Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
// Functional extensions -*- C++ -*-

// Copyright (C) 2002-2017 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.

// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// <http://www.gnu.org/licenses/>.

/*
 *
 * Copyright (c) 1994
 * Hewlett-Packard Company
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Hewlett-Packard Company makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 *
 *
 * Copyright (c) 1996
 * Silicon Graphics Computer Systems, Inc.
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Silicon Graphics makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 */

/** @file ext/functional
 *  This file is a GNU extension to the Standard C++ Library (possibly
 *  containing extensions from the HP/SGI STL subset).
 */

#ifndef _EXT_FUNCTIONAL
#define _EXT_FUNCTIONAL 1

#pragma GCC system_header

#include <functional>

namespace __gnu_cxx _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION

  using std::size_t;
  using std::unary_function;
  using std::binary_function;
  using std::mem_fun1_t;
  using std::const_mem_fun1_t;
  using std::mem_fun1_ref_t;
  using std::const_mem_fun1_ref_t;

  /** The @c identity_element functions are not part of the C++
   *  standard; SGI provided them as an extension.  Its argument is an
   *  operation, and its return value is the identity element for that
   *  operation.  It is overloaded for addition and multiplication,
   *  and you can overload it for your own nefarious operations.
   *
   *  @addtogroup SGIextensions
   *  @{
   */
  /// An \link SGIextensions SGI extension \endlink.
  template <class _Tp>
    inline _Tp
    identity_element(std::plus<_Tp>)
    { return _Tp(0); }

  /// An \link SGIextensions SGI extension \endlink.
  template <class _Tp>
    inline _Tp
    identity_element(std::multiplies<_Tp>)
    { return _Tp(1); }
  /** @}  */
  
  /** As an extension to the binders, SGI provided composition functors and
   *  wrapper functions to aid in their creation.  The @c unary_compose
   *  functor is constructed from two functions/functors, @c f and @c g.
   *  Calling @c operator() with a single argument @c x returns @c f(g(x)).
   *  The function @c compose1 takes the two functions and constructs a
   *  @c unary_compose variable for you.
   *
   *  @c binary_compose is constructed from three functors, @c f, @c g1,
   *  and @c g2.  Its @c operator() returns @c f(g1(x),g2(x)).  The function
   *  compose2 takes f, g1, and g2, and constructs the @c binary_compose
   *  instance for you.  For example, if @c f returns an int, then
   *  \code
   *  int answer = (compose2(f,g1,g2))(x);
   *  \endcode
   *  is equivalent to
   *  \code
   *  int temp1 = g1(x);
   *  int temp2 = g2(x);
   *  int answer = f(temp1,temp2);
   *  \endcode
   *  But the first form is more compact, and can be passed around as a
   *  functor to other algorithms.
   *
   *  @addtogroup SGIextensions
   *  @{
   */
  /// An \link SGIextensions SGI extension \endlink.
  template <class _Operation1, class _Operation2>
    class unary_compose
    : public unary_function<typename _Operation2::argument_type,
			    typename _Operation1::result_type>
    {
    protected:
      _Operation1 _M_fn1;
      _Operation2 _M_fn2;

    public:
      unary_compose(const _Operation1& __x, const _Operation2& __y)
      : _M_fn1(__x), _M_fn2(__y) {}

      typename _Operation1::result_type
      operator()(const typename _Operation2::argument_type& __x) const
      { return _M_fn1(_M_fn2(__x)); }
    };

  /// An \link SGIextensions SGI extension \endlink.
  template <class _Operation1, class _Operation2>
    inline unary_compose<_Operation1, _Operation2>
    compose1(const _Operation1& __fn1, const _Operation2& __fn2)
    { return unary_compose<_Operation1,_Operation2>(__fn1, __fn2); }

  /// An \link SGIextensions SGI extension \endlink.
  template <class _Operation1, class _Operation2, class _Operation3>
    class binary_compose
    : public unary_function<typename _Operation2::argument_type,
			    typename _Operation1::result_type>
    {
    protected:
      _Operation1 _M_fn1;
      _Operation2 _M_fn2;
      _Operation3 _M_fn3;
      
    public:
      binary_compose(const _Operation1& __x, const _Operation2& __y,
		     const _Operation3& __z)
      : _M_fn1(__x), _M_fn2(__y), _M_fn3(__z) { }

      typename _Operation1::result_type
      operator()(const typename _Operation2::argument_type& __x) const
      { return _M_fn1(_M_fn2(__x), _M_fn3(__x)); }
    };

