Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
//===- llvm/unittest/Analysis/LoopPassManagerTest.cpp - LPM tests ---------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/LoopPassManager.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Support/SourceMgr.h"

// Workaround for the gcc 6.1 bug PR80916.
#if defined(__GNUC__) && __GNUC__ > 5
#  pragma GCC diagnostic push
#  pragma GCC diagnostic ignored "-Wunused-function"
#endif

#include "gmock/gmock.h"
#include "gtest/gtest.h"

#if defined(__GNUC__) && __GNUC__ > 5
#  pragma GCC diagnostic pop
#endif

using namespace llvm;

namespace {

using testing::DoDefault;
using testing::Return;
using testing::Expectation;
using testing::Invoke;
using testing::InvokeWithoutArgs;
using testing::_;

template <typename DerivedT, typename IRUnitT,
          typename AnalysisManagerT = AnalysisManager<IRUnitT>,
          typename... ExtraArgTs>
class MockAnalysisHandleBase {
public:
  class Analysis : public AnalysisInfoMixin<Analysis> {
    friend AnalysisInfoMixin<Analysis>;
    friend MockAnalysisHandleBase;
    static AnalysisKey Key;

    DerivedT *Handle;

    Analysis(DerivedT &Handle) : Handle(&Handle) {
      static_assert(std::is_base_of<MockAnalysisHandleBase, DerivedT>::value,
                    "Must pass the derived type to this template!");
    }

  public:
    class Result {
      friend MockAnalysisHandleBase;

      DerivedT *Handle;

      Result(DerivedT &Handle) : Handle(&Handle) {}

    public:
      // Forward invalidation events to the mock handle.
      bool invalidate(IRUnitT &IR, const PreservedAnalyses &PA,
                      typename AnalysisManagerT::Invalidator &Inv) {
        return Handle->invalidate(IR, PA, Inv);
      }
    };

    Result run(IRUnitT &IR, AnalysisManagerT &AM, ExtraArgTs... ExtraArgs) {
      return Handle->run(IR, AM, ExtraArgs...);
    }
  };

  Analysis getAnalysis() { return Analysis(static_cast<DerivedT &>(*this)); }
  typename Analysis::Result getResult() {
    return typename Analysis::Result(static_cast<DerivedT &>(*this));
  }

protected:
  // FIXME: MSVC seems unable to handle a lambda argument to Invoke from within
  // the template, so we use a boring static function.
  static bool invalidateCallback(IRUnitT &IR, const PreservedAnalyses &PA,
                                 typename AnalysisManagerT::Invalidator &Inv) {
    auto PAC = PA.template getChecker<Analysis>();
    return !PAC.preserved() &&
           !PAC.template preservedSet<AllAnalysesOn<IRUnitT>>();
  }

  /// Derived classes should call this in their constructor to set up default
  /// mock actions. (We can't do this in our constructor because this has to
  /// run after the DerivedT is constructed.)
  void setDefaults() {
    ON_CALL(static_cast<DerivedT &>(*this),
            run(_, _, testing::Matcher<ExtraArgTs>(_)...))
        .WillByDefault(Return(this->getResult()));
    ON_CALL(static_cast<DerivedT &>(*this), invalidate(_, _, _))
        .WillByDefault(Invoke(&invalidateCallback));
  }
};

template <typename DerivedT, typename IRUnitT, typename AnalysisManagerT,
          typename... ExtraArgTs>
AnalysisKey MockAnalysisHandleBase<DerivedT, IRUnitT, AnalysisManagerT,
                                   ExtraArgTs...>::Analysis::Key;

/// Mock handle for loop analyses.
///
/// This is provided as a template accepting an (optional) integer. Because
/// analyses are identified and queried by type, this allows constructing
/// multiple handles with distinctly typed nested 'Analysis' types that can be
/// registered and queried. If you want to register multiple loop analysis
/// passes, you'll need to instantiate this type with different values for I.
/// For example:
///
///   MockLoopAnalysisHandleTemplate<0> h0;
///   MockLoopAnalysisHandleTemplate<1> h1;
///   typedef decltype(h0)::Analysis Analysis0;
///   typedef decltype(h1)::Analysis Analysis1;
template <size_t I = static_cast<size_t>(-1)>
struct MockLoopAnalysisHandleTemplate
    : MockAnalysisHandleBase<MockLoopAnalysisHandleTemplate<I>, Loop,
                             LoopAnalysisManager,
                             LoopStandardAnalysisResults &> {
  typedef typename MockLoopAnalysisHandleTemplate::Analysis Analysis;

  MOCK_METHOD3_T(run, typename Analysis::Result(Loop &, LoopAnalysisManager &,
                                                LoopStandardAnalysisResults &));

  MOCK_METHOD3_T(invalidate, bool(Loop &, const PreservedAnalyses &,
                                  LoopAnalysisManager::Invalidator &));

  MockLoopAnalysisHandleTemplate() { this->setDefaults(); }
};

typedef MockLoopAnalysisHandleTemplate<> MockLoopAnalysisHandle;

struct MockFunctionAnalysisHandle
    : MockAnalysisHandleBase<MockFunctionAnalysisHandle, Function> {
  MOCK_METHOD2(run, Analysis::Result(Function &, FunctionAnalysisManager &));

  MOCK_METHOD3(invalidate, bool(Function &, const PreservedAnalyses &,
                                FunctionAnalysisManager::Invalidator &));

  MockFunctionAnalysisHandle() { setDefaults(); }
};

template <typename DerivedT, typename IRUnitT,
          typename AnalysisManagerT = AnalysisManager<IRUnitT>,
          typename... ExtraArgTs>
class MockPassHandleBase {
public:
  class Pass : public PassInfoMixin<Pass> {
    friend MockPassHandleBase;

    DerivedT *Handle;

    Pass(DerivedT &Handle) : Handle(&Handle) {
      static_assert(std::is_base_of<MockPassHandleBase, DerivedT>::value,
                    "Must pass the derived type to this template!");
    }

  public:
    PreservedAnalyses run(IRUnitT &IR, AnalysisManagerT &AM,
                          ExtraArgTs... ExtraArgs) {
      return Handle->run(IR, AM, ExtraArgs...);
    }
  };

  Pass getPass() { return Pass(static_cast<DerivedT &>(*this)); }

protected:
  /// Derived classes should call this in their constructor to set up default
  /// mock actions. (We can't do this in our constructor because this has to
  /// run after the DerivedT is constructed.)
  void setDefaults() {
    ON_CALL(static_cast<DerivedT &>(*this),
            run(_, _, testing::Matcher<ExtraArgTs>(_)...))
        .WillByDefault(Return(PreservedAnalyses::all()));
  }
};

struct MockLoopPassHandle
    : MockPassHandleBase<MockLoopPassHandle, Loop, LoopAnalysisManager,
                         LoopStandardAnalysisResults &, LPMUpdater &> {
  MOCK_METHOD4(run,
               PreservedAnalyses(Loop &, LoopAnalysisManager &,
                                 LoopStandardAnalysisResults &, LPMUpdater &));
  MockLoopPassHandle() { setDefaults(); }
};

struct MockFunctionPassHandle
    : MockPassHandleBase<MockFunctionPassHandle, Function> {
  MOCK_METHOD2(run, PreservedAnalyses(Function &, FunctionAnalysisManager &));

  MockFunctionPassHandle() { setDefaults(); }
};

struct MockModulePassHandle : MockPassHandleBase<MockModulePassHandle, Module> {
  MOCK_METHOD2(run, PreservedAnalyses(Module &, ModuleAnalysisManager &));

  MockModulePassHandle() { setDefaults(); }
};

/// Define a custom matcher for objects which support a 'getName' method
/// returning a StringRef.
///
/// LLVM often has IR objects or analysis objects which expose a StringRef name
/// and in tests it is convenient to match these by name for readability. This
/// matcher supports any type exposing a getName() method of this form.
///
/// It should be used as:
///
///   HasName("my_function")
///
/// No namespace or other qualification is required.
MATCHER_P(HasName, Name, "") {
  // The matcher's name and argument are printed in the case of failure, but we
  // also want to print out the name of the argument. This uses an implicitly
  // avaiable std::ostream, so we have to construct a std::string.
  *result_listener << "has name '" << arg.getName().str() << "'";
  return Name == arg.getName();
}

std::unique_ptr<Module> parseIR(LLVMContext &C, const char *IR) {
  SMDiagnostic Err;
  return parseAssemblyString(IR, Err, C);
}

class LoopPassManagerTest : public ::testing::Test {
protected:
  LLVMContext Context;
  std::unique_ptr<Module> M;

