/* $NetBSD: bcm53xx_board.c,v 1.25 2018/07/31 06:46:25 skrll Exp $ */
/*-
* Copyright (c) 2012 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Matt Thomas of 3am Software Foundry.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "opt_arm_debug.h"
#include "opt_broadcom.h"
#include "arml2cc.h"
#define _ARM32_BUS_DMA_PRIVATE
#include <sys/cdefs.h>
__KERNEL_RCSID(1, "$NetBSD: bcm53xx_board.c,v 1.25 2018/07/31 06:46:25 skrll Exp $");
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/cpu.h>
#include <sys/device.h>
#include <prop/proplib.h>
#include <net/if.h>
#include <net/if_ether.h>
#define CCA_PRIVATE
#define CRU_PRIVATE
#define DDR_PRIVATE
#define DMU_PRIVATE
#define ARMCORE_PRIVATE
#define SRAB_PRIVATE
#include <arm/cortex/a9tmr_var.h>
#include <arm/cortex/pl310_var.h>
#include <arm/mainbus/mainbus.h>
#include <arm/broadcom/bcm53xx_reg.h>
#include <arm/broadcom/bcm53xx_var.h>
bus_space_tag_t bcm53xx_ioreg_bst = &bcmgen_bs_tag;
bus_space_handle_t bcm53xx_ioreg_bsh;
bus_space_tag_t bcm53xx_armcore_bst = &bcmgen_bs_tag;
bus_space_handle_t bcm53xx_armcore_bsh;
static struct cpu_softc cpu_softc;
struct arm32_dma_range bcm53xx_dma_ranges[] = {
#ifdef BCM5301X
[0] = {
.dr_sysbase = 0x80000000,
.dr_busbase = 0x80000000,
.dr_len = 0x10000000,
}, [1] = {
.dr_sysbase = 0x90000000,
.dr_busbase = 0x90000000,
},
#elif defined(BCM563XX)
[0] = {
.dr_sysbase = 0x60000000,
.dr_busbase = 0x60000000,
.dr_len = 0x20000000,
}, [1] = {
.dr_sysbase = 0x80000000,
.dr_busbase = 0x80000000,
},
#endif
};
struct arm32_bus_dma_tag bcm53xx_dma_tag = {
._ranges = bcm53xx_dma_ranges,
._nranges = __arraycount(bcm53xx_dma_ranges),
_BUS_DMAMAP_FUNCS,
_BUS_DMAMEM_FUNCS,
_BUS_DMATAG_FUNCS,
};
struct arm32_dma_range bcm53xx_coherent_dma_ranges[] = {
#ifdef BCM5301X
[0] = {
.dr_sysbase = 0x80000000,
.dr_busbase = 0x80000000,
.dr_len = 0x10000000,
.dr_flags = _BUS_DMAMAP_COHERENT,
}, [1] = {
.dr_sysbase = 0x90000000,
.dr_busbase = 0x90000000,
},
#elif defined(BCM563XX)
[0] = {
.dr_sysbase = 0x60000000,
.dr_busbase = 0x60000000,
.dr_len = 0x20000000,
.dr_flags = _BUS_DMAMAP_COHERENT,
}, [1] = {
.dr_sysbase = 0x80000000,
.dr_busbase = 0x80000000,
},
#endif
};
struct arm32_bus_dma_tag bcm53xx_coherent_dma_tag = {
._ranges = bcm53xx_coherent_dma_ranges,
._nranges = __arraycount(bcm53xx_coherent_dma_ranges),
_BUS_DMAMAP_FUNCS,
_BUS_DMAMEM_FUNCS,
_BUS_DMATAG_FUNCS,
};
#ifdef _ARM32_NEED_BUS_DMA_BOUNCE
struct arm32_bus_dma_tag bcm53xx_bounce_dma_tag = {
._ranges = bcm53xx_coherent_dma_ranges,
._nranges = 1,
_BUS_DMAMAP_FUNCS,
_BUS_DMAMEM_FUNCS,
_BUS_DMATAG_FUNCS,
};
#endif
#ifdef BCM53XX_CONSOLE_EARLY
#include <dev/ic/ns16550reg.h>
#include <dev/ic/comreg.h>
