to hold the indices of a single GEP instruction
using IndicesVector = std::vector<uint64_t>;

/// DoPromotion - This method actually performs the promotion of the specified
/// arguments, and returns the new function.  At this point, we know that it's
/// safe to do so.
static Function *
doPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote,
            SmallPtrSetImpl<Argument *> &ByValArgsToTransform,
            Optional<function_ref<void(CallSite OldCS, CallSite NewCS)>>
                ReplaceCallSite) {
  // Start by computing a new prototype for the function, which is the same as
  // the old function, but has modified arguments.
  FunctionType *FTy = F->getFunctionType();
  std::vector<Type *> Params;

  using ScalarizeTable = std::set<std::pair<Type *, IndicesVector>>;

  // ScalarizedElements - If we are promoting a pointer that has elements
  // accessed out of it, keep track of which elements are accessed so that we
  // can add one argument for each.
  //
  // Arguments that are directly loaded will have a zero element value here, to
  // handle cases where there are both a direct load and GEP accesses.
  std::map<Argument *, ScalarizeTable> ScalarizedElements;

  // OriginalLoads - Keep track of a representative load instruction from the
  // original function so that we can tell the alias analysis implementation
  // what the new GEP/Load instructions we are inserting look like.
  // We need to keep the original loads for each argument and the elements
  // of the argument that are accessed.
  std::map<std::pair<Argument *, IndicesVector>, LoadInst *> OriginalLoads;

  // Attribute - Keep track of the parameter attributes for the arguments
  // that we are *not* promoting. For the ones that we do promote, the parameter
  // attributes are lost
  SmallVector<AttributeSet, 8> ArgAttrVec;
  AttributeList PAL = F->getAttributes();

  // First, determine the new argument list
  unsigned ArgNo = 0;
  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
       ++I, ++ArgNo) {
    if (ByValArgsToTransform.count(&*I)) {
      // Simple byval argument? Just add all the struct element types.
      Type *AgTy = cast<PointerType>(I->getType())->getElementType();
      StructType *STy = cast<StructType>(AgTy);
      Params.insert(Params.end(), STy->element_begin(), STy->element_end());
      ArgAttrVec.insert(ArgAttrVec.end(), STy->getNumElements(),
                        AttributeSet());
      ++NumByValArgsPromoted;
    } else if (!ArgsToPromote.count(&*I)) {
      // Unchanged argument
      Params.push_back(I->getType());
      ArgAttrVec.push_back(PAL.getParamAttributes(ArgNo));
    } else if (I->use_empty()) {
      // Dead argument (which are always marked as promotable)
      ++NumArgumentsDead;

      // There may be remaining metadata uses of the argument for things like
      // llvm.dbg.value. Replace them with undef.
      I->replaceAllUsesWith(UndefValue::get(I->getType()));
    } else {
      // Okay, this is being promoted. This means that the only uses are loads
      // or GEPs which are only used by loads

      // In this table, we will track which indices are loaded from the argument
      // (where direct loads are tracked as no indices).
      ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
      for (User *U : I->users()) {
        Instruction *UI = cast<Instruction>(U);
        Type *SrcTy;
        if (LoadInst *L = dyn_cast<LoadInst>(UI))
          SrcTy = L->getType();
        else
          SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType();
        IndicesVector Indices;
        Indices.reserve(UI->getNumOperands() - 1);
        // Since loads will only have a single operand, and GEPs only a single
        // non-index operand, this will record direct loads without any indices,
        // and gep+loads with the GEP indices.
        for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end();
             II != IE; ++II)
          Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
        // GEPs with a single 0 index can be merged with direct loads
        if (Indices.size() == 1 && Indices.front() == 0)
          Indices.clear();
        ArgIndices.insert(std::make_pair(SrcTy, Indices));
        LoadInst *OrigLoad;
        if (LoadInst *L = dyn_cast<LoadInst>(UI))
          OrigLoad = L;
        else
          // Take any load, we will use it only to update Alias Analysis
          OrigLoad = cast<LoadInst>(UI->user_back());
        OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad;
      }

      // Add a parameter to the function for each element passed in.
      for (const auto &ArgIndex : ArgIndices) {
        // not allowed to dereference ->begin() if size() is 0
        Params.push_back(GetElementPtrInst::getIndexedType(
            cast<PointerType>(I->getType()->getScalarType())->getElementType(),
            ArgIndex.second));
        ArgAttrVec.push_back(AttributeSet());
        assert(Params.back());
      }

      if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty())
        ++NumArgumentsPromoted;
      else
        ++NumAggregatesPromoted;
    }
  }