  LoopAnalysisManager LAM;
  FunctionAnalysisManager FAM;
  ModuleAnalysisManager MAM;

  MockLoopAnalysisHandle MLAHandle;
  MockLoopPassHandle MLPHandle;
  MockFunctionPassHandle MFPHandle;
  MockModulePassHandle MMPHandle;

  static PreservedAnalyses
  getLoopAnalysisResult(Loop &L, LoopAnalysisManager &AM,
                        LoopStandardAnalysisResults &AR, LPMUpdater &) {
    (void)AM.getResult<MockLoopAnalysisHandle::Analysis>(L, AR);
    return PreservedAnalyses::all();
  };

public:
  LoopPassManagerTest()
      : M(parseIR(Context,
                  "define void @f(i1* %ptr) {\n"
                  "entry:\n"
                  "  br label %loop.0\n"
                  "loop.0:\n"
                  "  %cond.0 = load volatile i1, i1* %ptr\n"
                  "  br i1 %cond.0, label %loop.0.0.ph, label %end\n"
                  "loop.0.0.ph:\n"
                  "  br label %loop.0.0\n"
                  "loop.0.0:\n"
                  "  %cond.0.0 = load volatile i1, i1* %ptr\n"
                  "  br i1 %cond.0.0, label %loop.0.0, label %loop.0.1.ph\n"
                  "loop.0.1.ph:\n"
                  "  br label %loop.0.1\n"
                  "loop.0.1:\n"
                  "  %cond.0.1 = load volatile i1, i1* %ptr\n"
                  "  br i1 %cond.0.1, label %loop.0.1, label %loop.0.latch\n"
                  "loop.0.latch:\n"
                  "  br label %loop.0\n"
                  "end:\n"
                  "  ret void\n"
                  "}\n"
                  "\n"
                  "define void @g(i1* %ptr) {\n"
                  "entry:\n"
                  "  br label %loop.g.0\n"
                  "loop.g.0:\n"
                  "  %cond.0 = load volatile i1, i1* %ptr\n"
                  "  br i1 %cond.0, label %loop.g.0, label %end\n"
                  "end:\n"
                  "  ret void\n"
                  "}\n")),
        LAM(true), FAM(true), MAM(true) {
    // Register our mock analysis.
    LAM.registerPass([&] { return MLAHandle.getAnalysis(); });

    // We need DominatorTreeAnalysis for LoopAnalysis.
    FAM.registerPass([&] { return DominatorTreeAnalysis(); });
    FAM.registerPass([&] { return LoopAnalysis(); });
    // We also allow loop passes to assume a set of other analyses and so need
    // those.
    FAM.registerPass([&] { return AAManager(); });
    FAM.registerPass([&] { return AssumptionAnalysis(); });
    FAM.registerPass([&] { return ScalarEvolutionAnalysis(); });
    FAM.registerPass([&] { return TargetLibraryAnalysis(); });
    FAM.registerPass([&] { return TargetIRAnalysis(); });

    // Cross-register proxies.
    LAM.registerPass([&] { return FunctionAnalysisManagerLoopProxy(FAM); });
    FAM.registerPass([&] { return LoopAnalysisManagerFunctionProxy(LAM); });
    FAM.registerPass([&] { return ModuleAnalysisManagerFunctionProxy(MAM); });
    MAM.registerPass([&] { return FunctionAnalysisManagerModuleProxy(FAM); });
  }
};

TEST_F(LoopPassManagerTest, Basic) {
  ModulePassManager MPM(true);
  ::testing::InSequence MakeExpectationsSequenced;

  // First we just visit all the loops in all the functions and get their
  // analysis results. This will run the analysis a total of four times,
  // once for each loop.
  EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
      .WillOnce(Invoke(getLoopAnalysisResult));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
  EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
      .WillOnce(Invoke(getLoopAnalysisResult));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
  EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
      .WillOnce(Invoke(getLoopAnalysisResult));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
  EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _))
      .WillOnce(Invoke(getLoopAnalysisResult));
  EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
  // Wire the loop pass through pass managers into the module pipeline.
  {
    LoopPassManager LPM(true);
    LPM.addPass(MLPHandle.getPass());
    FunctionPassManager FPM(true);
    FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
    MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
  }

  // Next we run two passes over the loops. The first one invalidates the
  // analyses for one loop, the second ones try to get the analysis results.
  // This should force only one analysis to re-run within the loop PM, but will
  // also invalidate everything after the loop pass manager finishes.
  EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
      .WillOnce(DoDefault())
      .WillOnce(Invoke(getLoopAnalysisResult));
  EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
      .WillOnce(InvokeWithoutArgs([] { return PreservedAnalyses::none(); }))
      .WillOnce(Invoke(getLoopAnalysisResult));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
  EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
      .WillOnce(DoDefault())
      .WillOnce(Invoke(getLoopAnalysisResult));
  EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _))
      .WillOnce(DoDefault())
      .WillOnce(Invoke(getLoopAnalysisResult));
  // Wire two loop pass runs into the module pipeline.
  {
    LoopPassManager LPM(true);
    LPM.addPass(MLPHandle.getPass());
    LPM.addPass(MLPHandle.getPass());
    FunctionPassManager FPM(true);
    FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
    MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
  }

  // And now run the pipeline across the module.
  MPM.run(*M, MAM);
}

TEST_F(LoopPassManagerTest, FunctionPassInvalidationOfLoopAnalyses) {
  ModulePassManager MPM(true);
  FunctionPassManager FPM(true);
  // We process each function completely in sequence.
  ::testing::Sequence FSequence, GSequence;

  // First, force the analysis result to be computed for each loop.
  EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _))
      .InSequence(FSequence)
      .WillOnce(DoDefault());
  EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _))
      .InSequence(FSequence)
      .WillOnce(DoDefault());
  EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _))
      .InSequence(FSequence)
      .WillOnce(DoDefault());
  EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _))
      .InSequence(GSequence)
      .WillOnce(DoDefault());
  FPM.addPass(createFunctionToLoopPassAdaptor(
      RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));

  // No need to re-run if we require again from a fresh loop pass manager.
  FPM.addPass(createFunctionToLoopPassAdaptor(
      RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));

  // For 'f', preserve most things but not the specific loop analyses.
  EXPECT_CALL(MFPHandle, run(HasName("f"), _))
      .InSequence(FSequence)
      .WillOnce(Return(getLoopPassPreservedAnalyses()));
  EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.0"), _, _))
      .InSequence(FSequence)
      .WillOnce(DoDefault());
  // On one loop, skip the invalidation (as though we did an internal update).
  EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.1"), _, _))
      .InSequence(FSequence)
      .WillOnce(Return(false));
  EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0"), _, _))
      .InSequence(FSequence)
      .WillOnce(DoDefault());
  // Now two loops still have to be recomputed.
  EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _))
      .InSequence(FSequence)
      .WillOnce(DoDefault());
  EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _))
      .InSequence(FSequence)
      .WillOnce(DoDefault());
  // Preserve things in the second function to ensure invalidation remains
  // isolated to one function.
  EXPECT_CALL(MFPHandle, run(HasName("g"), _))
      .InSequence(GSequence)
      .WillOnce(DoDefault());
  FPM.addPass(MFPHandle.getPass());
  FPM.addPass(createFunctionToLoopPassAdaptor(
      RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));

  EXPECT_CALL(MFPHandle, run(HasName("f"), _))
      .InSequence(FSequence)
      .WillOnce(DoDefault());
  // For 'g', fail to preserve anything, causing the loops themselves to be
  // cleared. We don't get an invalidation event here as the loop is gone, but
  // we should still have to recompute the analysis.
  EXPECT_CALL(MFPHandle, run(HasName("g"), _))
      .InSequence(GSequence)
      .WillOnce(Return(PreservedAnalyses::none()));
  EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _))
      .InSequence(GSequence)
      .WillOnce(DoDefault());
  FPM.addPass(MFPHandle.getPass());
  FPM.addPass(createFunctionToLoopPassAdaptor(
      RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));

  MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));

  // Verify with a separate function pass run that we didn't mess up 'f's
  // cache. No analysis runs should be necessary here.
  MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
      RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));

  MPM.run(*M, MAM);
}

TEST_F(LoopPassManagerTest, ModulePassInvalidationOfLoopAnalyses) {
  ModulePassManager MPM(true);
  ::testing::InSequence MakeExpectationsSequenced;