#include <dev/cons.h>
static vaddr_t com_base;
static inline uint32_t
uart_read(bus_size_t o)
{
return *(volatile uint8_t *)(com_base + o);
}
static inline void
uart_write(bus_size_t o, uint32_t v)
{
*(volatile uint8_t *)(com_base + o) = v;
}
static int
bcm53xx_cngetc(dev_t dv)
{
if ((uart_read(com_lsr) & LSR_RXRDY) == 0)
return -1;
return uart_read(com_data) & 0xff;
}
static void
bcm53xx_cnputc(dev_t dv, int c)
{
int timo = 150000;
while ((uart_read(com_lsr) & LSR_TXRDY) == 0 && --timo > 0)
;
uart_write(com_data, c);
timo = 150000;
while ((uart_read(com_lsr) & LSR_TSRE) == 0 && --timo > 0)
;
}
static struct consdev bcm53xx_earlycons = {
.cn_putc = bcm53xx_cnputc,
.cn_getc = bcm53xx_cngetc,
.cn_pollc = nullcnpollc,
};
#endif /* BCM53XX_CONSOLE_EARLY */
psize_t
bcm53xx_memprobe(void)
{
bus_space_tag_t bst = bcm53xx_ioreg_bst;
bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
/*
* First, let's read the magic DDR registers!
*/
const uint32_t v01 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_01);
const uint32_t v82 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_82);
const uint32_t v86 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_86);
const uint32_t v87 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_87);
/*
* Calculate chip parameters
* */
const u_int rows = __SHIFTOUT(v01, CTL_01_MAX_ROW)
- __SHIFTOUT(v82, CTL_82_ROW_DIFF);
const u_int cols = __SHIFTOUT(v01, CTL_01_MAX_COL)
- __SHIFTOUT(v82, CTL_82_COL_DIFF);
const u_int banks_log2 = 3 - __SHIFTOUT(v82, CTL_82_BANK_DIFF);
/*
* For each chip select, increase the chip count if if is enabled.
*/
const u_int max_chips = __SHIFTOUT(v01, CTL_01_MAX_CHIP_SEL);
u_int cs_map = __SHIFTOUT(v86, CTL_86_CS_MAP);
u_int chips = 0;
for (u_int i = 0; cs_map != 0 && i < max_chips; i++, cs_map >>= 1) {
chips += (cs_map & 1);
}
/* get log2(ddr width) */
const u_int ddr_width_log2 = (v87 & CTL_87_REDUC) ? 1 : 2;
/*
* Let's add up all the things that contribute to the size of a chip.
*/
const u_int chip_size_log2 = cols + rows + banks_log2 + ddr_width_log2;
/*
* Now our memory size is simply the number of chip shifted by the
* log2(chip_size).
*/
return (psize_t) chips << chip_size_log2;
}
static inline uint32_t
bcm53xx_freq_calc(struct bcm53xx_clock_info *clk,
uint32_t pdiv, uint32_t ndiv_int, uint32_t ndiv_frac)
{
if (ndiv_frac == 0 && pdiv == 1)
return ndiv_int * clk->clk_ref;
uint64_t freq64 = ((uint64_t)ndiv_int << 30) + ndiv_frac;
freq64 *= clk->clk_ref;
if (pdiv > 1)
freq64 /= pdiv;
return (uint32_t) (freq64 >> 30);
}
static uint32_t
bcm53xx_value_wrap(uint32_t value, uint32_t mask)
{
/*
* n is n except when n is 0 then n = mask + 1.