  /// An \link SGIextensions SGI extension \endlink.
  template <class _Operation1, class _Operation2, class _Operation3>
    inline binary_compose<_Operation1, _Operation2, _Operation3>
    compose2(const _Operation1& __fn1, const _Operation2& __fn2,
	     const _Operation3& __fn3)
    { return binary_compose<_Operation1, _Operation2, _Operation3>
	(__fn1, __fn2, __fn3); }
  /** @}  */

  /** As an extension, SGI provided a functor called @c identity.  When a
   *  functor is required but no operations are desired, this can be used as a
   *  pass-through.  Its @c operator() returns its argument unchanged.
   *
   *  @addtogroup SGIextensions
   */
  template <class _Tp>
    struct identity
    : public std::_Identity<_Tp> {};

  /** @c select1st and @c select2nd are extensions provided by SGI.  Their
   *  @c operator()s
   *  take a @c std::pair as an argument, and return either the first member
   *  or the second member, respectively.  They can be used (especially with
   *  the composition functors) to @a strip data from a sequence before
   *  performing the remainder of an algorithm.
   *
   *  @addtogroup SGIextensions
   *  @{
   */
  /// An \link SGIextensions SGI extension \endlink.
  template <class _Pair>
    struct select1st
    : public std::_Select1st<_Pair> {};

  /// An \link SGIextensions SGI extension \endlink.
  template <class _Pair>
    struct select2nd
    : public std::_Select2nd<_Pair> {};

  /** @}  */

  // extension documented next
  template <class _Arg1, class _Arg2>
    struct _Project1st : public binary_function<_Arg1, _Arg2, _Arg1>
    {
      _Arg1
      operator()(const _Arg1& __x, const _Arg2&) const
      { return __x; }
    };

  template <class _Arg1, class _Arg2>
    struct _Project2nd : public binary_function<_Arg1, _Arg2, _Arg2>
    {
      _Arg2
      operator()(const _Arg1&, const _Arg2& __y) const
      { return __y; }
    };

  /** The @c operator() of the @c project1st functor takes two arbitrary
   *  arguments and returns the first one, while @c project2nd returns the
   *  second one.  They are extensions provided by SGI.
   *
   *  @addtogroup SGIextensions
   *  @{
   */

  /// An \link SGIextensions SGI extension \endlink.
  template <class _Arg1, class _Arg2>
    struct project1st : public _Project1st<_Arg1, _Arg2> {};

  /// An \link SGIextensions SGI extension \endlink.
  template <class _Arg1, class _Arg2>
    struct project2nd : public _Project2nd<_Arg1, _Arg2> {};
  /** @}  */

  // extension documented next
  template <class _Result>
    struct _Constant_void_fun
    {
      typedef _Result result_type;
      result_type _M_val;

      _Constant_void_fun(const result_type& __v) : _M_val(__v) {}

      const result_type&
      operator()() const
      { return _M_val; }
    };

  template <class _Result, class _Argument>
    struct _Constant_unary_fun
    {
      typedef _Argument argument_type;
      typedef  _Result  result_type;
      result_type _M_val;
      
      _Constant_unary_fun(const result_type& __v) : _M_val(__v) {}

      const result_type&
      operator()(const _Argument&) const
      { return _M_val; }
    };

  template <class _Result, class _Arg1, class _Arg2>
    struct _Constant_binary_fun
    {
      typedef  _Arg1   first_argument_type;
      typedef  _Arg2   second_argument_type;
      typedef  _Result result_type;
      _Result _M_val;

      _Constant_binary_fun(const _Result& __v) : _M_val(__v) {}
      
      const result_type&
      operator()(const _Arg1&, const _Arg2&) const
      { return _M_val; }
    };

  /** These three functors are each constructed from a single arbitrary
   *  variable/value.  Later, their @c operator()s completely ignore any
   *  arguments passed, and return the stored value.
   *  - @c constant_void_fun's @c operator() takes no arguments
   *  - @c constant_unary_fun's @c operator() takes one argument (ignored)
   *  - @c constant_binary_fun's @c operator() takes two arguments (ignored)
   *
   *  The helper creator functions @c constant0, @c constant1, and
   *  @c constant2 each take a @a result argument and construct variables of
   *  the appropriate functor type.
   *
   *  @addtogroup SGIextensions
   *  @{
   */
  /// An \link SGIextensions SGI extension \endlink.
  template <class _Result>
    struct constant_void_fun
    : public _Constant_void_fun<_Result>
    {
      constant_void_fun(const _Result& __v)
      : _Constant_void_fun<_Result>(__v) {}
    };

