Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
/*	$NetBSD: ntp_fp.h,v 1.10 2018/04/07 00:19:52 christos Exp $	*/

/*
 * ntp_fp.h - definitions for NTP fixed/floating-point arithmetic
 */

#ifndef NTP_FP_H
#define NTP_FP_H

#include "ntp_types.h"

/*
 * NTP uses two fixed point formats.  The first (l_fp) is the "long"
 * format and is 64 bits long with the decimal between bits 31 and 32.
 * This is used for time stamps in the NTP packet header (in network
 * byte order) and for internal computations of offsets (in local host
 * byte order). We use the same structure for both signed and unsigned
 * values, which is a big hack but saves rewriting all the operators
 * twice. Just to confuse this, we also sometimes just carry the
 * fractional part in calculations, in both signed and unsigned forms.
 * Anyway, an l_fp looks like:
 *
 *    0			  1		      2			  3
 *    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 *   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 *   |			       Integral Part			     |
 *   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 *   |			       Fractional Part			     |
 *   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 *
 */
typedef struct {
	union {
		u_int32 Xl_ui;
		int32 Xl_i;
	} Ul_i;
	u_int32	l_uf;
} l_fp;

#define l_ui	Ul_i.Xl_ui		/* unsigned integral part */
#define	l_i	Ul_i.Xl_i		/* signed integral part */

/*
 * Fractional precision (of an l_fp) is actually the number of
 * bits in a long.
 */
#define	FRACTION_PREC	(32)


/*
 * The second fixed point format is 32 bits, with the decimal between
 * bits 15 and 16.  There is a signed version (s_fp) and an unsigned
 * version (u_fp).  This is used to represent synchronizing distance
 * and synchronizing dispersion in the NTP packet header (again, in
 * network byte order) and internally to hold both distance and
 * dispersion values (in local byte order).  In network byte order
 * it looks like:
 *
 *    0			  1		      2			  3
 *    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 *   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 *   |		  Integer Part	     |	   Fraction Part	     |
 *   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 *
 */
typedef int32 s_fp;
typedef u_int32 u_fp;

/*
 * A unit second in fp format.	Actually 2**(half_the_bits_in_a_long)
 */
#define	FP_SECOND	(0x10000)

/*
 * Byte order conversions
 */
#define	HTONS_FP(x)	(htonl(x))
#define	NTOHS_FP(x)	(ntohl(x))

#define	NTOHL_MFP(ni, nf, hi, hf)				\
	do {							\
		(hi) = ntohl(ni);				\
		(hf) = ntohl(nf);				\
	} while (FALSE)

#define	HTONL_MFP(hi, hf, ni, nf)				\
	do {							\
		(ni) = htonl(hi);				\
		(nf) = htonl(hf);				\
	} while (FALSE)

#define HTONL_FP(h, n)						\
	HTONL_MFP((h)->l_ui, (h)->l_uf, (n)->l_ui, (n)->l_uf)

#define NTOHL_FP(n, h)						\
	NTOHL_MFP((n)->l_ui, (n)->l_uf, (h)->l_ui, (h)->l_uf)

/* Convert unsigned ts fraction to net order ts */
#define	HTONL_UF(uf, nts)					\
	do {							\
		(nts)->l_ui = 0;				\
		(nts)->l_uf = htonl(uf);			\
	} while (FALSE)

/*
 * Conversions between the two fixed point types
 */
#define	MFPTOFP(x_i, x_f)	(((x_i) >= 0x00010000) ? 0x7fffffff : \
				(((x_i) <= -0x00010000) ? 0x80000000 : \
				(((x_i)<<16) | (((x_f)>>16)&0xffff))))
#define	LFPTOFP(v)		MFPTOFP((v)->l_i, (v)->l_uf)

#define UFPTOLFP(x, v) ((v)->l_ui = (u_fp)(x)>>16, (v)->l_uf = (x)<<16)
#define FPTOLFP(x, v)  (UFPTOLFP((x), (v)), (x) < 0 ? (v)->l_ui -= 0x10000 : 0)