*/
return ((__SHIFTOUT(value, mask) - 1) & __SHIFTOUT(mask, mask)) + 1;
}
static void
bcm53xx_genpll_clock_init(struct bcm53xx_clock_info *clk, uint32_t control5,
uint32_t control6, uint32_t control7)
{
const uint32_t pdiv = bcm53xx_value_wrap(control6,
GENPLL_CONTROL6_PDIV);
const uint32_t ndiv_int = bcm53xx_value_wrap(control5,
GENPLL_CONTROL5_NDIV_INT);
const uint32_t ndiv_frac = __SHIFTOUT(control5,
GENPLL_CONTROL5_NDIV_FRAC);
clk->clk_genpll = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac);
const uint32_t ch0_mdiv = bcm53xx_value_wrap(control6,
GENPLL_CONTROL6_CH0_MDIV);
const uint32_t ch1_mdiv = bcm53xx_value_wrap(control6,
GENPLL_CONTROL6_CH1_MDIV);
const uint32_t ch2_mdiv = bcm53xx_value_wrap(control6,
GENPLL_CONTROL6_CH2_MDIV);
const uint32_t ch3_mdiv = bcm53xx_value_wrap(control7,
GENPLL_CONTROL7_CH3_MDIV);
clk->clk_mac = clk->clk_genpll / ch0_mdiv; // GENPLL CH0
clk->clk_robo = clk->clk_genpll / ch1_mdiv; // GENPLL CH1
clk->clk_usb2 = clk->clk_genpll / ch2_mdiv; // GENPLL CH2
clk->clk_iproc = clk->clk_genpll / ch3_mdiv; // GENPLL CH3
}
static void
bcm53xx_lcpll_clock_init(struct bcm53xx_clock_info *clk, uint32_t control1,
uint32_t control2)
{
const uint32_t pdiv = bcm53xx_value_wrap(control1,
LCPLL_CONTROL1_PDIV);
const uint32_t ndiv_int = bcm53xx_value_wrap(control1,
LCPLL_CONTROL1_NDIV_INT);
const uint32_t ndiv_frac = __SHIFTOUT(control1,
LCPLL_CONTROL1_NDIV_FRAC);
clk->clk_lcpll = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac);
const uint32_t ch0_mdiv = bcm53xx_value_wrap(control2,
LCPLL_CONTROL2_CH0_MDIV);
const uint32_t ch1_mdiv = bcm53xx_value_wrap(control2,
LCPLL_CONTROL2_CH1_MDIV);
const uint32_t ch2_mdiv = bcm53xx_value_wrap(control2,
LCPLL_CONTROL2_CH2_MDIV);
const uint32_t ch3_mdiv = bcm53xx_value_wrap(control2,
LCPLL_CONTROL2_CH3_MDIV);
clk->clk_pcie_ref = clk->clk_lcpll / ch0_mdiv; // LCPLL CH0
clk->clk_sdio = clk->clk_lcpll / ch1_mdiv; // LCPLL CH1
clk->clk_ddr_ref = clk->clk_lcpll / ch2_mdiv; // LCPLL CH2
clk->clk_axi = clk->clk_lcpll / ch3_mdiv; // LCPLL CH3
}
static void
bcm53xx_usb_clock_init(struct bcm53xx_clock_info *clk, uint32_t usb2_control)
{
const uint32_t pdiv = bcm53xx_value_wrap(usb2_control,
USB2_CONTROL_PDIV);
const uint32_t ndiv = bcm53xx_value_wrap(usb2_control,
USB2_CONTROL_NDIV_INT);
uint32_t usb_ref = (clk->clk_usb2 / pdiv) * ndiv;
if (usb_ref != USB2_REF_CLK) {
/*
* USB Reference Clock isn't 1.92GHz. So we need to modify
* USB2_CONTROL to produce it.