  Type *RetTy = FTy->getReturnType();

  // Construct the new function type using the new arguments.
  FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());

  // Create the new function body and insert it into the module.
  Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName());
  NF->copyAttributesFrom(F);

  // Patch the pointer to LLVM function in debug info descriptor.
  NF->setSubprogram(F->getSubprogram());
  F->setSubprogram(nullptr);

  LLVM_DEBUG(dbgs() << "ARG PROMOTION:  Promoting to:" << *NF << "\n"
                    << "From: " << *F);

  // Recompute the parameter attributes list based on the new arguments for
  // the function.
  NF->setAttributes(AttributeList::get(F->getContext(), PAL.getFnAttributes(),
                                       PAL.getRetAttributes(), ArgAttrVec));
  ArgAttrVec.clear();

  F->getParent()->getFunctionList().insert(F->getIterator(), NF);
  NF->takeName(F);

  // Loop over all of the callers of the function, transforming the call sites
  // to pass in the loaded pointers.
  //
  SmallVector<Value *, 16> Args;
  while (!F->use_empty()) {
    CallSite CS(F->user_back());
    assert(CS.getCalledFunction() == F);
    Instruction *Call = CS.getInstruction();
    const AttributeList &CallPAL = CS.getAttributes();

    // Loop over the operands, inserting GEP and loads in the caller as
    // appropriate.
    CallSite::arg_iterator AI = CS.arg_begin();
    ArgNo = 0;
    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
         ++I, ++AI, ++ArgNo)
      if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
        Args.push_back(*AI); // Unmodified argument
        ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
      } else if (ByValArgsToTransform.count(&*I)) {
        // Emit a GEP and load for each element of the struct.
        Type *AgTy = cast<PointerType>(I->getType())->getElementType();
        StructType *STy = cast<StructType>(AgTy);
        Value *Idxs[2] = {
            ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr};
        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
          Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
          Value *Idx = GetElementPtrInst::Create(
              STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i), Call);
          // TODO: Tell AA about the new values?
          Args.push_back(new LoadInst(Idx, Idx->getName() + ".val", Call));
          ArgAttrVec.push_back(AttributeSet());
        }
      } else if (!I->use_empty()) {
        // Non-dead argument: insert GEPs and loads as appropriate.
        ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
        // Store the Value* version of the indices in here, but declare it now
        // for reuse.
        std::vector<Value *> Ops;
        for (const auto &ArgIndex : ArgIndices) {
          Value *V = *AI;
          LoadInst *OrigLoad =
              OriginalLoads[std::make_pair(&*I, ArgIndex.second)];
          if (!ArgIndex.second.empty()) {
            Ops.reserve(ArgIndex.second.size());
            Type *ElTy = V->getType();
            for (auto II : ArgIndex.second) {
              // Use i32 to index structs, and i64 for others (pointers/arrays).
              // This satisfies GEP constraints.
              Type *IdxTy =
                  (ElTy->isStructTy() ? Type::getInt32Ty(F->getContext())
                                      : Type::getInt64Ty(F->getContext()));
              Ops.push_back(ConstantInt::get(IdxTy, II));
              // Keep track of the type we're currently indexing.
              if (auto *ElPTy = dyn_cast<PointerType>(ElTy))
                ElTy = ElPTy->getElementType();
              else
                ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(II);
            }
            // And create a GEP to extract those indices.
            V = GetElementPtrInst::Create(ArgIndex.first, V, Ops,
                                          V->getName() + ".idx", Call);
            Ops.clear();
          }
          // Since we're replacing a load make sure we take the alignment
          // of the previous load.
          LoadInst *newLoad = new LoadInst(V, V->getName() + ".val", Call);
          newLoad->setAlignment(OrigLoad->getAlignment());
          // Transfer the AA info too.
          AAMDNodes AAInfo;
          OrigLoad->getAAMetadata(AAInfo);
          newLoad->setAAMetadata(AAInfo);

          Args.push_back(newLoad);
          ArgAttrVec.push_back(AttributeSet());
        }
      }

    // Push any varargs arguments on the list.
    for (; AI != CS.arg_end(); ++AI, ++ArgNo) {
      Args.push_back(*AI);
      ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
    }

    SmallVector<OperandBundleDef, 1> OpBundles;
    CS.getOperandBundlesAsDefs(OpBundles);

