dnl PowerPC-32 mpn_add_n and mpn_sub_n.
dnl Copyright 2002, 2005, 2007 Free Software Foundation, Inc.
dnl This file is part of the GNU MP Library.
dnl
dnl The GNU MP Library is free software; you can redistribute it and/or modify
dnl it under the terms of either:
dnl
dnl * the GNU Lesser General Public License as published by the Free
dnl Software Foundation; either version 3 of the License, or (at your
dnl option) any later version.
dnl
dnl or
dnl
dnl * the GNU General Public License as published by the Free Software
dnl Foundation; either version 2 of the License, or (at your option) any
dnl later version.
dnl
dnl or both in parallel, as here.
dnl
dnl The GNU MP Library is distributed in the hope that it will be useful, but
dnl WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
dnl or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
dnl for more details.
dnl
dnl You should have received copies of the GNU General Public License and the
dnl GNU Lesser General Public License along with the GNU MP Library. If not,
dnl see https://www.gnu.org/licenses/.
include(`../config.m4')
C cycles/limb
C 603e: ?
C 604e: ? old: 3.25
C 75x (G3): ? old: 3.5
C 7400,7410 (G4): 3.25
C 744x,745x (G4+): 4
C POWER3/PPC630 2
C POWER4/PPC970 2.4
C POWER5 2.75
C POWER6 40-140
C POWER7 3
C INPUT PARAMETERS
define(`rp', `r3')
define(`up', `r4')
define(`vp', `r5')
define(`n', `r6')
define(`cy', `r7')
ifdef(`OPERATION_add_n', `
define(ADCSBC, adde)
define(func, mpn_add_n)
define(func_nc, mpn_add_nc)
define(IFADD, `$1')
define(IFSUB, `')')
ifdef(`OPERATION_sub_n', `
define(ADCSBC, subfe)
define(func, mpn_sub_n)
define(func_nc, mpn_sub_nc)
define(IFADD, `')
define(IFSUB, `$1')')
MULFUNC_PROLOGUE(mpn_add_n mpn_add_nc mpn_sub_n mpn_sub_nc)
ASM_START()
PROLOGUE(func_nc)
IFADD(` addic r0, cy, -1') C set carry from argument
IFSUB(` subfic r0, cy, 0') C set carry from argument
b L(ent)
EPILOGUE()
PROLOGUE(func)
IFADD(` addic r0, n, 0') C clear carry
IFSUB(` addic r0, n, -1') C set carry
L(ent): andi. r0, n, 3
addi r3, r3, -12
addi n, n, 1
cmpwi cr7, r0, 2
srwi r0, n, 2
sub r4, r4, r3
sub r5, r5, r3
mtctr r0
bne cr0, L(n00)
lwzx r7, r4, r3 C n = 4, 8, 12, ...
lwzx r8, r5, r3
addi r3, r3, 4
lwzx r9, r4, r3
ADCSBC r7, r8, r7
lwzx r10, r5, r3
addi r3, r3, 4
b L(00)
L(n00): bge cr7, L(n01)
cmpwi cr0, r0, 0 C n = 1, 5, 9, 13, ...
lwzx r0, r4, r3
lwzx r6, r5, r3
addi r3, r3, 4
ADCSBC r0, r6, r0
ble L(ret)
L(gt1): lwzx r7, r4, r3
lwzx r8, r5, r3
addi r3, r3, 4
b L(01)
L(n10):
lwzx r9, r4, r3 C n = 3, 7, 11, 15, ...
lwzx r10, r5, r3
addi r3, r3, 4
lwzx r11, r4, r3
ADCSBC r9, r10, r9
lwzx r12, r5, r3
addi r3, r3, 4
b L(11)
L(n01): bne cr7, L(n10)
cmpwi cr0, r0, 0 C n = 2, 6, 10, 14, ...
lwzx r11, r4, r3
lwzx r12, r5, r3
addi r3, r3, 4
lwzx r0, r4, r3
ADCSBC r11, r12, r11
lwzx r6, r5, r3
addi r3, r3, 4
ble cr0, L(end)
L(lp): lwzx r7, r4, r3
ADCSBC r0, r6, r0
lwzx r8, r5, r3
stwu r11, 4(r3)
L(01): lwzx r9, r4, r3
ADCSBC r7, r8, r7
lwzx r10, r5, r3
stwu r0, 4(r3)
L(00): lwzx r11, r4, r3
ADCSBC r9, r10, r9
lwzx r12, r5, r3
stwu r7, 4(r3)
L(11): lwzx r0, r4, r3
ADCSBC r11, r12, r11
lwzx r6, r5, r3
stwu r9, 4(r3)
bdnz L(lp)
L(end): ADCSBC r0, r6, r0
stw r11, 4(r3)
L(ret): stw r0, 8(r3)
IFADD(` li r3, 0 ')
IFADD(` addze r3, r3 ')
IFSUB(` subfe r3, r0, r0')
IFSUB(` neg r3, r3')
blr
EPILOGUE()