#define MAXLFP(v) ((v)->l_ui = 0x7fffffffu, (v)->l_uf = 0xffffffffu)
#define MINLFP(v) ((v)->l_ui = 0x80000000u, (v)->l_uf = 0u)

/*
 * Primitive operations on long fixed point values.  If these are
 * reminiscent of assembler op codes it's only because some may
 * be replaced by inline assembler for particular machines someday.
 * These are the (kind of inefficient) run-anywhere versions.
 */
#define	M_NEG(v_i, v_f)		/* v = -v */ \
	do { \
		(v_f) = ~(v_f) + 1u; \
		(v_i) = ~(v_i) + ((v_f) == 0); \
	} while (FALSE)

#define	M_NEGM(r_i, r_f, a_i, a_f)	/* r = -a */ \
	do { \
		(r_f) = ~(a_f) + 1u; \
		(r_i) = ~(a_i) + ((r_f) == 0); \
	} while (FALSE)

#define M_ADD(r_i, r_f, a_i, a_f)	/* r += a */ \
	do { \
		u_int32 add_t = (r_f); \
		(r_f) += (a_f); \
		(r_i) += (a_i) + ((u_int32)(r_f) < add_t); \
	} while (FALSE)

#define M_ADD3(r_o, r_i, r_f, a_o, a_i, a_f) /* r += a, three word */ \
	do { \
		u_int32 add_t, add_c; \
		add_t  = (r_f); \
		(r_f) += (a_f); \
		add_c  = ((u_int32)(r_f) < add_t); \
		(r_i) += add_c; \
		add_c  = ((u_int32)(r_i) < add_c); \
		add_t  = (r_i); \
		(r_i) += (a_i); \
		add_c |= ((u_int32)(r_i) < add_t); \
		(r_o) += (a_o) + add_c; \
	} while (FALSE)

#define M_SUB(r_i, r_f, a_i, a_f)	/* r -= a */ \
	do { \
		u_int32 sub_t = (r_f); \
		(r_f) -= (a_f); \
		(r_i) -= (a_i) + ((u_int32)(r_f) > sub_t); \
	} while (FALSE)

#define	M_RSHIFTU(v_i, v_f)		/* v >>= 1, v is unsigned */ \
	do { \
		(v_f) = ((u_int32)(v_f) >> 1) | ((u_int32)(v_i) << 31);	\
		(v_i) = ((u_int32)(v_i) >> 1); \
	} while (FALSE)

#define	M_RSHIFT(v_i, v_f)		/* v >>= 1, v is signed */ \
	do { \
		(v_f) = ((u_int32)(v_f) >> 1) | ((u_int32)(v_i) << 31);	\
		(v_i) = ((u_int32)(v_i) >> 1) | ((u_int32)(v_i) & 0x80000000);	\
	} while (FALSE)

#define	M_LSHIFT(v_i, v_f)		/* v <<= 1 */ \
	do { \
		(v_i) = ((u_int32)(v_i) << 1) | ((u_int32)(v_f) >> 31);	\
		(v_f) = ((u_int32)(v_f) << 1); \
	} while (FALSE)

#define	M_LSHIFT3(v_o, v_i, v_f)	/* v <<= 1, with overflow */ \
	do { \
		(v_o) = ((u_int32)(v_o) << 1) | ((u_int32)(v_i) >> 31);	\
		(v_i) = ((u_int32)(v_i) << 1) | ((u_int32)(v_f) >> 31);	\
		(v_f) = ((u_int32)(v_f) << 1); \
	} while (FALSE)

#define	M_ADDUF(r_i, r_f, uf)		/* r += uf, uf is u_int32 fraction */ \
	M_ADD((r_i), (r_f), 0, (uf))	/* let optimizer worry about it */

#define	M_SUBUF(r_i, r_f, uf)		/* r -= uf, uf is u_int32 fraction */ \
	M_SUB((r_i), (r_f), 0, (uf))	/* let optimizer worry about it */

