Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

dnl  AMD64 mpn_copyd optimised for CPUs with fast SSE copying and SSSE3.

dnl  Copyright 2012, 2015 Free Software Foundation, Inc.

dnl  Contributed to the GNU project by Torbjorn Granlund.

dnl  This file is part of the GNU MP Library.
dnl
dnl  The GNU MP Library is free software; you can redistribute it and/or modify
dnl  it under the terms of either:
dnl
dnl    * the GNU Lesser General Public License as published by the Free
dnl      Software Foundation; either version 3 of the License, or (at your
dnl      option) any later version.
dnl
dnl  or
dnl
dnl    * the GNU General Public License as published by the Free Software
dnl      Foundation; either version 2 of the License, or (at your option) any
dnl      later version.
dnl
dnl  or both in parallel, as here.
dnl
dnl  The GNU MP Library is distributed in the hope that it will be useful, but
dnl  WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
dnl  or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
dnl  for more details.
dnl
dnl  You should have received copies of the GNU General Public License and the
dnl  GNU Lesser General Public License along with the GNU MP Library.  If not,
dnl  see https://www.gnu.org/licenses/.

include(`../config.m4')

C	     cycles/limb     cycles/limb     cycles/limb      good
C              aligned	      unaligned	      best seen	     for cpu?
C AMD K8,K9	 2.0		 illop		1.0/1.0		N
C AMD K10	 0.85		 illop				Y/N
C AMD bull	 0.70		 0.70				Y
C AMD pile	 0.68		 0.68				Y
C AMD steam
C AMD excavator
C AMD bobcat	 1.97		 8.24		1.5/1.5		N
C AMD jaguar	 0.77		 0.89		0.65/opt	N/Y
C Intel P4	 2.26		 illop				Y/N
C Intel core	 0.52		 0.80		opt/opt		Y
C Intel NHM	 0.52		 0.64		opt/opt		Y
C Intel SBR	 0.51		 0.51		opt/opt		Y
C Intel IBR	 0.50		 0.50		opt/opt		Y
C Intel HWL	 0.50		 0.51		opt/opt		Y
C Intel BWL	 0.55		 0.55		opt/opt		Y
C Intel atom	 1.16		 1.66		opt/opt		Y
C Intel SLM	 1.02		 1.04		opt/opt		Y
C VIA nano	 1.08		 1.06		opt/opt		Y

C We use only 16-byte operations, except for unaligned top-most and bottom-most
C limbs.  We use the SSSE3 palignr instruction when rp - up = 8 (mod 16).
C
C For operands of < COPYD_SSE_THRESHOLD limbs, we use a plain 64-bit loop,
C taken from the x86_64 default code.

C INPUT PARAMETERS
define(`rp', `%rdi')
define(`up', `%rsi')
define(`n',  `%rdx')

C There are three instructions for loading an aligned 128-bit quantity.  We use
C movaps, since it has the shortest coding.
define(`movdqa', ``movaps'')

ifdef(`COPYD_SSE_THRESHOLD',`',`define(`COPYD_SSE_THRESHOLD', 7)')

ASM_START()
	TEXT
	ALIGN(64)
PROLOGUE(mpn_copyd)
	FUNC_ENTRY(3)

	lea	-8(up,n,8), up
	lea	-8(rp,n,8), rp

	cmp	$COPYD_SSE_THRESHOLD, n
	jbe	L(bc)

	test	$8, R8(rp)		C is rp 16-byte aligned?
	jnz	L(rp_aligned)		C jump if rp aligned

	mov	(up), %rax		C copy one limb
	mov	%rax, (rp)
	lea	-8(up), up
	lea	-8(rp), rp
	dec	n

L(rp_aligned):
	test	$8, R8(up)
	jz	L(uent)

ifelse(eval(COPYD_SSE_THRESHOLD >= 8),1,
`	sub	$8, n',
`	jmp	L(am)')

	ALIGN(16)
L(atop):movdqa	-8(up), %xmm0
	movdqa	-24(up), %xmm1
	movdqa	-40(up), %xmm2
	movdqa	-56(up), %xmm3
	lea	-64(up), up
	movdqa	%xmm0, -8(rp)
	movdqa	%xmm1, -24(rp)
	movdqa	%xmm2, -40(rp)
	movdqa	%xmm3, -56(rp)
	lea	-64(rp), rp
L(am):	sub	$8, n
	jnc	L(atop)

	test	$4, R8(n)
	jz	1f
	movdqa	-8(up), %xmm0
	movdqa	-24(up), %xmm1
	lea	-32(up), up
	movdqa	%xmm0, -8(rp)
	movdqa	%xmm1, -24(rp)
	lea	-32(rp), rp