  // First, force the analysis result to be computed for each loop.
  EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
  EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
  MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
      RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));

  // Walking all the way out and all the way back in doesn't re-run the
  // analysis.
  MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
      RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));

  // But a module pass that doesn't preserve the actual mock loop analysis
  // invalidates all the way down and forces recomputing.
  EXPECT_CALL(MMPHandle, run(_, _)).WillOnce(InvokeWithoutArgs([] {
    auto PA = getLoopPassPreservedAnalyses();
    PA.preserve<FunctionAnalysisManagerModuleProxy>();
    return PA;
  }));
  // All the loop analyses from both functions get invalidated before we
  // recompute anything.
  EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.0"), _, _));
  // On one loop, again skip the invalidation (as though we did an internal
  // update).
  EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.1"), _, _))
      .WillOnce(Return(false));
  EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0"), _, _));
  EXPECT_CALL(MLAHandle, invalidate(HasName("loop.g.0"), _, _));
  // Now all but one of the loops gets re-analyzed.
  EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
  EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
  MPM.addPass(MMPHandle.getPass());
  MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
      RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));

  // Verify that the cached values persist.
  MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
      RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));

  // Now we fail to preserve the loop analysis and observe that the loop
  // analyses are cleared (so no invalidation event) as the loops themselves
  // are no longer valid.
  EXPECT_CALL(MMPHandle, run(_, _)).WillOnce(InvokeWithoutArgs([] {
    auto PA = PreservedAnalyses::none();
    PA.preserve<FunctionAnalysisManagerModuleProxy>();
    return PA;
  }));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
  EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
  MPM.addPass(MMPHandle.getPass());
  MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
      RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));

  // Verify that the cached values persist.
  MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
      RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));

  // Next, check that even if we preserve everything within the function itelf,
  // if the function's module pass proxy isn't preserved and the potential set
  // of functions changes, the clear reaches the loop analyses as well. This
  // will again trigger re-runs but not invalidation events.
  EXPECT_CALL(MMPHandle, run(_, _)).WillOnce(InvokeWithoutArgs([] {
    auto PA = PreservedAnalyses::none();
    PA.preserveSet<AllAnalysesOn<Function>>();
    PA.preserveSet<AllAnalysesOn<Loop>>();
    return PA;
  }));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
  EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
  MPM.addPass(MMPHandle.getPass());
  MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
      RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));

  MPM.run(*M, MAM);
}

// Test that if any of the bundled analyses provided in the LPM's signature
// become invalid, the analysis proxy itself becomes invalid and we clear all
// loop analysis results.
TEST_F(LoopPassManagerTest, InvalidationOfBundledAnalyses) {
  ModulePassManager MPM(true);
  FunctionPassManager FPM(true);
  ::testing::InSequence MakeExpectationsSequenced;

  // First, force the analysis result to be computed for each loop.
  EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
  FPM.addPass(createFunctionToLoopPassAdaptor(
      RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));

  // No need to re-run if we require again from a fresh loop pass manager.
  FPM.addPass(createFunctionToLoopPassAdaptor(
      RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));

  // Preserving everything but the loop analyses themselves results in
  // invalidation and running.
  EXPECT_CALL(MFPHandle, run(HasName("f"), _))
      .WillOnce(Return(getLoopPassPreservedAnalyses()));
  EXPECT_CALL(MLAHandle, invalidate(_, _, _)).Times(3);
  EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
  FPM.addPass(MFPHandle.getPass());
  FPM.addPass(createFunctionToLoopPassAdaptor(
      RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));

  // The rest don't invalidate analyses, they only trigger re-runs because we
  // clear the cache completely.
  EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
    auto PA = PreservedAnalyses::none();
    // Not preserving `AAManager`.
    PA.preserve<DominatorTreeAnalysis>();
    PA.preserve<LoopAnalysis>();
    PA.preserve<LoopAnalysisManagerFunctionProxy>();
    PA.preserve<ScalarEvolutionAnalysis>();
    return PA;
  }));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
  FPM.addPass(MFPHandle.getPass());
  FPM.addPass(createFunctionToLoopPassAdaptor(
      RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));

  EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
    auto PA = PreservedAnalyses::none();
    PA.preserve<AAManager>();
    // Not preserving `DominatorTreeAnalysis`.
    PA.preserve<LoopAnalysis>();
    PA.preserve<LoopAnalysisManagerFunctionProxy>();
    PA.preserve<ScalarEvolutionAnalysis>();
    return PA;
  }));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
  FPM.addPass(MFPHandle.getPass());
  FPM.addPass(createFunctionToLoopPassAdaptor(
      RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));

  EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
    auto PA = PreservedAnalyses::none();
    PA.preserve<AAManager>();
    PA.preserve<DominatorTreeAnalysis>();
    // Not preserving the `LoopAnalysis`.
    PA.preserve<LoopAnalysisManagerFunctionProxy>();
    PA.preserve<ScalarEvolutionAnalysis>();
    return PA;
  }));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
  FPM.addPass(MFPHandle.getPass());
  FPM.addPass(createFunctionToLoopPassAdaptor(
      RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));

  EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
    auto PA = PreservedAnalyses::none();
    PA.preserve<AAManager>();
    PA.preserve<DominatorTreeAnalysis>();
    PA.preserve<LoopAnalysis>();
    // Not preserving the `LoopAnalysisManagerFunctionProxy`.
    PA.preserve<ScalarEvolutionAnalysis>();
    return PA;
  }));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
  FPM.addPass(MFPHandle.getPass());
  FPM.addPass(createFunctionToLoopPassAdaptor(
      RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));

  EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
    auto PA = PreservedAnalyses::none();
    PA.preserve<AAManager>();
    PA.preserve<DominatorTreeAnalysis>();
    PA.preserve<LoopAnalysis>();
    PA.preserve<LoopAnalysisManagerFunctionProxy>();
    // Not preserving `ScalarEvolutionAnalysis`.
    return PA;
  }));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
  FPM.addPass(MFPHandle.getPass());
  FPM.addPass(createFunctionToLoopPassAdaptor(
      RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));

  // After all the churn on 'f', we'll compute the loop analysis results for
  // 'g' once with a requires pass and then run our mock pass over g a bunch
  // but just get cached results each time.
  EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
  EXPECT_CALL(MFPHandle, run(HasName("g"), _)).Times(6);

  MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
  MPM.run(*M, MAM);
}

TEST_F(LoopPassManagerTest, IndirectInvalidation) {
  // We need two distinct analysis types and handles.
  enum { A, B };
  MockLoopAnalysisHandleTemplate<A> MLAHandleA;
  MockLoopAnalysisHandleTemplate<B> MLAHandleB;
  LAM.registerPass([&] { return MLAHandleA.getAnalysis(); });
  LAM.registerPass([&] { return MLAHandleB.getAnalysis(); });
  typedef decltype(MLAHandleA)::Analysis AnalysisA;
  typedef decltype(MLAHandleB)::Analysis AnalysisB;

  // Set up AnalysisA to depend on our AnalysisB. For testing purposes we just
  // need to get the AnalysisB results in AnalysisA's run method and check if
  // AnalysisB gets invalidated in AnalysisA's invalidate method.
  ON_CALL(MLAHandleA, run(_, _, _))
      .WillByDefault(Invoke([&](Loop &L, LoopAnalysisManager &AM,
                                LoopStandardAnalysisResults &AR) {
        (void)AM.getResult<AnalysisB>(L, AR);
        return MLAHandleA.getResult();
      }));
  ON_CALL(MLAHandleA, invalidate(_, _, _))
      .WillByDefault(Invoke([](Loop &L, const PreservedAnalyses &PA,
                               LoopAnalysisManager::Invalidator &Inv) {
        auto PAC = PA.getChecker<AnalysisA>();
        return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Loop>>()) ||
               Inv.invalidate<AnalysisB>(L, PA);
      }));

  ::testing::InSequence MakeExpectationsSequenced;

  // Compute the analyses across all of 'f' first.
  EXPECT_CALL(MLAHandleA, run(HasName("loop.0.0"), _, _));
  EXPECT_CALL(MLAHandleB, run(HasName("loop.0.0"), _, _));
  EXPECT_CALL(MLAHandleA, run(HasName("loop.0.1"), _, _));
  EXPECT_CALL(MLAHandleB, run(HasName("loop.0.1"), _, _));
  EXPECT_CALL(MLAHandleA, run(HasName("loop.0"), _, _));
  EXPECT_CALL(MLAHandleB, run(HasName("loop.0"), _, _));