#define	M_ADDF(r_i, r_f, f)		/* r += f, f is a int32 fraction */ \
	do { \
		int32 add_f = (int32)(f); \
		if (add_f >= 0) \
			M_ADD((r_i), (r_f), 0, (uint32)( add_f)); \
		else \
			M_SUB((r_i), (r_f), 0, (uint32)(-add_f)); \
	} while(0)

#define	M_ISNEG(v_i)			/* v < 0 */ \
	(((v_i) & 0x80000000) != 0)

#define	M_ISGT(a_i, a_f, b_i, b_f)	/* a > b signed */ \
	(((u_int32)((a_i) ^ 0x80000000) > (u_int32)((b_i) ^ 0x80000000)) || \
	  ((a_i) == (b_i) && ((u_int32)(a_f)) > ((u_int32)(b_f))))

#define	M_ISGTU(a_i, a_f, b_i, b_f)	/* a > b unsigned */ \
	(((u_int32)(a_i)) > ((u_int32)(b_i)) || \
	  ((a_i) == (b_i) && ((u_int32)(a_f)) > ((u_int32)(b_f))))

#define	M_ISHIS(a_i, a_f, b_i, b_f)	/* a >= b unsigned */ \
	(((u_int32)(a_i)) > ((u_int32)(b_i)) || \
	  ((a_i) == (b_i) && ((u_int32)(a_f)) >= ((u_int32)(b_f))))

#define	M_ISGEQ(a_i, a_f, b_i, b_f)	/* a >= b signed */ \
	(((u_int32)((a_i) ^ 0x80000000) > (u_int32)((b_i) ^ 0x80000000)) || \
	  ((a_i) == (b_i) && (u_int32)(a_f) >= (u_int32)(b_f)))

#define	M_ISEQU(a_i, a_f, b_i, b_f)	/* a == b unsigned */ \
	((u_int32)(a_i) == (u_int32)(b_i) && (u_int32)(a_f) == (u_int32)(b_f))

/*
 * Operations on the long fp format
 */
#define	L_ADD(r, a)	M_ADD((r)->l_ui, (r)->l_uf, (a)->l_ui, (a)->l_uf)
#define	L_SUB(r, a)	M_SUB((r)->l_ui, (r)->l_uf, (a)->l_ui, (a)->l_uf)
#define	L_NEG(v)	M_NEG((v)->l_ui, (v)->l_uf)
#define L_ADDUF(r, uf)	M_ADDUF((r)->l_ui, (r)->l_uf, (uf))
#define L_SUBUF(r, uf)	M_SUBUF((r)->l_ui, (r)->l_uf, (uf))
#define	L_ADDF(r, f)	M_ADDF((r)->l_ui, (r)->l_uf, (f))
#define	L_RSHIFT(v)	M_RSHIFT((v)->l_i, (v)->l_uf)
#define	L_RSHIFTU(v)	M_RSHIFTU((v)->l_ui, (v)->l_uf)
#define	L_LSHIFT(v)	M_LSHIFT((v)->l_ui, (v)->l_uf)
#define	L_CLR(v)	((v)->l_ui = (v)->l_uf = 0)

#define	L_ISNEG(v)	M_ISNEG((v)->l_ui)
#define L_ISZERO(v)	(((v)->l_ui | (v)->l_uf) == 0)
#define	L_ISGT(a, b)	M_ISGT((a)->l_i, (a)->l_uf, (b)->l_i, (b)->l_uf)
#define	L_ISGTU(a, b)	M_ISGTU((a)->l_ui, (a)->l_uf, (b)->l_ui, (b)->l_uf)
#define	L_ISHIS(a, b)	M_ISHIS((a)->l_ui, (a)->l_uf, (b)->l_ui, (b)->l_uf)
#define	L_ISGEQ(a, b)	M_ISGEQ((a)->l_ui, (a)->l_uf, (b)->l_ui, (b)->l_uf)
#define	L_ISEQU(a, b)	M_ISEQU((a)->l_ui, (a)->l_uf, (b)->l_ui, (b)->l_uf)

