Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
/* $NetBSD: fenv.c,v 1.9 2018/01/25 03:54:21 christos Exp $ */

/*-
 * Copyright (c) 2004-2005 David Schultz <das@FreeBSD.ORG>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include <sys/cdefs.h>
__RCSID("$NetBSD: fenv.c,v 1.9 2018/01/25 03:54:21 christos Exp $");

#include "namespace.h"

#include <sys/param.h>
#include <sys/sysctl.h>
#include <assert.h>
#include <fenv.h>
#include <stddef.h>
#include <string.h>

#ifdef __weak_alias
__weak_alias(feclearexcept,_feclearexcept)
__weak_alias(fedisableexcept,_fedisableexcept)
__weak_alias(feenableexcept,_feenableexcept)
__weak_alias(fegetenv,_fegetenv)
__weak_alias(fegetexcept,_fegetexcept)
__weak_alias(fegetexceptflag,_fegetexceptflag)
__weak_alias(fegetround,_fegetround)
__weak_alias(feholdexcept,_feholdexcept)
__weak_alias(feraiseexcept,_feraiseexcept)
__weak_alias(fesetenv,_fesetenv)
__weak_alias(fesetexceptflag,_fesetexceptflag)
__weak_alias(fesetround,_fesetround)
__weak_alias(fetestexcept,_fetestexcept)
__weak_alias(feupdateenv,_feupdateenv)
#endif

/* Load x87 Control Word */
#define	__fldcw(__cw)		__asm__ __volatile__	\
	("fldcw %0" : : "m" (__cw))

/* No-Wait Store Control Word */
#define	__fnstcw(__cw)		__asm__ __volatile__	\
	("fnstcw %0" : "=m" (*(__cw)))

/* No-Wait Store Status Word */
#define	__fnstsw(__sw)		__asm__ __volatile__	\
	("fnstsw %0" : "=am" (*(__sw)))

/* No-Wait Clear Exception Flags */
#define	__fnclex()		__asm__ __volatile__	\
	("fnclex")

/* Load x87 Environment */
#define	__fldenv(__env)		__asm__ __volatile__	\
	("fldenv %0" : : "m" (__env))

/* No-Wait Store x87 environment */
#define	__fnstenv(__env)	__asm__ __volatile__	\
	("fnstenv %0" : "=m" (*(__env)))

/* Check for and handle pending unmasked x87 pending FPU exceptions */
#define	__fwait(__env)		__asm__	__volatile__	\
	("fwait")

/* Load the MXCSR register */
#define	__ldmxcsr(__mxcsr)	__asm__ __volatile__	\
	("ldmxcsr %0" : : "m" (__mxcsr))

/* Store the MXCSR register state */
#define	__stmxcsr(__mxcsr)	__asm__ __volatile__	\
	("stmxcsr %0" : "=m" (*(__mxcsr)))

/*
 * The following constant represents the default floating-point environment
 * (that is, the one installed at program startup) and has type pointer to
 * const-qualified fenv_t.
 *
 * It can be used as an argument to the functions within the <fenv.h> header
 * that manage the floating-point environment, namely fesetenv() and
 * feupdateenv().
 *
 * x87 fpu registers are 16bit wide. The upper bits, 31-16, are marked as
 * RESERVED. We provide a partial floating-point environment, where we
 * define only the lower bits. The reserved bits are extracted and set by the
 * consumers of FE_DFL_ENV, during runtime.
 */
fenv_t __fe_dfl_env = {
	.x87 = {
		.control = __NetBSD_NPXCW__,    /* Control word register */
		.unused1 = 0,			/* Unused */
		.status = 0,  		     	/* Status word register */
		.unused2 = 0,			/* Unused */
		.tag = 0xffff,          	/* Tag word register */
		.unused3 = 0,			/* Unused */
		.others = {
			0, 0, 0, 0x0000ffff,
		}
	},
	.mxcsr = __INITIAL_MXCSR__		/* MXCSR register */
};

/*
 * Test for SSE support on this processor.
 *
 * We need to use ldmxcsr/stmxcsr to get correct results if any part
 * of the program was compiled to use SSE floating-point, but we can't
 * use SSE on older processors.
 *
 * In order to do so, we need to query the processor capabilities via the CPUID
 * instruction. We can make it even simpler though, by querying the machdep.sse
 * sysctl.
 */
static int __HAS_SSE = 0;

static void __init_libm(void) __attribute__ ((constructor, used));

static void __init_libm(void)
{
	size_t oldlen = sizeof(__HAS_SSE);
	int rv;
	uint16_t control;

	rv = sysctlbyname("machdep.sse", &__HAS_SSE, &oldlen, NULL, 0);
	if (rv == -1)
		__HAS_SSE = 0;

	__fnstcw(&control);
	__fe_dfl_env.x87.control = control;
}

/*
 * The feclearexcept() function clears the supported floating-point exceptions
 * represented by `excepts'.
 */
int
feclearexcept(int excepts)
{
	fenv_t env;
	uint32_t mxcsr;
	int ex;