  // Now we invalidate AnalysisB (but not AnalysisA) for one of the loops and
  // preserve everything for the rest. This in turn triggers that one loop to
  // recompute both AnalysisB *and* AnalysisA if indirect invalidation is
  // working.
  EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
      .WillOnce(InvokeWithoutArgs([] {
        auto PA = getLoopPassPreservedAnalyses();
        // Specifically preserve AnalysisA so that it would survive if it
        // didn't depend on AnalysisB.
        PA.preserve<AnalysisA>();
        return PA;
      }));
  // It happens that AnalysisB is invalidated first. That shouldn't matter
  // though, and we should still call AnalysisA's invalidation.
  EXPECT_CALL(MLAHandleB, invalidate(HasName("loop.0.0"), _, _));
  EXPECT_CALL(MLAHandleA, invalidate(HasName("loop.0.0"), _, _));
  EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
      .WillOnce(Invoke([](Loop &L, LoopAnalysisManager &AM,
                          LoopStandardAnalysisResults &AR, LPMUpdater &) {
        (void)AM.getResult<AnalysisA>(L, AR);
        return PreservedAnalyses::all();
      }));
  EXPECT_CALL(MLAHandleA, run(HasName("loop.0.0"), _, _));
  EXPECT_CALL(MLAHandleB, run(HasName("loop.0.0"), _, _));
  // The rest of the loops should run and get cached results.
  EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
      .Times(2)
      .WillRepeatedly(Invoke([](Loop &L, LoopAnalysisManager &AM,
                                LoopStandardAnalysisResults &AR, LPMUpdater &) {
        (void)AM.getResult<AnalysisA>(L, AR);
        return PreservedAnalyses::all();
      }));
  EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
      .Times(2)
      .WillRepeatedly(Invoke([](Loop &L, LoopAnalysisManager &AM,
                                LoopStandardAnalysisResults &AR, LPMUpdater &) {
        (void)AM.getResult<AnalysisA>(L, AR);
        return PreservedAnalyses::all();
      }));

  // The run over 'g' should be boring, with us just computing the analyses once
  // up front and then running loop passes and getting cached results.
  EXPECT_CALL(MLAHandleA, run(HasName("loop.g.0"), _, _));
  EXPECT_CALL(MLAHandleB, run(HasName("loop.g.0"), _, _));
  EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _))
      .Times(2)
      .WillRepeatedly(Invoke([](Loop &L, LoopAnalysisManager &AM,
                                LoopStandardAnalysisResults &AR, LPMUpdater &) {
        (void)AM.getResult<AnalysisA>(L, AR);
        return PreservedAnalyses::all();
      }));

  // Build the pipeline and run it.
  ModulePassManager MPM(true);
  FunctionPassManager FPM(true);
  FPM.addPass(
      createFunctionToLoopPassAdaptor(RequireAnalysisLoopPass<AnalysisA>()));
  LoopPassManager LPM(true);
  LPM.addPass(MLPHandle.getPass());
  LPM.addPass(MLPHandle.getPass());
  FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
  MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
  MPM.run(*M, MAM);
}

TEST_F(LoopPassManagerTest, IndirectOuterPassInvalidation) {
  typedef decltype(MLAHandle)::Analysis LoopAnalysis;

  MockFunctionAnalysisHandle MFAHandle;
  FAM.registerPass([&] { return MFAHandle.getAnalysis(); });
  typedef decltype(MFAHandle)::Analysis FunctionAnalysis;

  // Set up the loop analysis to depend on both the function and module
  // analysis.
  ON_CALL(MLAHandle, run(_, _, _))
      .WillByDefault(Invoke([&](Loop &L, LoopAnalysisManager &AM,
                                LoopStandardAnalysisResults &AR) {
        auto &FAMP = AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR);
        auto &FAM = FAMP.getManager();
        Function &F = *L.getHeader()->getParent();
        if (FAM.getCachedResult<FunctionAnalysis>(F))
          FAMP.registerOuterAnalysisInvalidation<FunctionAnalysis,
                                                 LoopAnalysis>();
        return MLAHandle.getResult();
      }));

  ::testing::InSequence MakeExpectationsSequenced;

  // Compute the analyses across all of 'f' first.
  EXPECT_CALL(MFPHandle, run(HasName("f"), _))
      .WillOnce(Invoke([](Function &F, FunctionAnalysisManager &AM) {
        // Force the computing of the function analysis so it is available in
        // this function.
        (void)AM.getResult<FunctionAnalysis>(F);
        return PreservedAnalyses::all();
      }));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));

  // Now invalidate the function analysis but preserve the loop analyses.
  // This should trigger immediate invalidation of the loop analyses, despite
  // the fact that they were preserved.
  EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
    auto PA = getLoopPassPreservedAnalyses();
    PA.preserveSet<AllAnalysesOn<Loop>>();
    return PA;
  }));
  EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.0"), _, _));
  EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.1"), _, _));
  EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0"), _, _));

  // And re-running a requires pass recomputes them.
  EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));

  // When we run over 'g' we don't populate the cache with the function
  // analysis.
  EXPECT_CALL(MFPHandle, run(HasName("g"), _))
      .WillOnce(Return(PreservedAnalyses::all()));
  EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));

  // Which means that no extra invalidation occurs and cached values are used.
  EXPECT_CALL(MFPHandle, run(HasName("g"), _)).WillOnce(InvokeWithoutArgs([] {
    auto PA = getLoopPassPreservedAnalyses();
    PA.preserveSet<AllAnalysesOn<Loop>>();
    return PA;
  }));

  // Build the pipeline and run it.
  ModulePassManager MPM(true);
  FunctionPassManager FPM(true);
  FPM.addPass(MFPHandle.getPass());
  FPM.addPass(
      createFunctionToLoopPassAdaptor(RequireAnalysisLoopPass<LoopAnalysis>()));
  FPM.addPass(MFPHandle.getPass());
  FPM.addPass(
      createFunctionToLoopPassAdaptor(RequireAnalysisLoopPass<LoopAnalysis>()));
  MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
  MPM.run(*M, MAM);
}

TEST_F(LoopPassManagerTest, LoopChildInsertion) {
  // Super boring module with three loops in a single loop nest.
  M = parseIR(Context, "define void @f(i1* %ptr) {\n"
                       "entry:\n"
                       "  br label %loop.0\n"
                       "loop.0:\n"
                       "  %cond.0 = load volatile i1, i1* %ptr\n"
                       "  br i1 %cond.0, label %loop.0.0.ph, label %end\n"
                       "loop.0.0.ph:\n"
                       "  br label %loop.0.0\n"
                       "loop.0.0:\n"
                       "  %cond.0.0 = load volatile i1, i1* %ptr\n"
                       "  br i1 %cond.0.0, label %loop.0.0, label %loop.0.1.ph\n"
                       "loop.0.1.ph:\n"
                       "  br label %loop.0.1\n"
                       "loop.0.1:\n"
                       "  %cond.0.1 = load volatile i1, i1* %ptr\n"
                       "  br i1 %cond.0.1, label %loop.0.1, label %loop.0.2.ph\n"
                       "loop.0.2.ph:\n"
                       "  br label %loop.0.2\n"
                       "loop.0.2:\n"
                       "  %cond.0.2 = load volatile i1, i1* %ptr\n"
                       "  br i1 %cond.0.2, label %loop.0.2, label %loop.0.latch\n"
                       "loop.0.latch:\n"
                       "  br label %loop.0\n"
                       "end:\n"
                       "  ret void\n"
                       "}\n");