    CallSite NewCS;
    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
      NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
                                 Args, OpBundles, "", Call);
    } else {
      auto *NewCall = CallInst::Create(NF, Args, OpBundles, "", Call);
      NewCall->setTailCallKind(cast<CallInst>(Call)->getTailCallKind());
      NewCS = NewCall;
    }
    NewCS.setCallingConv(CS.getCallingConv());
    NewCS.setAttributes(
        AttributeList::get(F->getContext(), CallPAL.getFnAttributes(),
                           CallPAL.getRetAttributes(), ArgAttrVec));
    NewCS->setDebugLoc(Call->getDebugLoc());
    uint64_t W;
    if (Call->extractProfTotalWeight(W))
      NewCS->setProfWeight(W);
    Args.clear();
    ArgAttrVec.clear();

    // Update the callgraph to know that the callsite has been transformed.
    if (ReplaceCallSite)
      (*ReplaceCallSite)(CS, NewCS);

    if (!Call->use_empty()) {
      Call->replaceAllUsesWith(NewCS.getInstruction());
      NewCS->takeName(Call);
    }

    // Finally, remove the old call from the program, reducing the use-count of
    // F.
    Call->eraseFromParent();
  }

  const DataLayout &DL = F->getParent()->getDataLayout();

  // Since we have now created the new function, splice the body of the old
  // function right into the new function, leaving the old rotting hulk of the
  // function empty.
  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());

  // Loop over the argument list, transferring uses of the old arguments over to
  // the new arguments, also transferring over the names as well.
  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
                              I2 = NF->arg_begin();
       I != E; ++I) {
    if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
      // If this is an unmodified argument, move the name and users over to the
      // new version.
      I->replaceAllUsesWith(&*I2);
      I2->takeName(&*I);
      ++I2;
      continue;
    }

    if (ByValArgsToTransform.count(&*I)) {
      // In the callee, we create an alloca, and store each of the new incoming
      // arguments into the alloca.
      Instruction *InsertPt = &NF->begin()->front();

      // Just add all the struct element types.
      Type *AgTy = cast<PointerType>(I->getType())->getElementType();
      Value *TheAlloca = new AllocaInst(AgTy, DL.getAllocaAddrSpace(), nullptr,
                                        I->getParamAlignment(), "", InsertPt);
      StructType *STy = cast<StructType>(AgTy);
      Value *Idxs[2] = {ConstantInt::get(Type::getInt32Ty(F->getContext()), 0),
                        nullptr};

      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
        Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
        Value *Idx = GetElementPtrInst::Create(
            AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i),
            InsertPt);
        I2->setName(I->getName() + "." + Twine(i));
        new StoreInst(&*I2++, Idx, InsertPt);
      }

      // Anything that used the arg should now use the alloca.
      I->replaceAllUsesWith(TheAlloca);
      TheAlloca->takeName(&*I);

      // If the alloca is used in a call, we must clear the tail flag since
      // the callee now uses an alloca from the caller.
      for (User *U : TheAlloca->users()) {
        CallInst *Call = dyn_cast<CallInst>(U);
        if (!Call)
          continue;
        Call->setTailCall(false);
      }
      continue;
    }

    if (I->use_empty())
      continue;

    // Otherwise, if we promoted this argument, then all users are load
    // instructions (or GEPs with only load users), and all loads should be
    // using the new argument that we added.
    ScalarizeTable &ArgIndices = ScalarizedElements[&*I];

    while (!I->use_empty()) {
      if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) {
        assert(ArgIndices.begin()->second.empty() &&
               "Load element should sort to front!");
        I2->setName(I->getName() + ".val");
        LI->replaceAllUsesWith(&*I2);
        LI->eraseFromParent();
        LLVM_DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
                          << "' in function '" << F->getName() << "'\n");
      } else {
        GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back());
        IndicesVector Operands;
        Operands.reserve(GEP->getNumIndices());
        for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
             II != IE; ++II)
          Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());

        // GEPs with a single 0 index can be merged with direct loads
        if (Operands.size() == 1 && Operands.front() == 0)
          Operands.clear();

        Function::arg_iterator TheArg = I2;
        for (ScalarizeTable::iterator It = ArgIndices.begin();
             It->second != Operands; ++It, ++TheArg) {
          assert(It != ArgIndices.end() && "GEP not handled??");
        }

        std::string NewName = I->getName();
        for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
          NewName += "." + utostr(Operands[i]);
        }
        NewName += ".val";
        TheArg->setName(NewName);

        LLVM_DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
                          << "' of function '" << NF->getName() << "'\n");