/*
 * s_fp/double and u_fp/double conversions
 */
#define FRIC		65536.0			/* 2^16 as a double */
#define DTOFP(r)	((s_fp)((r) * FRIC))
#define DTOUFP(r)	((u_fp)((r) * FRIC))
#define FPTOD(r)	((double)(r) / FRIC)

/*
 * l_fp/double conversions
 */
#define FRAC		4294967296.0 		/* 2^32 as a double */

/*
 * Use 64 bit integers if available.  Solaris on SPARC has a problem
 * compiling parsesolaris.c if ntp_fp.h includes math.h, due to
 * archaic gets() and printf() prototypes used in Solaris kernel
 * headers.  So far the problem has only been seen with gcc, but it
 * may also affect Sun compilers, in which case the defined(__GNUC__)
 * term should be removed.
 * XSCALE also generates bad code for these, at least with GCC 3.3.5.
 * This is unrelated to math.h, but the same solution applies.
 */
#if defined(HAVE_U_INT64) && \
    !(defined(__SVR4) && defined(__sun) && \
      defined(sparc) && defined(__GNUC__) || \
      defined(__arm__) && defined(__XSCALE__) && defined(__GNUC__)) 

#include <math.h>	/* ldexp() */

#define M_DTOLFP(d, r_ui, r_uf)		/* double to l_fp */	\
	do {							\
		double	d_tmp;					\
		u_int64	q_tmp;					\
		int	M_isneg;					\
								\
		d_tmp = (d);					\
		M_isneg = (d_tmp < 0.);				\
		if (M_isneg) {					\
			d_tmp = -d_tmp;				\
		}						\
		q_tmp = (u_int64)ldexp(d_tmp, 32);		\
		if (M_isneg) {					\
			q_tmp = ~q_tmp + 1;			\
		}						\
		(r_uf) = (u_int32)q_tmp;			\
		(r_ui) = (u_int32)(q_tmp >> 32);		\
	} while (FALSE)

#define M_LFPTOD(r_ui, r_uf, d) 	/* l_fp to double */	\
	do {							\
		double	d_tmp;					\
		u_int64	q_tmp;					\
		int	M_isneg;				\
								\
		q_tmp = ((u_int64)(r_ui) << 32) + (r_uf);	\
		M_isneg = M_ISNEG(r_ui);			\
		if (M_isneg) {					\
			q_tmp = ~q_tmp + 1;			\
		}						\
		d_tmp = ldexp((double)q_tmp, -32);		\
		if (M_isneg) {					\
			d_tmp = -d_tmp;				\
		}						\
		(d) = d_tmp;					\
	} while (FALSE)

#else /* use only 32 bit unsigned values */

#define M_DTOLFP(d, r_ui, r_uf) 		/* double to l_fp */ \
	do { \
		double d_tmp; \
		if ((d_tmp = (d)) < 0) { \
			(r_ui) = (u_int32)(-d_tmp); \
			(r_uf) = (u_int32)(-(d_tmp + (double)(r_ui)) * FRAC); \
			M_NEG((r_ui), (r_uf)); \
		} else { \
			(r_ui) = (u_int32)d_tmp; \
			(r_uf) = (u_int32)((d_tmp - (double)(r_ui)) * FRAC); \
		} \
	} while (0)
#define M_LFPTOD(r_ui, r_uf, d) 		/* l_fp to double */ \
	do { \
		u_int32 l_thi, l_tlo; \
		l_thi = (r_ui); l_tlo = (r_uf); \
		if (M_ISNEG(l_thi)) { \
			M_NEG(l_thi, l_tlo); \
			(d) = -((double)l_thi + (double)l_tlo / FRAC); \
		} else { \
			(d) = (double)l_thi + (double)l_tlo / FRAC; \
		} \
	} while (0)
#endif

#define DTOLFP(d, v) 	M_DTOLFP((d), (v)->l_ui, (v)->l_uf)
#define LFPTOD(v, d) 	M_LFPTOD((v)->l_ui, (v)->l_uf, (d))