	_DIAGASSERT((excepts & ~FE_ALL_EXCEPT) == 0);

	ex = excepts & FE_ALL_EXCEPT;

	/* It's ~3x faster to call fnclex, than store/load fp env */
	if (ex == FE_ALL_EXCEPT) {
		__fnclex();
	} else {
		__fnstenv(&env);
		env.x87.status &= ~ex;
		__fldenv(env);
	}

	if (__HAS_SSE) {
		__stmxcsr(&mxcsr);
		mxcsr &= ~ex;
		__ldmxcsr(mxcsr);
	}

	/* Success */
	return (0);
}

/*
 * The fegetexceptflag() function stores an implementation-defined
 * representation of the states of the floating-point status flags indicated by
 * the argument excepts in the object pointed to by the argument flagp.
 */
int
fegetexceptflag(fexcept_t *flagp, int excepts)
{
	uint32_t mxcsr;
	uint16_t status;
	int ex;

	_DIAGASSERT(flagp != NULL);
	_DIAGASSERT((excepts & ~FE_ALL_EXCEPT) == 0);

	ex = excepts & FE_ALL_EXCEPT;

	__fnstsw(&status);
	if (__HAS_SSE)
		__stmxcsr(&mxcsr);
	else
		mxcsr = 0;

	*flagp = (mxcsr | status) & ex;

	/* Success */
	return (0);
}

/*
 * The feraiseexcept() function raises the supported floating-point exceptions
 * represented by the argument `excepts'.
 *
 * The standard explicitly allows us to execute an instruction that has the
 * exception as a side effect, but we choose to manipulate the status register
 * directly.
 *
 * The validation of input is being deferred to fesetexceptflag().
 */
int
feraiseexcept(int excepts)
{
	fexcept_t ex;

	_DIAGASSERT((excepts & ~FE_ALL_EXCEPT) == 0);

	ex = excepts & FE_ALL_EXCEPT;
	fesetexceptflag(&ex, excepts);
	__fwait();

	/* Success */
	return (0);
}

/*
 * This function sets the floating-point status flags indicated by the argument
 * `excepts' to the states stored in the object pointed to by `flagp'. It does
 * NOT raise any floating-point exceptions, but only sets the state of the flags.
 */
int
fesetexceptflag(const fexcept_t *flagp, int excepts)
{
	fenv_t env;
	uint32_t mxcsr;
	int ex;

	_DIAGASSERT(flagp != NULL);
	_DIAGASSERT((excepts & ~FE_ALL_EXCEPT) == 0);

	ex = excepts & FE_ALL_EXCEPT;

	__fnstenv(&env);
	env.x87.status &= ~ex;
	env.x87.status |= *flagp & ex;
	__fldenv(env);

	if (__HAS_SSE) {
		__stmxcsr(&mxcsr);
		mxcsr &= ~ex;
		mxcsr |= *flagp & ex;
		__ldmxcsr(mxcsr);
	}

	/* Success */
	return (0);
}

/*
 * The fetestexcept() function determines which of a specified subset of the
 * floating-point exception flags are currently set. The `excepts' argument
 * specifies the floating-point status flags to be queried.
 */
int
fetestexcept(int excepts)
{
	uint32_t mxcsr;
	uint16_t status;
	int ex;

	_DIAGASSERT((excepts & ~FE_ALL_EXCEPT) == 0);

	ex = excepts & FE_ALL_EXCEPT;

	__fnstsw(&status);
	if (__HAS_SSE)
		__stmxcsr(&mxcsr);
	else
		mxcsr = 0;

	return ((status | mxcsr) & ex);
}

int
fegetround(void)
{
	uint16_t control;

	/*
	 * We assume that the x87 and the SSE unit agree on the
	 * rounding mode.  Reading the control word on the x87 turns
	 * out to be about 5 times faster than reading it on the SSE
	 * unit on an Opteron 244.
	 */
	__fnstcw(&control);

	return (control & __X87_ROUND_MASK);
}

/*
 * The fesetround() function shall establish the rounding direction represented
 * by its argument round. If the argument is not equal to the value of a
 * rounding direction macro, the rounding direction is not changed.
 */
int
fesetround(int round)
{
	uint32_t mxcsr;
	uint16_t control;

	if (round & ~__X87_ROUND_MASK) {
		/* Failure */
		return (-1);
	}

	__fnstcw(&control);
	control &= ~__X87_ROUND_MASK;
	control |= round;
	__fldcw(control);

	if (__HAS_SSE) {
		__stmxcsr(&mxcsr);
		mxcsr &= ~(__X87_ROUND_MASK << __SSE_ROUND_SHIFT);
		mxcsr |= round << __SSE_ROUND_SHIFT;
		__ldmxcsr(mxcsr);
	}

	/* Success */
	return (0);
}

/*
 * The fegetenv() function attempts to store the current floating-point
 * environment in the object pointed to by envp.
 */
int
fegetenv(fenv_t *envp)
{
	uint32_t mxcsr;

	_DIAGASSERT(flagp != NULL);