        // All of the uses must be load instructions.  Replace them all with
        // the argument specified by ArgNo.
        while (!GEP->use_empty()) {
          LoadInst *L = cast<LoadInst>(GEP->user_back());
          L->replaceAllUsesWith(&*TheArg);
          L->eraseFromParent();
        }
        GEP->eraseFromParent();
      }
    }

    // Increment I2 past all of the arguments added for this promoted pointer.
    std::advance(I2, ArgIndices.size());
  }

  return NF;
}

/// AllCallersPassInValidPointerForArgument - Return true if we can prove that
/// all callees pass in a valid pointer for the specified function argument.
static bool allCallersPassInValidPointerForArgument(Argument *Arg) {
  Function *Callee = Arg->getParent();
  const DataLayout &DL = Callee->getParent()->getDataLayout();

  unsigned ArgNo = Arg->getArgNo();

  // Look at all call sites of the function.  At this point we know we only have
  // direct callees.
  for (User *U : Callee->users()) {
    CallSite CS(U);
    assert(CS && "Should only have direct calls!");

    if (!isDereferenceablePointer(CS.getArgument(ArgNo), DL))
      return false;
  }
  return true;
}

/// Returns true if Prefix is a prefix of longer. That means, Longer has a size
/// that is greater than or equal to the size of prefix, and each of the
/// elements in Prefix is the same as the corresponding elements in Longer.
///
/// This means it also returns true when Prefix and Longer are equal!
static bool isPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) {
  if (Prefix.size() > Longer.size())
    return false;
  return std::equal(Prefix.begin(), Prefix.end(), Longer.begin());
}

/// Checks if Indices, or a prefix of Indices, is in Set.
static bool prefixIn(const IndicesVector &Indices,
                     std::set<IndicesVector> &Set) {
  std::set<IndicesVector>::iterator Low;
  Low = Set.upper_bound(Indices);
  if (Low != Set.begin())
    Low--;
  // Low is now the last element smaller than or equal to Indices. This means
  // it points to a prefix of Indices (possibly Indices itself), if such
  // prefix exists.
  //
  // This load is safe if any prefix of its operands is safe to load.
  return Low != Set.end() && isPrefix(*Low, Indices);
}

/// Mark the given indices (ToMark) as safe in the given set of indices
/// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
/// is already a prefix of Indices in Safe, Indices are implicitely marked safe
/// already. Furthermore, any indices that Indices is itself a prefix of, are
/// removed from Safe (since they are implicitely safe because of Indices now).
static void markIndicesSafe(const IndicesVector &ToMark,
                            std::set<IndicesVector> &Safe) {
  std::set<IndicesVector>::iterator Low;
  Low = Safe.upper_bound(ToMark);
  // Guard against the case where Safe is empty
  if (Low != Safe.begin())
    Low--;
  // Low is now the last element smaller than or equal to Indices. This
  // means it points to a prefix of Indices (possibly Indices itself), if
  // such prefix exists.
  if (Low != Safe.end()) {
    if (isPrefix(*Low, ToMark))
      // If there is already a prefix of these indices (or exactly these
      // indices) marked a safe, don't bother adding these indices
      return;

    // Increment Low, so we can use it as a "insert before" hint
    ++Low;
  }
  // Insert
  Low = Safe.insert(Low, ToMark);
  ++Low;
  // If there we're a prefix of longer index list(s), remove those
  std::set<IndicesVector>::iterator End = Safe.end();
  while (Low != End && isPrefix(ToMark, *Low)) {
    std::set<IndicesVector>::iterator Remove = Low;
    ++Low;
    Safe.erase(Remove);
  }
}

/// isSafeToPromoteArgument - As you might guess from the name of this method,
/// it checks to see if it is both safe and useful to promote the argument.
/// This method limits promotion of aggregates to only promote up to three
/// elements of the aggregate in order to avoid exploding the number of
/// arguments passed in.
static bool isSafeToPromoteArgument(Argument *Arg, bool isByValOrInAlloca,
                                    AAResults &AAR, unsigned MaxElements) {
  using GEPIndicesSet = std::set<IndicesVector>;

  // Quick exit for unused arguments
  if (Arg->use_empty())
    return true;