1:	test	$2, R8(n)
	jz	1f
	movdqa	-8(up), %xmm0
	lea	-16(up), up
	movdqa	%xmm0, -8(rp)
	lea	-16(rp), rp

1:	test	$1, R8(n)
	jz	1f
	mov	(up), %r8
	mov	%r8, (rp)

1:	FUNC_EXIT()
	ret

L(uent):sub	$16, n
	movdqa	(up), %xmm0
	jc	L(uend)

	ALIGN(16)
L(utop):sub	$16, n
	movdqa	-16(up), %xmm1
	palignr($8, %xmm1, %xmm0)
	movdqa	%xmm0, -8(rp)
	movdqa	-32(up), %xmm2
	palignr($8, %xmm2, %xmm1)
	movdqa	%xmm1, -24(rp)
	movdqa	-48(up), %xmm3
	palignr($8, %xmm3, %xmm2)
	movdqa	%xmm2, -40(rp)
	movdqa	-64(up), %xmm0
	palignr($8, %xmm0, %xmm3)
	movdqa	%xmm3, -56(rp)
	movdqa	-80(up), %xmm1
	palignr($8, %xmm1, %xmm0)
	movdqa	%xmm0, -72(rp)
	movdqa	-96(up), %xmm2
	palignr($8, %xmm2, %xmm1)
	movdqa	%xmm1, -88(rp)
	movdqa	-112(up), %xmm3
	palignr($8, %xmm3, %xmm2)
	movdqa	%xmm2, -104(rp)
	movdqa	-128(up), %xmm0
	palignr($8, %xmm0, %xmm3)
	movdqa	%xmm3, -120(rp)
	lea	-128(up), up
	lea	-128(rp), rp
	jnc	L(utop)

L(uend):test	$8, R8(n)
	jz	1f
	movdqa	-16(up), %xmm1
	palignr($8, %xmm1, %xmm0)
	movdqa	%xmm0, -8(rp)
	movdqa	-32(up), %xmm0
	palignr($8, %xmm0, %xmm1)
	movdqa	%xmm1, -24(rp)
	movdqa	-48(up), %xmm1
	palignr($8, %xmm1, %xmm0)
	movdqa	%xmm0, -40(rp)
	movdqa	-64(up), %xmm0
	palignr($8, %xmm0, %xmm1)
	movdqa	%xmm1, -56(rp)
	lea	-64(up), up
	lea	-64(rp), rp

1:	test	$4, R8(n)
	jz	1f
	movdqa	-16(up), %xmm1
	palignr($8, %xmm1, %xmm0)
	movdqa	%xmm0, -8(rp)
	movdqa	-32(up), %xmm0
	palignr($8, %xmm0, %xmm1)
	movdqa	%xmm1, -24(rp)
	lea	-32(up), up
	lea	-32(rp), rp

1:	test	$2, R8(n)
	jz	1f
	movdqa	-16(up), %xmm1
	palignr($8, %xmm1, %xmm0)
	movdqa	%xmm0, -8(rp)
	lea	-16(up), up
	lea	-16(rp), rp

1:	test	$1, R8(n)
	jz	1f
	mov	(up), %r8
	mov	%r8, (rp)

1:	FUNC_EXIT()
	ret

C Basecase code.  Needed for good small operands speed, not for
C correctness as the above code is currently written.

L(bc):	sub	$4, R32(n)
	jc	L(end)

	ALIGN(16)
L(top):	mov	(up), %r8
	mov	-8(up), %r9
	lea	-32(rp), rp
	mov	-16(up), %r10
	mov	-24(up), %r11
	lea	-32(up), up
	mov	%r8, 32(rp)
	mov	%r9, 24(rp)
ifelse(eval(COPYD_SSE_THRESHOLD >= 8),1,
`	sub	$4, R32(n)')
	mov	%r10, 16(rp)
	mov	%r11, 8(rp)
ifelse(eval(COPYD_SSE_THRESHOLD >= 8),1,
`	jnc	L(top)')

L(end):	test	$1, R8(n)
	jz	1f
	mov	(up), %r8
	mov	%r8, (rp)
	lea	-8(rp), rp
	lea	-8(up), up
1:	test	$2, R8(n)
	jz	1f
	mov	(up), %r8
	mov	-8(up), %r9
	mov	%r8, (rp)
	mov	%r9, -8(rp)
1:	FUNC_EXIT()
	ret
EPILOGUE()