  /// An \link SGIextensions SGI extension \endlink.
  template <class _Result, class _Argument = _Result>
    struct constant_unary_fun : public _Constant_unary_fun<_Result, _Argument>
    {
      constant_unary_fun(const _Result& __v)
      : _Constant_unary_fun<_Result, _Argument>(__v) {}
    };

  /// An \link SGIextensions SGI extension \endlink.
  template <class _Result, class _Arg1 = _Result, class _Arg2 = _Arg1>
    struct constant_binary_fun
    : public _Constant_binary_fun<_Result, _Arg1, _Arg2>
    {
      constant_binary_fun(const _Result& __v)
      : _Constant_binary_fun<_Result, _Arg1, _Arg2>(__v) {}
    };

  /// An \link SGIextensions SGI extension \endlink.
  template <class _Result>
    inline constant_void_fun<_Result>
    constant0(const _Result& __val)
    { return constant_void_fun<_Result>(__val); }

  /// An \link SGIextensions SGI extension \endlink.
  template <class _Result>
    inline constant_unary_fun<_Result, _Result>
    constant1(const _Result& __val)
    { return constant_unary_fun<_Result, _Result>(__val); }

  /// An \link SGIextensions SGI extension \endlink.
  template <class _Result>
    inline constant_binary_fun<_Result,_Result,_Result>
    constant2(const _Result& __val)
    { return constant_binary_fun<_Result, _Result, _Result>(__val); }
  /** @}  */

  /** The @c subtractive_rng class is documented on
   *  <a href="http://www.sgi.com/tech/stl/">SGI's site</a>.
   *  Note that this code assumes that @c int is 32 bits.
   *
   *  @ingroup SGIextensions
   */
  class subtractive_rng
  : public unary_function<unsigned int, unsigned int>
  {
  private:
    unsigned int _M_table[55];
    size_t _M_index1;
    size_t _M_index2;

  public:
    /// Returns a number less than the argument.
    unsigned int
    operator()(unsigned int __limit)
    {
      _M_index1 = (_M_index1 + 1) % 55;
      _M_index2 = (_M_index2 + 1) % 55;
      _M_table[_M_index1] = _M_table[_M_index1] - _M_table[_M_index2];
      return _M_table[_M_index1] % __limit;
    }

    void
    _M_initialize(unsigned int __seed)
    {
      unsigned int __k = 1;
      _M_table[54] = __seed;
      size_t __i;
      for (__i = 0; __i < 54; __i++)
	{
	  size_t __ii = (21 * (__i + 1) % 55) - 1;
	  _M_table[__ii] = __k;
	  __k = __seed - __k;
	  __seed = _M_table[__ii];
	}
      for (int __loop = 0; __loop < 4; __loop++)
	{
	  for (__i = 0; __i < 55; __i++)
            _M_table[__i] = _M_table[__i] - _M_table[(1 + __i + 30) % 55];
	}
      _M_index1 = 0;
      _M_index2 = 31;
    }

    /// Ctor allowing you to initialize the seed.
    subtractive_rng(unsigned int __seed)
    { _M_initialize(__seed); }

    /// Default ctor; initializes its state with some number you don't see.
    subtractive_rng()
    { _M_initialize(161803398u); }
  };

  // Mem_fun adaptor helper functions mem_fun1 and mem_fun1_ref,
  // provided for backward compatibility, they are no longer part of
  // the C++ standard.
  
  template <class _Ret, class _Tp, class _Arg>
    inline mem_fun1_t<_Ret, _Tp, _Arg>
    mem_fun1(_Ret (_Tp::*__f)(_Arg))
    { return mem_fun1_t<_Ret, _Tp, _Arg>(__f); }

  template <class _Ret, class _Tp, class _Arg>
    inline const_mem_fun1_t<_Ret, _Tp, _Arg>
    mem_fun1(_Ret (_Tp::*__f)(_Arg) const)
    { return const_mem_fun1_t<_Ret, _Tp, _Arg>(__f); }

  template <class _Ret, class _Tp, class _Arg>
    inline mem_fun1_ref_t<_Ret, _Tp, _Arg>
    mem_fun1_ref(_Ret (_Tp::*__f)(_Arg))
    { return mem_fun1_ref_t<_Ret, _Tp, _Arg>(__f); }

  template <class _Ret, class _Tp, class _Arg>
    inline const_mem_fun1_ref_t<_Ret, _Tp, _Arg>
    mem_fun1_ref(_Ret (_Tp::*__f)(_Arg) const)
    { return const_mem_fun1_ref_t<_Ret, _Tp, _Arg>(__f); }

_GLIBCXX_END_NAMESPACE_VERSION
} // namespace

#endif