/*
 * Prototypes
 */
extern	char *	dofptoa		(u_fp, int, short, int);
extern	char *	dolfptoa	(u_int32, u_int32, int, short, int);

extern	int	atolfp		(const char *, l_fp *);
extern	int	buftvtots	(const char *, l_fp *);
extern	char *	fptoa		(s_fp, short);
extern	char *	fptoms		(s_fp, short);
extern	int	hextolfp	(const char *, l_fp *);
extern  void	gpstolfp	(u_int, u_int, unsigned long, l_fp *);
extern	int	mstolfp		(const char *, l_fp *);
extern	char *	prettydate	(l_fp *);
extern	char *	gmprettydate	(l_fp *);
extern	char *	uglydate	(l_fp *);
extern  void	mfp_mul		(int32 *, u_int32 *, int32, u_int32, int32, u_int32);

extern	void	set_sys_fuzz	(double);
extern	void	init_systime	(void);
extern	void	get_systime	(l_fp *);
extern	int	step_systime	(double);
extern	int	adj_systime	(double);
extern	int	clamp_systime	(void);

extern	struct tm * ntp2unix_tm (u_int32 ntp, int local);

#define	lfptoa(fpv, ndec)	mfptoa((fpv)->l_ui, (fpv)->l_uf, (ndec))
#define	lfptoms(fpv, ndec)	mfptoms((fpv)->l_ui, (fpv)->l_uf, (ndec))

#define stoa(addr)		socktoa(addr)
#define	ntoa(addr)		stoa(addr)
#define sptoa(addr)		sockporttoa(addr)
#define stohost(addr)		socktohost(addr)

#define	ufptoa(fpv, ndec)	dofptoa((fpv), 0, (ndec), 0)
#define	ufptoms(fpv, ndec)	dofptoa((fpv), 0, (ndec), 1)
#define	ulfptoa(fpv, ndec)	dolfptoa((fpv)->l_ui, (fpv)->l_uf, 0, (ndec), 0)
#define	ulfptoms(fpv, ndec)	dolfptoa((fpv)->l_ui, (fpv)->l_uf, 0, (ndec), 1)
#define	umfptoa(fpi, fpf, ndec) dolfptoa((fpi), (fpf), 0, (ndec), 0)

/*
 * Optional callback from libntp step_systime() to ntpd.  Optional
*  because other libntp clients like ntpdate don't use it.
 */
typedef void (*time_stepped_callback)(void);
extern time_stepped_callback	step_callback;

/*
 * Multi-thread locking for get_systime()
 *
 * On most systems, get_systime() is used solely by the main ntpd
 * thread, but on Windows it's also used by the dedicated I/O thread.
 * The [Bug 2037] changes to get_systime() have it keep state between
 * calls to ensure time moves in only one direction, which means its
 * use on Windows needs to be protected against simultaneous execution
 * to avoid falsely detecting Lamport violations by ensuring only one
 * thread at a time is in get_systime().
 */
#ifdef SYS_WINNT
extern CRITICAL_SECTION get_systime_cs;
# define INIT_GET_SYSTIME_CRITSEC()				\
		InitializeCriticalSection(&get_systime_cs)
# define ENTER_GET_SYSTIME_CRITSEC()				\
		EnterCriticalSection(&get_systime_cs)
# define LEAVE_GET_SYSTIME_CRITSEC()				\
		LeaveCriticalSection(&get_systime_cs)
# define INIT_WIN_PRECISE_TIME()				\
		init_win_precise_time()
#else	/* !SYS_WINNT follows */
# define INIT_GET_SYSTIME_CRITSEC()			\
		do {} while (FALSE)
# define ENTER_GET_SYSTIME_CRITSEC()			\
		do {} while (FALSE)
# define LEAVE_GET_SYSTIME_CRITSEC()			\
		do {} while (FALSE)
# define INIT_WIN_PRECISE_TIME()			\
		do {} while (FALSE)
#endif

#endif /* NTP_FP_H */