  // We can only promote this argument if all of the uses are loads, or are GEP
  // instructions (with constant indices) that are subsequently loaded.
  //
  // Promoting the argument causes it to be loaded in the caller
  // unconditionally. This is only safe if we can prove that either the load
  // would have happened in the callee anyway (ie, there is a load in the entry
  // block) or the pointer passed in at every call site is guaranteed to be
  // valid.
  // In the former case, invalid loads can happen, but would have happened
  // anyway, in the latter case, invalid loads won't happen. This prevents us
  // from introducing an invalid load that wouldn't have happened in the
  // original code.
  //
  // This set will contain all sets of indices that are loaded in the entry
  // block, and thus are safe to unconditionally load in the caller.
  //
  // This optimization is also safe for InAlloca parameters, because it verifies
  // that the address isn't captured.
  GEPIndicesSet SafeToUnconditionallyLoad;

  // This set contains all the sets of indices that we are planning to promote.
  // This makes it possible to limit the number of arguments added.
  GEPIndicesSet ToPromote;

  // If the pointer is always valid, any load with first index 0 is valid.
  if (isByValOrInAlloca || allCallersPassInValidPointerForArgument(Arg))
    SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));

  // First, iterate the entry block and mark loads of (geps of) arguments as
  // safe.
  BasicBlock &EntryBlock = Arg->getParent()->front();
  // Declare this here so we can reuse it
  IndicesVector Indices;
  for (Instruction &I : EntryBlock)
    if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
      Value *V = LI->getPointerOperand();
      if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
        V = GEP->getPointerOperand();
        if (V == Arg) {
          // This load actually loads (part of) Arg? Check the indices then.
          Indices.reserve(GEP->getNumIndices());
          for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
               II != IE; ++II)
            if (ConstantInt *CI = dyn_cast<ConstantInt>(*II))
              Indices.push_back(CI->getSExtValue());
            else
              // We found a non-constant GEP index for this argument? Bail out
              // right away, can't promote this argument at all.
              return false;

          // Indices checked out, mark them as safe
          markIndicesSafe(Indices, SafeToUnconditionallyLoad);
          Indices.clear();
        }
      } else if (V == Arg) {
        // Direct loads are equivalent to a GEP with a single 0 index.
        markIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
      }
    }

  // Now, iterate all uses of the argument to see if there are any uses that are
  // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
  SmallVector<LoadInst *, 16> Loads;
  IndicesVector Operands;
  for (Use &U : Arg->uses()) {
    User *UR = U.getUser();
    Operands.clear();
    if (LoadInst *LI = dyn_cast<LoadInst>(UR)) {
      // Don't hack volatile/atomic loads
      if (!LI->isSimple())
        return false;
      Loads.push_back(LI);
      // Direct loads are equivalent to a GEP with a zero index and then a load.
      Operands.push_back(0);
    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) {
      if (GEP->use_empty()) {
        // Dead GEP's cause trouble later.  Just remove them if we run into
        // them.
        GEP->eraseFromParent();
        // TODO: This runs the above loop over and over again for dead GEPs
        // Couldn't we just do increment the UI iterator earlier and erase the
        // use?
        return isSafeToPromoteArgument(Arg, isByValOrInAlloca, AAR,
                                       MaxElements);
      }

      // Ensure that all of the indices are constants.
      for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end(); i != e;
           ++i)
        if (ConstantInt *C = dyn_cast<ConstantInt>(*i))
          Operands.push_back(C->getSExtValue());
        else
          return false; // Not a constant operand GEP!

      // Ensure that the only users of the GEP are load instructions.
      for (User *GEPU : GEP->users())
        if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) {
          // Don't hack volatile/atomic loads
          if (!LI->isSimple())
            return false;
          Loads.push_back(LI);
        } else {
          // Other uses than load?
          return false;
        }
    } else {
      return false; // Not a load or a GEP.
    }

    // Now, see if it is safe to promote this load / loads of this GEP. Loading
    // is safe if Operands, or a prefix of Operands, is marked as safe.
    if (!prefixIn(Operands, SafeToUnconditionallyLoad))
      return false;

    // See if we are already promoting a load with these indices. If not, check
    // to make sure that we aren't promoting too many elements.  If so, nothing
    // to do.
    if (ToPromote.find(Operands) == ToPromote.end()) {
      if (MaxElements > 0 && ToPromote.size() == MaxElements) {
        LLVM_DEBUG(dbgs() << "argpromotion not promoting argument '"
                          << Arg->getName()
                          << "' because it would require adding more "
                          << "than " << MaxElements
                          << " arguments to the function.\n");
        // We limit aggregate promotion to only promoting up to a fixed number
        // of elements of the aggregate.
        return false;
      }
      ToPromote.insert(std::move(Operands));
    }
  }

  if (Loads.empty())
    return true; // No users, this is a dead argument.