  // Build up variables referring into the IR so we can rewrite it below
  // easily.
  Function &F = *M->begin();
  ASSERT_THAT(F, HasName("f"));
  Argument &Ptr = *F.arg_begin();
  auto BBI = F.begin();
  BasicBlock &EntryBB = *BBI++;
  ASSERT_THAT(EntryBB, HasName("entry"));
  BasicBlock &Loop0BB = *BBI++;
  ASSERT_THAT(Loop0BB, HasName("loop.0"));
  BasicBlock &Loop00PHBB = *BBI++;
  ASSERT_THAT(Loop00PHBB, HasName("loop.0.0.ph"));
  BasicBlock &Loop00BB = *BBI++;
  ASSERT_THAT(Loop00BB, HasName("loop.0.0"));
  BasicBlock &Loop01PHBB = *BBI++;
  ASSERT_THAT(Loop01PHBB, HasName("loop.0.1.ph"));
  BasicBlock &Loop01BB = *BBI++;
  ASSERT_THAT(Loop01BB, HasName("loop.0.1"));
  BasicBlock &Loop02PHBB = *BBI++;
  ASSERT_THAT(Loop02PHBB, HasName("loop.0.2.ph"));
  BasicBlock &Loop02BB = *BBI++;
  ASSERT_THAT(Loop02BB, HasName("loop.0.2"));
  BasicBlock &Loop0LatchBB = *BBI++;
  ASSERT_THAT(Loop0LatchBB, HasName("loop.0.latch"));
  BasicBlock &EndBB = *BBI++;
  ASSERT_THAT(EndBB, HasName("end"));
  ASSERT_THAT(BBI, F.end());
  auto CreateCondBr = [&](BasicBlock *TrueBB, BasicBlock *FalseBB,
                          const char *Name, BasicBlock *BB) {
    auto *Cond = new LoadInst(&Ptr, Name, /*isVolatile*/ true, BB);
    BranchInst::Create(TrueBB, FalseBB, Cond, BB);
  };

  // Build the pass managers and register our pipeline. We build a single loop
  // pass pipeline consisting of three mock pass runs over each loop. After
  // this we run both domtree and loop verification passes to make sure that
  // the IR remained valid during our mutations.
  ModulePassManager MPM(true);
  FunctionPassManager FPM(true);
  LoopPassManager LPM(true);
  LPM.addPass(MLPHandle.getPass());
  LPM.addPass(MLPHandle.getPass());
  LPM.addPass(MLPHandle.getPass());
  FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
  FPM.addPass(DominatorTreeVerifierPass());
  FPM.addPass(LoopVerifierPass());
  MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));

  // All the visit orders are deterministic, so we use simple fully order
  // expectations.
  ::testing::InSequence MakeExpectationsSequenced;

  // We run loop passes three times over each of the loops.
  EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
      .WillOnce(Invoke(getLoopAnalysisResult));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
  EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
      .Times(2)
      .WillRepeatedly(Invoke(getLoopAnalysisResult));

  EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
      .WillOnce(Invoke(getLoopAnalysisResult));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));

  // When running over the middle loop, the second run inserts two new child
  // loops, inserting them and itself into the worklist.
  BasicBlock *NewLoop010BB, *NewLoop01LatchBB;
  EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
      .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
                           LoopStandardAnalysisResults &AR,
                           LPMUpdater &Updater) {
        auto *NewLoop = AR.LI.AllocateLoop();
        L.addChildLoop(NewLoop);
        auto *NewLoop010PHBB =
            BasicBlock::Create(Context, "loop.0.1.0.ph", &F, &Loop02PHBB);
        NewLoop010BB =
            BasicBlock::Create(Context, "loop.0.1.0", &F, &Loop02PHBB);
        NewLoop01LatchBB =
            BasicBlock::Create(Context, "loop.0.1.latch", &F, &Loop02PHBB);
        Loop01BB.getTerminator()->replaceUsesOfWith(&Loop01BB, NewLoop010PHBB);
        BranchInst::Create(NewLoop010BB, NewLoop010PHBB);
        CreateCondBr(NewLoop01LatchBB, NewLoop010BB, "cond.0.1.0",
                     NewLoop010BB);
        BranchInst::Create(&Loop01BB, NewLoop01LatchBB);
        AR.DT.addNewBlock(NewLoop010PHBB, &Loop01BB);
        AR.DT.addNewBlock(NewLoop010BB, NewLoop010PHBB);
        AR.DT.addNewBlock(NewLoop01LatchBB, NewLoop010BB);
        EXPECT_TRUE(AR.DT.verify());
        L.addBasicBlockToLoop(NewLoop010PHBB, AR.LI);
        NewLoop->addBasicBlockToLoop(NewLoop010BB, AR.LI);
        L.addBasicBlockToLoop(NewLoop01LatchBB, AR.LI);
        NewLoop->verifyLoop();
        L.verifyLoop();
        Updater.addChildLoops({NewLoop});
        return PreservedAnalyses::all();
      }));

  // We should immediately drop down to fully visit the new inner loop.
  EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.0"), _, _, _))
      .WillOnce(Invoke(getLoopAnalysisResult));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0.1.0"), _, _));
  EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.0"), _, _, _))
      .Times(2)
      .WillRepeatedly(Invoke(getLoopAnalysisResult));

  // After visiting the inner loop, we should re-visit the second loop
  // reflecting its new loop nest structure.
  EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
      .WillOnce(Invoke(getLoopAnalysisResult));

  // In the second run over the middle loop after we've visited the new child,
  // we add another child to check that we can repeatedly add children, and add
  // children to a loop that already has children.
  EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
      .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
                           LoopStandardAnalysisResults &AR,
                           LPMUpdater &Updater) {
        auto *NewLoop = AR.LI.AllocateLoop();
        L.addChildLoop(NewLoop);
        auto *NewLoop011PHBB = BasicBlock::Create(Context, "loop.0.1.1.ph", &F, NewLoop01LatchBB);
        auto *NewLoop011BB = BasicBlock::Create(Context, "loop.0.1.1", &F, NewLoop01LatchBB);
        NewLoop010BB->getTerminator()->replaceUsesOfWith(NewLoop01LatchBB,
                                                         NewLoop011PHBB);
        BranchInst::Create(NewLoop011BB, NewLoop011PHBB);
        CreateCondBr(NewLoop01LatchBB, NewLoop011BB, "cond.0.1.1",
                     NewLoop011BB);
        AR.DT.addNewBlock(NewLoop011PHBB, NewLoop010BB);
        auto *NewDTNode = AR.DT.addNewBlock(NewLoop011BB, NewLoop011PHBB);
        AR.DT.changeImmediateDominator(AR.DT[NewLoop01LatchBB], NewDTNode);
        EXPECT_TRUE(AR.DT.verify());
        L.addBasicBlockToLoop(NewLoop011PHBB, AR.LI);
        NewLoop->addBasicBlockToLoop(NewLoop011BB, AR.LI);
        NewLoop->verifyLoop();
        L.verifyLoop();
        Updater.addChildLoops({NewLoop});
        return PreservedAnalyses::all();
      }));

  // Again, we should immediately drop down to visit the new, unvisited child
  // loop. We don't need to revisit the other child though.
  EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.1"), _, _, _))
      .WillOnce(Invoke(getLoopAnalysisResult));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0.1.1"), _, _));
  EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.1"), _, _, _))
      .Times(2)
      .WillRepeatedly(Invoke(getLoopAnalysisResult));

  // And now we should pop back up to the second loop and do a full pipeline of
  // three passes on its current form.
  EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
      .Times(3)
      .WillRepeatedly(Invoke(getLoopAnalysisResult));

  EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
      .WillOnce(Invoke(getLoopAnalysisResult));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0.2"), _, _));
  EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
      .Times(2)
      .WillRepeatedly(Invoke(getLoopAnalysisResult));

  EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
      .WillOnce(Invoke(getLoopAnalysisResult));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
  EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
      .Times(2)
      .WillRepeatedly(Invoke(getLoopAnalysisResult));

  // Now that all the expected actions are registered, run the pipeline over
  // our module. All of our expectations are verified when the test finishes.
  MPM.run(*M, MAM);
}

TEST_F(LoopPassManagerTest, LoopPeerInsertion) {
  // Super boring module with two loop nests and loop nest with two child
  // loops.
  M = parseIR(Context, "define void @f(i1* %ptr) {\n"
                       "entry:\n"
                       "  br label %loop.0\n"
                       "loop.0:\n"
                       "  %cond.0 = load volatile i1, i1* %ptr\n"
                       "  br i1 %cond.0, label %loop.0.0.ph, label %loop.2.ph\n"
                       "loop.0.0.ph:\n"
                       "  br label %loop.0.0\n"
                       "loop.0.0:\n"
                       "  %cond.0.0 = load volatile i1, i1* %ptr\n"
                       "  br i1 %cond.0.0, label %loop.0.0, label %loop.0.2.ph\n"
                       "loop.0.2.ph:\n"
                       "  br label %loop.0.2\n"
                       "loop.0.2:\n"
                       "  %cond.0.2 = load volatile i1, i1* %ptr\n"
                       "  br i1 %cond.0.2, label %loop.0.2, label %loop.0.latch\n"
                       "loop.0.latch:\n"
                       "  br label %loop.0\n"
                       "loop.2.ph:\n"
                       "  br label %loop.2\n"
                       "loop.2:\n"
                       "  %cond.2 = load volatile i1, i1* %ptr\n"
                       "  br i1 %cond.2, label %loop.2, label %end\n"
                       "end:\n"
                       "  ret void\n"
                       "}\n");