	/*
	 * fnstenv masks all exceptions, so we need to restore the old control
	 * word to avoid this side effect.
	 */
	__fnstenv(envp);
	__fldcw(envp->x87.control);
	if (__HAS_SSE) {
		__stmxcsr(&mxcsr);
		envp->mxcsr = mxcsr;
	}

	/* Success */
	return (0);
}

/*
 * The feholdexcept() function saves the current floating-point environment in
 * the object pointed to by envp, clears the floating-point status flags, and
 * then installs a non-stop (continue on floating-point exceptions) mode, if
 * available, for all floating-point exceptions.
 */
int
feholdexcept(fenv_t *envp)
{
	uint32_t mxcsr;

	_DIAGASSERT(envp != NULL);

	__fnstenv(envp);
	__fnclex();
	if (__HAS_SSE) {
		__stmxcsr(&mxcsr);
		envp->mxcsr = mxcsr;
		mxcsr &= ~FE_ALL_EXCEPT;
		mxcsr |= FE_ALL_EXCEPT << __SSE_EMASK_SHIFT;
		__ldmxcsr(mxcsr);
	}

	/* Success */
	return (0);
}

/*
 * The fesetenv() function attempts to establish the floating-point environment
 * represented by the object pointed to by envp. The argument `envp' points
 * to an object set by a call to fegetenv() or feholdexcept(), or equal a
 * floating-point environment macro. The fesetenv() function does not raise
 * floating-point exceptions, but only installs the state of the floating-point
 * status flags represented through its argument.
 */
int
fesetenv(const fenv_t *envp)
{
	fenv_t env;

	_DIAGASSERT(envp != NULL);

	/* Store the x87 floating-point environment */
	memset(&env, 0, sizeof(env));
	__fnstenv(&env);

	__fe_dfl_env.x87.unused1 = env.x87.unused1;
	__fe_dfl_env.x87.unused2 = env.x87.unused2;
	__fe_dfl_env.x87.unused3 = env.x87.unused3;
	memcpy(__fe_dfl_env.x87.others, env.x87.others,
	    sizeof(__fe_dfl_env.x87.others));

	__fldenv(envp->x87);
	if (__HAS_SSE)
		__ldmxcsr(envp->mxcsr);

	/* Success */
	return (0);
}

/*
 * The feupdateenv() function saves the currently raised floating-point
 * exceptions in its automatic storage, installs the floating-point environment
 * represented by the object pointed to by `envp', and then raises the saved
 * floating-point exceptions. The argument `envp' shall point to an object set
 * by a call to feholdexcept() or fegetenv(), or equal a floating-point
 * environment macro.
 */
int
feupdateenv(const fenv_t *envp)
{
	fenv_t env;
	uint32_t mxcsr;
	uint16_t status;

	_DIAGASSERT(envp != NULL);

	/* Store the x87 floating-point environment */
	memset(&env, 0, sizeof(env));
	__fnstenv(&env);

	__fe_dfl_env.x87.unused1 = env.x87.unused1;
	__fe_dfl_env.x87.unused2 = env.x87.unused2;
	__fe_dfl_env.x87.unused3 = env.x87.unused3;
	memcpy(__fe_dfl_env.x87.others, env.x87.others,
	    sizeof(__fe_dfl_env.x87.others));

	__fnstsw(&status);
	if (__HAS_SSE)
		__stmxcsr(&mxcsr);
	else
		mxcsr = 0;
	fesetenv(envp);
	feraiseexcept((mxcsr | status) & FE_ALL_EXCEPT);

	/* Success */
	return (0);
}

/*
 * The following functions are extentions to the standard
 */
int
feenableexcept(int mask)
{
	uint32_t mxcsr, omask;
	uint16_t control;

	mask &= FE_ALL_EXCEPT;
	__fnstcw(&control);
	if (__HAS_SSE)
		__stmxcsr(&mxcsr);
	else
		mxcsr = 0;

	omask = (control | mxcsr >> __SSE_EMASK_SHIFT) & FE_ALL_EXCEPT;
	control &= ~mask;
	__fldcw(control);
	if (__HAS_SSE) {
		mxcsr &= ~(mask << __SSE_EMASK_SHIFT);
		__ldmxcsr(mxcsr);
	}

	return (FE_ALL_EXCEPT & ~omask);
}

int
fedisableexcept(int mask)
{
	uint32_t mxcsr, omask;
	uint16_t control;

	mask &= FE_ALL_EXCEPT;
	__fnstcw(&control);
	if (__HAS_SSE)
		__stmxcsr(&mxcsr);
	else
		mxcsr = 0;

	omask = (control | mxcsr >> __SSE_EMASK_SHIFT) & FE_ALL_EXCEPT;
	control |= mask;
	__fldcw(control);
	if (__HAS_SSE) {
		mxcsr |= mask << __SSE_EMASK_SHIFT;
		__ldmxcsr(mxcsr);
	}

	return (FE_ALL_EXCEPT & ~omask);
}

int
fegetexcept(void)
{
	uint16_t control;

	/*
	 * We assume that the masks for the x87 and the SSE unit are
	 * the same.
	 */
	__fnstcw(&control);

	return (~control & FE_ALL_EXCEPT);
}