  // Okay, now we know that the argument is only used by load instructions and
  // it is safe to unconditionally perform all of them. Use alias analysis to
  // check to see if the pointer is guaranteed to not be modified from entry of
  // the function to each of the load instructions.

  // Because there could be several/many load instructions, remember which
  // blocks we know to be transparent to the load.
  df_iterator_default_set<BasicBlock *, 16> TranspBlocks;

  for (LoadInst *Load : Loads) {
    // Check to see if the load is invalidated from the start of the block to
    // the load itself.
    BasicBlock *BB = Load->getParent();

    MemoryLocation Loc = MemoryLocation::get(Load);
    if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, ModRefInfo::Mod))
      return false; // Pointer is invalidated!

    // Now check every path from the entry block to the load for transparency.
    // To do this, we perform a depth first search on the inverse CFG from the
    // loading block.
    for (BasicBlock *P : predecessors(BB)) {
      for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks))
        if (AAR.canBasicBlockModify(*TranspBB, Loc))
          return false;
    }
  }

  // If the path from the entry of the function to each load is free of
  // instructions that potentially invalidate the load, we can make the
  // transformation!
  return true;
}

/// Checks if a type could have padding bytes.
static bool isDenselyPacked(Type *type, const DataLayout &DL) {
  // There is no size information, so be conservative.
  if (!type->isSized())
    return false;

  // If the alloc size is not equal to the storage size, then there are padding
  // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128.
  if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type))
    return false;

  if (!isa<CompositeType>(type))
    return true;

  // For homogenous sequential types, check for padding within members.
  if (SequentialType *seqTy = dyn_cast<SequentialType>(type))
    return isDenselyPacked(seqTy->getElementType(), DL);

  // Check for padding within and between elements of a struct.
  StructType *StructTy = cast<StructType>(type);
  const StructLayout *Layout = DL.getStructLayout(StructTy);
  uint64_t StartPos = 0;
  for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) {
    Type *ElTy = StructTy->getElementType(i);
    if (!isDenselyPacked(ElTy, DL))
      return false;
    if (StartPos != Layout->getElementOffsetInBits(i))
      return false;
    StartPos += DL.getTypeAllocSizeInBits(ElTy);
  }

  return true;
}

/// Checks if the padding bytes of an argument could be accessed.
static bool canPaddingBeAccessed(Argument *arg) {
  assert(arg->hasByValAttr());

  // Track all the pointers to the argument to make sure they are not captured.
  SmallPtrSet<Value *, 16> PtrValues;
  PtrValues.insert(arg);

  // Track all of the stores.
  SmallVector<StoreInst *, 16> Stores;

  // Scan through the uses recursively to make sure the pointer is always used
  // sanely.
  SmallVector<Value *, 16> WorkList;
  WorkList.insert(WorkList.end(), arg->user_begin(), arg->user_end());
  while (!WorkList.empty()) {
    Value *V = WorkList.back();
    WorkList.pop_back();
    if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) {
      if (PtrValues.insert(V).second)
        WorkList.insert(WorkList.end(), V->user_begin(), V->user_end());
    } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) {
      Stores.push_back(Store);
    } else if (!isa<LoadInst>(V)) {
      return true;
    }
  }

  // Check to make sure the pointers aren't captured
  for (StoreInst *Store : Stores)
    if (PtrValues.count(Store->getValueOperand()))
      return true;

  return false;
}

/// PromoteArguments - This method checks the specified function to see if there
/// are any promotable arguments and if it is safe to promote the function (for
/// example, all callers are direct).  If safe to promote some arguments, it
/// calls the DoPromotion method.
static Function *
promoteArguments(Function *F, function_ref<AAResults &(Function &F)> AARGetter,
                 unsigned MaxElements,
                 Optional<function_ref<void(CallSite OldCS, CallSite NewCS)>>
                     ReplaceCallSite) {
  // Don't perform argument promotion for naked functions; otherwise we can end
  // up removing parameters that are seemingly 'not used' as they are referred
  // to in the assembly.
  if(F->hasFnAttribute(Attribute::Naked))
    return nullptr;

  // Make sure that it is local to this module.
  if (!F->hasLocalLinkage())
    return nullptr;

  // Don't promote arguments for variadic functions. Adding, removing, or
  // changing non-pack parameters can change the classification of pack
  // parameters. Frontends encode that classification at the call site in the
  // IR, while in the callee the classification is determined dynamically based
  // on the number of registers consumed so far.
  if (F->isVarArg())
    return nullptr;