  // Build up variables referring into the IR so we can rewrite it below
  // easily.
  Function &F = *M->begin();
  ASSERT_THAT(F, HasName("f"));
  Argument &Ptr = *F.arg_begin();
  auto BBI = F.begin();
  BasicBlock &EntryBB = *BBI++;
  ASSERT_THAT(EntryBB, HasName("entry"));
  BasicBlock &Loop0BB = *BBI++;
  ASSERT_THAT(Loop0BB, HasName("loop.0"));
  BasicBlock &Loop00PHBB = *BBI++;
  ASSERT_THAT(Loop00PHBB, HasName("loop.0.0.ph"));
  BasicBlock &Loop00BB = *BBI++;
  ASSERT_THAT(Loop00BB, HasName("loop.0.0"));
  BasicBlock &Loop02PHBB = *BBI++;
  ASSERT_THAT(Loop02PHBB, HasName("loop.0.2.ph"));
  BasicBlock &Loop02BB = *BBI++;
  ASSERT_THAT(Loop02BB, HasName("loop.0.2"));
  BasicBlock &Loop0LatchBB = *BBI++;
  ASSERT_THAT(Loop0LatchBB, HasName("loop.0.latch"));
  BasicBlock &Loop2PHBB = *BBI++;
  ASSERT_THAT(Loop2PHBB, HasName("loop.2.ph"));
  BasicBlock &Loop2BB = *BBI++;
  ASSERT_THAT(Loop2BB, HasName("loop.2"));
  BasicBlock &EndBB = *BBI++;
  ASSERT_THAT(EndBB, HasName("end"));
  ASSERT_THAT(BBI, F.end());
  auto CreateCondBr = [&](BasicBlock *TrueBB, BasicBlock *FalseBB,
                          const char *Name, BasicBlock *BB) {
    auto *Cond = new LoadInst(&Ptr, Name, /*isVolatile*/ true, BB);
    BranchInst::Create(TrueBB, FalseBB, Cond, BB);
  };

  // Build the pass managers and register our pipeline. We build a single loop
  // pass pipeline consisting of three mock pass runs over each loop. After
  // this we run both domtree and loop verification passes to make sure that
  // the IR remained valid during our mutations.
  ModulePassManager MPM(true);
  FunctionPassManager FPM(true);
  LoopPassManager LPM(true);
  LPM.addPass(MLPHandle.getPass());
  LPM.addPass(MLPHandle.getPass());
  LPM.addPass(MLPHandle.getPass());
  FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
  FPM.addPass(DominatorTreeVerifierPass());
  FPM.addPass(LoopVerifierPass());
  MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));

  // All the visit orders are deterministic, so we use simple fully order
  // expectations.
  ::testing::InSequence MakeExpectationsSequenced;

  // We run loop passes three times over each of the loops.
  EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
      .WillOnce(Invoke(getLoopAnalysisResult));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));

  // On the second run, we insert a sibling loop.
  EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
      .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
                           LoopStandardAnalysisResults &AR,
                           LPMUpdater &Updater) {
        auto *NewLoop = AR.LI.AllocateLoop();
        L.getParentLoop()->addChildLoop(NewLoop);
        auto *NewLoop01PHBB = BasicBlock::Create(Context, "loop.0.1.ph", &F, &Loop02PHBB);
        auto *NewLoop01BB = BasicBlock::Create(Context, "loop.0.1", &F, &Loop02PHBB);
        BranchInst::Create(NewLoop01BB, NewLoop01PHBB);
        CreateCondBr(&Loop02PHBB, NewLoop01BB, "cond.0.1", NewLoop01BB);
        Loop00BB.getTerminator()->replaceUsesOfWith(&Loop02PHBB, NewLoop01PHBB);
        AR.DT.addNewBlock(NewLoop01PHBB, &Loop00BB);
        auto *NewDTNode = AR.DT.addNewBlock(NewLoop01BB, NewLoop01PHBB);
        AR.DT.changeImmediateDominator(AR.DT[&Loop02PHBB], NewDTNode);
        EXPECT_TRUE(AR.DT.verify());
        L.getParentLoop()->addBasicBlockToLoop(NewLoop01PHBB, AR.LI);
        NewLoop->addBasicBlockToLoop(NewLoop01BB, AR.LI);
        L.getParentLoop()->verifyLoop();
        Updater.addSiblingLoops({NewLoop});
        return PreservedAnalyses::all();
      }));
  // We finish processing this loop as sibling loops don't perturb the
  // postorder walk.
  EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
      .WillOnce(Invoke(getLoopAnalysisResult));

  // We visit the inserted sibling next.
  EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
      .WillOnce(Invoke(getLoopAnalysisResult));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
  EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
      .Times(2)
      .WillRepeatedly(Invoke(getLoopAnalysisResult));

  EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
      .WillOnce(Invoke(getLoopAnalysisResult));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0.2"), _, _));
  EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
      .WillOnce(Invoke(getLoopAnalysisResult));
  // Next, on the third pass run on the last inner loop we add more new
  // siblings, more than one, and one with nested child loops. By doing this at
  // the end we make sure that edge case works well.
  EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
      .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
                           LoopStandardAnalysisResults &AR,
                           LPMUpdater &Updater) {
        Loop *NewLoops[] = {AR.LI.AllocateLoop(), AR.LI.AllocateLoop(),
                            AR.LI.AllocateLoop()};
        L.getParentLoop()->addChildLoop(NewLoops[0]);
        L.getParentLoop()->addChildLoop(NewLoops[1]);
        NewLoops[1]->addChildLoop(NewLoops[2]);
        auto *NewLoop03PHBB =
            BasicBlock::Create(Context, "loop.0.3.ph", &F, &Loop0LatchBB);
        auto *NewLoop03BB =
            BasicBlock::Create(Context, "loop.0.3", &F, &Loop0LatchBB);
        auto *NewLoop04PHBB =
            BasicBlock::Create(Context, "loop.0.4.ph", &F, &Loop0LatchBB);
        auto *NewLoop04BB =
            BasicBlock::Create(Context, "loop.0.4", &F, &Loop0LatchBB);
        auto *NewLoop040PHBB =
            BasicBlock::Create(Context, "loop.0.4.0.ph", &F, &Loop0LatchBB);
        auto *NewLoop040BB =
            BasicBlock::Create(Context, "loop.0.4.0", &F, &Loop0LatchBB);
        auto *NewLoop04LatchBB =
            BasicBlock::Create(Context, "loop.0.4.latch", &F, &Loop0LatchBB);
        Loop02BB.getTerminator()->replaceUsesOfWith(&Loop0LatchBB, NewLoop03PHBB);
        BranchInst::Create(NewLoop03BB, NewLoop03PHBB);
        CreateCondBr(NewLoop04PHBB, NewLoop03BB, "cond.0.3", NewLoop03BB);
        BranchInst::Create(NewLoop04BB, NewLoop04PHBB);
        CreateCondBr(&Loop0LatchBB, NewLoop040PHBB, "cond.0.4", NewLoop04BB);
        BranchInst::Create(NewLoop040BB, NewLoop040PHBB);
        CreateCondBr(NewLoop04LatchBB, NewLoop040BB, "cond.0.4.0", NewLoop040BB);
        BranchInst::Create(NewLoop04BB, NewLoop04LatchBB);
        AR.DT.addNewBlock(NewLoop03PHBB, &Loop02BB);
        AR.DT.addNewBlock(NewLoop03BB, NewLoop03PHBB);
        AR.DT.addNewBlock(NewLoop04PHBB, NewLoop03BB);
        auto *NewDTNode = AR.DT.addNewBlock(NewLoop04BB, NewLoop04PHBB);
        AR.DT.changeImmediateDominator(AR.DT[&Loop0LatchBB], NewDTNode);
        AR.DT.addNewBlock(NewLoop040PHBB, NewLoop04BB);
        AR.DT.addNewBlock(NewLoop040BB, NewLoop040PHBB);
        AR.DT.addNewBlock(NewLoop04LatchBB, NewLoop040BB);
        EXPECT_TRUE(AR.DT.verify());
        L.getParentLoop()->addBasicBlockToLoop(NewLoop03PHBB, AR.LI);
        NewLoops[0]->addBasicBlockToLoop(NewLoop03BB, AR.LI);
        L.getParentLoop()->addBasicBlockToLoop(NewLoop04PHBB, AR.LI);
        NewLoops[1]->addBasicBlockToLoop(NewLoop04BB, AR.LI);
        NewLoops[1]->addBasicBlockToLoop(NewLoop040PHBB, AR.LI);
        NewLoops[2]->addBasicBlockToLoop(NewLoop040BB, AR.LI);
        NewLoops[1]->addBasicBlockToLoop(NewLoop04LatchBB, AR.LI);
        L.getParentLoop()->verifyLoop();
        Updater.addSiblingLoops({NewLoops[0], NewLoops[1]});
        return PreservedAnalyses::all();
      }));

  EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
      .WillOnce(Invoke(getLoopAnalysisResult));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0.3"), _, _));
  EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
      .Times(2)
      .WillRepeatedly(Invoke(getLoopAnalysisResult));

  // Note that we need to visit the inner loop of this added sibling before the
  // sibling itself!
  EXPECT_CALL(MLPHandle, run(HasName("loop.0.4.0"), _, _, _))
      .WillOnce(Invoke(getLoopAnalysisResult));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0.4.0"), _, _));
  EXPECT_CALL(MLPHandle, run(HasName("loop.0.4.0"), _, _, _))
      .Times(2)
      .WillRepeatedly(Invoke(getLoopAnalysisResult));

  EXPECT_CALL(MLPHandle, run(HasName("loop.0.4"), _, _, _))
      .WillOnce(Invoke(getLoopAnalysisResult));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0.4"), _, _));
  EXPECT_CALL(MLPHandle, run(HasName("loop.0.4"), _, _, _))
      .Times(2)
      .WillRepeatedly(Invoke(getLoopAnalysisResult));

  // And only now do we visit the outermost loop of the nest.
  EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
      .WillOnce(Invoke(getLoopAnalysisResult));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
  // On the second pass, we add sibling loops which become new top-level loops.
  EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
      .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
                           LoopStandardAnalysisResults &AR,
                           LPMUpdater &Updater) {
        auto *NewLoop = AR.LI.AllocateLoop();
        AR.LI.addTopLevelLoop(NewLoop);
        auto *NewLoop1PHBB = BasicBlock::Create(Context, "loop.1.ph", &F, &Loop2BB);
        auto *NewLoop1BB = BasicBlock::Create(Context, "loop.1", &F, &Loop2BB);
        BranchInst::Create(NewLoop1BB, NewLoop1PHBB);
        CreateCondBr(&Loop2PHBB, NewLoop1BB, "cond.1", NewLoop1BB);
        Loop0BB.getTerminator()->replaceUsesOfWith(&Loop2PHBB, NewLoop1PHBB);
        AR.DT.addNewBlock(NewLoop1PHBB, &Loop0BB);
        auto *NewDTNode = AR.DT.addNewBlock(NewLoop1BB, NewLoop1PHBB);
        AR.DT.changeImmediateDominator(AR.DT[&Loop2PHBB], NewDTNode);
        EXPECT_TRUE(AR.DT.verify());
        NewLoop->addBasicBlockToLoop(NewLoop1BB, AR.LI);
        NewLoop->verifyLoop();
        Updater.addSiblingLoops({NewLoop});
        return PreservedAnalyses::all();
      }));
  EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
      .WillOnce(Invoke(getLoopAnalysisResult));

  EXPECT_CALL(MLPHandle, run(HasName("loop.1"), _, _, _))
      .WillOnce(Invoke(getLoopAnalysisResult));
  EXPECT_CALL(MLAHandle, run(HasName("loop.1"), _, _));
  EXPECT_CALL(MLPHandle, run(HasName("loop.1"), _, _, _))
      .Times(2)
      .WillRepeatedly(Invoke(getLoopAnalysisResult));

  EXPECT_CALL(MLPHandle, run(HasName("loop.2"), _, _, _))
      .WillOnce(Invoke(getLoopAnalysisResult));
  EXPECT_CALL(MLAHandle, run(HasName("loop.2"), _, _));
  EXPECT_CALL(MLPHandle, run(HasName("loop.2"), _, _, _))
      .Times(2)
      .WillRepeatedly(Invoke(getLoopAnalysisResult));

  // Now that all the expected actions are registered, run the pipeline over
  // our module. All of our expectations are verified when the test finishes.
  MPM.run(*M, MAM);
}

TEST_F(LoopPassManagerTest, LoopDeletion) {
  // Build a module with a single loop nest that contains one outer loop with
  // three subloops, and one of those with its own subloop. We will
  // incrementally delete all of these to test different deletion scenarios.
  M = parseIR(Context, "define void @f(i1* %ptr) {\n"
                       "entry:\n"
                       "  br label %loop.0\n"
                       "loop.0:\n"
                       "  %cond.0 = load volatile i1, i1* %ptr\n"
                       "  br i1 %cond.0, label %loop.0.0.ph, label %end\n"
                       "loop.0.0.ph:\n"
                       "  br label %loop.0.0\n"
                       "loop.0.0:\n"
                       "  %cond.0.0 = load volatile i1, i1* %ptr\n"
                       "  br i1 %cond.0.0, label %loop.0.0, label %loop.0.1.ph\n"
                       "loop.0.1.ph:\n"
                       "  br label %loop.0.1\n"
                       "loop.0.1:\n"
                       "  %cond.0.1 = load volatile i1, i1* %ptr\n"
                       "  br i1 %cond.0.1, label %loop.0.1, label %loop.0.2.ph\n"
                       "loop.0.2.ph:\n"
                       "  br label %loop.0.2\n"
                       "loop.0.2:\n"
                       "  %cond.0.2 = load volatile i1, i1* %ptr\n"
                       "  br i1 %cond.0.2, label %loop.0.2.0.ph, label %loop.0.latch\n"
                       "loop.0.2.0.ph:\n"
                       "  br label %loop.0.2.0\n"
                       "loop.0.2.0:\n"
                       "  %cond.0.2.0 = load volatile i1, i1* %ptr\n"
                       "  br i1 %cond.0.2.0, label %loop.0.2.0, label %loop.0.2.latch\n"
                       "loop.0.2.latch:\n"
                       "  br label %loop.0.2\n"
                       "loop.0.latch:\n"
                       "  br label %loop.0\n"
                       "end:\n"
                       "  ret void\n"
                       "}\n");

  // Build up variables referring into the IR so we can rewrite it below
  // easily.
  Function &F = *M->begin();
  ASSERT_THAT(F, HasName("f"));
  Argument &Ptr = *F.arg_begin();
  auto BBI = F.begin();
  BasicBlock &EntryBB = *BBI++;
  ASSERT_THAT(EntryBB, HasName("entry"));
  BasicBlock &Loop0BB = *BBI++;
  ASSERT_THAT(Loop0BB, HasName("loop.0"));
  BasicBlock &Loop00PHBB = *BBI++;
  ASSERT_THAT(Loop00PHBB, HasName("loop.0.0.ph"));
  BasicBlock &Loop00BB = *BBI++;
  ASSERT_THAT(Loop00BB, HasName("loop.0.0"));
  BasicBlock &Loop01PHBB = *BBI++;
  ASSERT_THAT(Loop01PHBB, HasName("loop.0.1.ph"));
  BasicBlock &Loop01BB = *BBI++;
  ASSERT_THAT(Loop01BB, HasName("loop.0.1"));
  BasicBlock &Loop02PHBB = *BBI++;
  ASSERT_THAT(Loop02PHBB, HasName("loop.0.2.ph"));
  BasicBlock &Loop02BB = *BBI++;
  ASSERT_THAT(Loop02BB, HasName("loop.0.2"));
  BasicBlock &Loop020PHBB = *BBI++;
  ASSERT_THAT(Loop020PHBB, HasName("loop.0.2.0.ph"));
  BasicBlock &Loop020BB = *BBI++;
  ASSERT_THAT(Loop020BB, HasName("loop.0.2.0"));
  BasicBlock &Loop02LatchBB = *BBI++;
  ASSERT_THAT(Loop02LatchBB, HasName("loop.0.2.latch"));
  BasicBlock &Loop0LatchBB = *BBI++;
  ASSERT_THAT(Loop0LatchBB, HasName("loop.0.latch"));
  BasicBlock &EndBB = *BBI++;
  ASSERT_THAT(EndBB, HasName("end"));
  ASSERT_THAT(BBI, F.end());

  // Helper to do the actual deletion of a loop. We directly encode this here
  // to isolate ourselves from the rest of LLVM and for simplicity. Here we can
  // egregiously cheat based on knowledge of the test case. For example, we
  // have no PHI nodes and there is always a single i-dom.
  auto EraseLoop = [](Loop &L, BasicBlock &IDomBB,
                      LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
    assert(L.empty() && "Can only delete leaf loops with this routine!");
    SmallVector<BasicBlock *, 4> LoopBBs(L.block_begin(), L.block_end());
    Updater.markLoopAsDeleted(L, L.getName());
    IDomBB.getTerminator()->replaceUsesOfWith(L.getHeader(),
                                              L.getUniqueExitBlock());
    for (BasicBlock *LoopBB : LoopBBs) {
      SmallVector<DomTreeNode *, 4> ChildNodes(AR.DT[LoopBB]->begin(),
                                               AR.DT[LoopBB]->end());
      for (DomTreeNode *ChildNode : ChildNodes)
        AR.DT.changeImmediateDominator(ChildNode, AR.DT[&IDomBB]);
      AR.DT.eraseNode(LoopBB);
      AR.LI.removeBlock(LoopBB);
      LoopBB->dropAllReferences();
    }
    for (BasicBlock *LoopBB : LoopBBs)
      LoopBB->eraseFromParent();

    AR.LI.erase(&L);
  };

  // Build up the pass managers.
  ModulePassManager MPM(true);
  FunctionPassManager FPM(true);
  // We run several loop pass pipelines across the loop nest, but they all take
  // the same form of three mock pass runs in a loop pipeline followed by
  // domtree and loop verification. We use a lambda to stamp this out each
  // time.
  auto AddLoopPipelineAndVerificationPasses = [&] {
    LoopPassManager LPM(true);
    LPM.addPass(MLPHandle.getPass());
    LPM.addPass(MLPHandle.getPass());
    LPM.addPass(MLPHandle.getPass());
    FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
    FPM.addPass(DominatorTreeVerifierPass());
    FPM.addPass(LoopVerifierPass());
  };

  // All the visit orders are deterministic so we use simple fully order
  // expectations.
  ::testing::InSequence MakeExpectationsSequenced;

  // We run the loop pipeline with three passes over each of the loops. When
  // running over the middle loop, the second pass in the pipeline deletes it.
  // This should prevent the third pass from visiting it but otherwise leave
  // the process unimpacted.
  AddLoopPipelineAndVerificationPasses();
  EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
      .WillOnce(Invoke(getLoopAnalysisResult));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
  EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
      .Times(2)
      .WillRepeatedly(Invoke(getLoopAnalysisResult));

  EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
      .WillOnce(Invoke(getLoopAnalysisResult));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
  EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
      .WillOnce(
          Invoke([&](Loop &L, LoopAnalysisManager &AM,
                     LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
            Loop *ParentL = L.getParentLoop();
            AR.SE.forgetLoop(&L);
            EraseLoop(L, Loop01PHBB, AR, Updater);
            ParentL->verifyLoop();
            return PreservedAnalyses::all();
          }));

  EXPECT_CALL(MLPHandle, run(HasName("loop.0.2.0"), _, _, _))
      .WillOnce(Invoke(getLoopAnalysisResult));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0.2.0"), _, _));
  EXPECT_CALL(MLPHandle, run(HasName("loop.0.2.0"), _, _, _))
      .Times(2)
      .WillRepeatedly(Invoke(getLoopAnalysisResult));

  EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
      .WillOnce(Invoke(getLoopAnalysisResult));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0.2"), _, _));
  EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
      .Times(2)
      .WillRepeatedly(Invoke(getLoopAnalysisResult));

  EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
      .WillOnce(Invoke(getLoopAnalysisResult));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
  EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
      .Times(2)
      .WillRepeatedly(Invoke(getLoopAnalysisResult));

  // Run the loop pipeline again. This time we delete the last loop, which
  // contains a nested loop within it and insert a new loop into the nest. This
  // makes sure we can handle nested loop deletion.
  AddLoopPipelineAndVerificationPasses();
  EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
      .Times(3)
      .WillRepeatedly(Invoke(getLoopAnalysisResult));

  EXPECT_CALL(MLPHandle, run(HasName("loop.0.2.0"), _, _, _))
      .Times(3)
      .WillRepeatedly(Invoke(getLoopAnalysisResult));

  EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
      .WillOnce(Invoke(getLoopAnalysisResult));
  BasicBlock *NewLoop03PHBB;
  EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
      .WillOnce(
          Invoke([&](Loop &L, LoopAnalysisManager &AM,
                     LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
            AR.SE.forgetLoop(*L.begin());
            EraseLoop(**L.begin(), Loop020PHBB, AR, Updater);

            auto *ParentL = L.getParentLoop();
            AR.SE.forgetLoop(&L);
            EraseLoop(L, Loop02PHBB, AR, Updater);

            // Now insert a new sibling loop.
            auto *NewSibling = AR.LI.AllocateLoop();
            ParentL->addChildLoop(NewSibling);
            NewLoop03PHBB =
                BasicBlock::Create(Context, "loop.0.3.ph", &F, &Loop0LatchBB);
            auto *NewLoop03BB =
                BasicBlock::Create(Context, "loop.0.3", &F, &Loop0LatchBB);
            BranchInst::Create(NewLoop03BB, NewLoop03PHBB);
            auto *Cond = new LoadInst(&Ptr, "cond.0.3", /*isVolatile*/ true,
                                      NewLoop03BB);
            BranchInst::Create(&Loop0LatchBB, NewLoop03BB, Cond, NewLoop03BB);
            Loop02PHBB.getTerminator()->replaceUsesOfWith(&Loop0LatchBB,
                                                          NewLoop03PHBB);
            AR.DT.addNewBlock(NewLoop03PHBB, &Loop02PHBB);
            AR.DT.addNewBlock(NewLoop03BB, NewLoop03PHBB);
            AR.DT.changeImmediateDominator(AR.DT[&Loop0LatchBB],
                                           AR.DT[NewLoop03BB]);
            EXPECT_TRUE(AR.DT.verify());
            ParentL->addBasicBlockToLoop(NewLoop03PHBB, AR.LI);
            NewSibling->addBasicBlockToLoop(NewLoop03BB, AR.LI);
            NewSibling->verifyLoop();
            ParentL->verifyLoop();
            Updater.addSiblingLoops({NewSibling});
            return PreservedAnalyses::all();
          }));

  // To respect our inner-to-outer traversal order, we must visit the
  // newly-inserted sibling of the loop we just deleted before we visit the
  // outer loop. When we do so, this must compute a fresh analysis result, even
  // though our new loop has the same pointer value as the loop we deleted.
  EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
      .WillOnce(Invoke(getLoopAnalysisResult));
  EXPECT_CALL(MLAHandle, run(HasName("loop.0.3"), _, _));
  EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
      .Times(2)
      .WillRepeatedly(Invoke(getLoopAnalysisResult));

  EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
      .Times(3)
      .WillRepeatedly(Invoke(getLoopAnalysisResult));

  // In the final loop pipeline run we delete every loop, including the last
  // loop of the nest. We do this again in the second pass in the pipeline, and
  // as a consequence we never make it to three runs on any loop. We also cover
  // deleting multiple loops in a single pipeline, deleting the first loop and
  // deleting the (last) top level loop.
  AddLoopPipelineAndVerificationPasses();
  EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
      .WillOnce(Invoke(getLoopAnalysisResult));
  EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
      .WillOnce(
          Invoke([&](Loop &L, LoopAnalysisManager &AM,
                     LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
            AR.SE.forgetLoop(&L);
            EraseLoop(L, Loop00PHBB, AR, Updater);
            return PreservedAnalyses::all();
          }));

  EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
      .WillOnce(Invoke(getLoopAnalysisResult));
  EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
      .WillOnce(
          Invoke([&](Loop &L, LoopAnalysisManager &AM,
                     LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
            AR.SE.forgetLoop(&L);
            EraseLoop(L, *NewLoop03PHBB, AR, Updater);
            return PreservedAnalyses::all();
          }));

  EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
      .WillOnce(Invoke(getLoopAnalysisResult));
  EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
      .WillOnce(
          Invoke([&](Loop &L, LoopAnalysisManager &AM,
                     LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
            AR.SE.forgetLoop(&L);
            EraseLoop(L, EntryBB, AR, Updater);
            return PreservedAnalyses::all();
          }));

  // Add the function pass pipeline now that it is fully built up and run it
  // over the module's one function.
  MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
  MPM.run(*M, MAM);
}
}