  // First check: see if there are any pointer arguments!  If not, quick exit.
  SmallVector<Argument *, 16> PointerArgs;
  for (Argument &I : F->args())
    if (I.getType()->isPointerTy())
      PointerArgs.push_back(&I);
  if (PointerArgs.empty())
    return nullptr;

  // Second check: make sure that all callers are direct callers.  We can't
  // transform functions that have indirect callers.  Also see if the function
  // is self-recursive.
  bool isSelfRecursive = false;
  for (Use &U : F->uses()) {
    CallSite CS(U.getUser());
    // Must be a direct call.
    if (CS.getInstruction() == nullptr || !CS.isCallee(&U))
      return nullptr;

    // Can't change signature of musttail callee
    if (CS.isMustTailCall())
      return nullptr;

    if (CS.getInstruction()->getParent()->getParent() == F)
      isSelfRecursive = true;
  }

  // Can't change signature of musttail caller
  // FIXME: Support promoting whole chain of musttail functions
  for (BasicBlock &BB : *F)
    if (BB.getTerminatingMustTailCall())
      return nullptr;

  const DataLayout &DL = F->getParent()->getDataLayout();

  AAResults &AAR = AARGetter(*F);

  // Check to see which arguments are promotable.  If an argument is promotable,
  // add it to ArgsToPromote.
  SmallPtrSet<Argument *, 8> ArgsToPromote;
  SmallPtrSet<Argument *, 8> ByValArgsToTransform;
  for (Argument *PtrArg : PointerArgs) {
    Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();

    // Replace sret attribute with noalias. This reduces register pressure by
    // avoiding a register copy.
    if (PtrArg->hasStructRetAttr()) {
      unsigned ArgNo = PtrArg->getArgNo();
      F->removeParamAttr(ArgNo, Attribute::StructRet);
      F->addParamAttr(ArgNo, Attribute::NoAlias);
      for (Use &U : F->uses()) {
        CallSite CS(U.getUser());
        CS.removeParamAttr(ArgNo, Attribute::StructRet);
        CS.addParamAttr(ArgNo, Attribute::NoAlias);
      }
    }

    // If this is a byval argument, and if the aggregate type is small, just
    // pass the elements, which is always safe, if the passed value is densely
    // packed or if we can prove the padding bytes are never accessed. This does
    // not apply to inalloca.
    bool isSafeToPromote =
        PtrArg->hasByValAttr() &&
        (isDenselyPacked(AgTy, DL) || !canPaddingBeAccessed(PtrArg));
    if (isSafeToPromote) {
      if (StructType *STy = dyn_cast<StructType>(AgTy)) {
        if (MaxElements > 0 && STy->getNumElements() > MaxElements) {
          LLVM_DEBUG(dbgs() << "argpromotion disable promoting argument '"
                            << PtrArg->getName()
                            << "' because it would require adding more"
                            << " than " << MaxElements
                            << " arguments to the function.\n");
          continue;
        }

        // If all the elements are single-value types, we can promote it.
        bool AllSimple = true;
        for (const auto *EltTy : STy->elements()) {
          if (!EltTy->isSingleValueType()) {
            AllSimple = false;
            break;
          }
        }

        // Safe to transform, don't even bother trying to "promote" it.
        // Passing the elements as a scalar will allow sroa to hack on
        // the new alloca we introduce.
        if (AllSimple) {
          ByValArgsToTransform.insert(PtrArg);
          continue;
        }
      }
    }

    // If the argument is a recursive type and we're in a recursive
    // function, we could end up infinitely peeling the function argument.
    if (isSelfRecursive) {
      if (StructType *STy = dyn_cast<StructType>(AgTy)) {
        bool RecursiveType = false;
        for (const auto *EltTy : STy->elements()) {
          if (EltTy == PtrArg->getType()) {
            RecursiveType = true;
            break;
          }
        }
        if (RecursiveType)
          continue;
      }
    }

    // Otherwise, see if we can promote the pointer to its value.
    if (isSafeToPromoteArgument(PtrArg, PtrArg->hasByValOrInAllocaAttr(), AAR,
                                MaxElements))
      ArgsToPromote.insert(PtrArg);
  }

  // No promotable pointer arguments.
  if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
    return nullptr;

  return doPromotion(F, ArgsToPromote, ByValArgsToTransform, ReplaceCallSite);
}

PreservedAnalyses ArgumentPromotionPass::run(LazyCallGraph::SCC &C,
                                             CGSCCAnalysisManager &AM,
                                             LazyCallGraph &CG,
                                             CGSCCUpdateResult &UR) {
  bool Changed = false, LocalChange;

  // Iterate until we stop promoting from this SCC.
  do {
    LocalChange = false;

    for (LazyCallGraph::Node &N : C) {
      Function &OldF = N.getFunction();

      FunctionAnalysisManager &FAM =
          AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
      // FIXME: This lambda must only be used with this function. We should
      // skip the lambda and just get the AA results directly.
      auto AARGetter = [&](Function &F) -> AAResults & {
        assert(&F == &OldF && "Called with an unexpected function!");
        return FAM.getResult<AAManager>(F);
      };

      Function *NewF = promoteArguments(&OldF, AARGetter, MaxElements, None);
      if (!NewF)
        continue;
      LocalChange = true;

      // Directly substitute the functions in the call graph. Note that this
      // requires the old function to be completely dead and completely
      // replaced by the new function. It does no call graph updates, it merely
      // swaps out the particular function mapped to a particular node in the
      // graph.
      C.getOuterRefSCC().replaceNodeFunction(N, *NewF);
      OldF.eraseFromParent();
    }

    Changed |= LocalChange;
  } while (LocalChange);

  if (!Changed)
    return PreservedAnalyses::all();

  return PreservedAnalyses::none();
}

namespace {

/// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
struct ArgPromotion : public CallGraphSCCPass {
  // Pass identification, replacement for typeid
  static char ID;

  explicit ArgPromotion(unsigned MaxElements = 3)
      : CallGraphSCCPass(ID), MaxElements(MaxElements) {
    initializeArgPromotionPass(*PassRegistry::getPassRegistry());
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<AssumptionCacheTracker>();
    AU.addRequired<TargetLibraryInfoWrapperPass>();
    getAAResultsAnalysisUsage(AU);
    CallGraphSCCPass::getAnalysisUsage(AU);
  }

  bool runOnSCC(CallGraphSCC &SCC) override;

private:
  using llvm::Pass::doInitialization;

  bool doInitialization(CallGraph &CG) override;

  /// The maximum number of elements to expand, or 0 for unlimited.
  unsigned MaxElements;
};

} // end anonymous namespace

char ArgPromotion::ID = 0;

INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
                      "Promote 'by reference' arguments to scalars", false,
                      false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
                    "Promote 'by reference' arguments to scalars", false, false)

Pass *llvm::createArgumentPromotionPass(unsigned MaxElements) {
  return new ArgPromotion(MaxElements);
}

bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
  if (skipSCC(SCC))
    return false;

  // Get the callgraph information that we need to update to reflect our
  // changes.
  CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();

  LegacyAARGetter AARGetter(*this);

  bool Changed = false, LocalChange;

  // Iterate until we stop promoting from this SCC.
  do {
    LocalChange = false;
    // Attempt to promote arguments from all functions in this SCC.
    for (CallGraphNode *OldNode : SCC) {
      Function *OldF = OldNode->getFunction();
      if (!OldF)
        continue;

      auto ReplaceCallSite = [&](CallSite OldCS, CallSite NewCS) {
        Function *Caller = OldCS.getInstruction()->getParent()->getParent();
        CallGraphNode *NewCalleeNode =
            CG.getOrInsertFunction(NewCS.getCalledFunction());
        CallGraphNode *CallerNode = CG[Caller];
        CallerNode->replaceCallEdge(OldCS, NewCS, NewCalleeNode);
      };

      if (Function *NewF = promoteArguments(OldF, AARGetter, MaxElements,
                                            {ReplaceCallSite})) {
        LocalChange = true;

        // Update the call graph for the newly promoted function.
        CallGraphNode *NewNode = CG.getOrInsertFunction(NewF);
        NewNode->stealCalledFunctionsFrom(OldNode);
        if (OldNode->getNumReferences() == 0)
          delete CG.removeFunctionFromModule(OldNode);
        else
          OldF->setLinkage(Function::ExternalLinkage);

        // And updat ethe SCC we're iterating as well.
        SCC.ReplaceNode(OldNode, NewNode);
      }
    }
    // Remember that we changed something.
    Changed |= LocalChange;
  } while (LocalChange);

  return Changed;
}

bool ArgPromotion::doInitialization(CallGraph &CG) {
  return CallGraphSCCPass::doInitialization(CG);
}