*/
uint32_t new_ndiv = (USB2_REF_CLK / clk->clk_usb2) * pdiv;
usb2_control &= ~USB2_CONTROL_NDIV_INT;
usb2_control |= __SHIFTIN(new_ndiv, USB2_CONTROL_NDIV_INT);
// Allow Clocks to be modified
bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
CRU_BASE + CRU_CLKSET_KEY, CRU_CLKSET_KEY_MAGIC);
// Update USB2 clock generator
bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
CRU_BASE + CRU_USB2_CONTROL, usb2_control);
// Prevent Clock modification
bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
CRU_BASE + CRU_CLKSET_KEY, 0);
usb_ref = (clk->clk_usb2 / pdiv) * new_ndiv;
}
clk->clk_usb_ref = usb_ref;
}
static void
bcm53xx_clock_init(struct bcm53xx_clock_info *clk)
{
clk->clk_ref = BCM53XX_REF_CLK;
clk->clk_sys = 8*clk->clk_ref;
}
/*
* F(ddr) = ((1 / pdiv) * ndiv * CH2) / (post_div * 2)
*/
static void
bcm53xx_get_ddr_freq(struct bcm53xx_clock_info *clk, uint32_t pll_status,
uint32_t pll_dividers)
{
const bool clocking_4x = (pll_status & PLL_STATUS_CLOCKING_4X) != 0;
u_int post_div = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_POST_DIV);
u_int pdiv = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_PDIV);
u_int ndiv = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_NDIV);
pdiv = ((pdiv - (clocking_4x ? 1 : 5)) & 7) + 1;
clk->clk_ddr_mhz = __SHIFTOUT(pll_status, PLL_STATUS_MHZ);
clk->clk_ddr = (clk->clk_ddr_ref / pdiv) * ndiv / (2 + post_div);
}
/*
* CPU_CLK = (1 / pdiv) * (ndiv_int + (ndiv_frac / 0x40000000)) x F(ref)
*/
static void
bcm53xx_get_cpu_freq(struct bcm53xx_clock_info *clk,
uint32_t pllarma, uint32_t pllarmb, uint32_t policy)
{
policy = __SHIFTOUT(policy, CLK_POLICY_FREQ_POLICY2);
if (policy == CLK_POLICY_REF_CLK) {
clk->clk_cpu = clk->clk_ref;
clk->clk_apb = clk->clk_cpu;
return;
}
if (policy == CLK_POLICY_SYS_CLK) {
clk->clk_cpu = clk->clk_sys;
clk->clk_apb = clk->clk_cpu / 4;
return;
}
const u_int pdiv = bcm53xx_value_wrap(pllarma, CLK_PLLARMA_PDIV);
const u_int ndiv_int = bcm53xx_value_wrap(pllarma, CLK_PLLARMA_NDIV_INT);
const u_int ndiv_frac = __SHIFTOUT(pllarmb, CLK_PLLARMB_NDIV_FRAC);
// const u_int apb_clk_div = __SHIFTOUT(apb_clk_div, CLK_APB_DIV_VALUE)+1;
const u_int cpu_div = (policy == CLK_POLICY_ARM_PLL_CH0) ? 4 : 2;
clk->clk_cpu = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac) / cpu_div;
clk->clk_apb = clk->clk_cpu / 4;
}
struct bcm53xx_chip_state {
uint32_t bcs_lcpll_control1;
uint32_t bcs_lcpll_control2;
uint32_t bcs_genpll_control5;
uint32_t bcs_genpll_control6;
uint32_t bcs_genpll_control7;
uint32_t bcs_usb2_control;
uint32_t bcs_ddr_phy_ctl_pll_status;
uint32_t bcs_ddr_phy_ctl_pll_dividers;
uint32_t bcs_armcore_clk_policy;
uint32_t bcs_armcore_clk_pllarma;
uint32_t bcs_armcore_clk_pllarmb;
};
static void
bcm53xx_get_chip_ioreg_state(struct bcm53xx_chip_state *bcs,
bus_space_tag_t bst, bus_space_handle_t bsh)
{
bcs->bcs_lcpll_control1 = bus_space_read_4(bst, bsh,
DMU_BASE + DMU_LCPLL_CONTROL1);
bcs->bcs_lcpll_control2 = bus_space_read_4(bst, bsh,
DMU_BASE + DMU_LCPLL_CONTROL2);
bcs->bcs_genpll_control5 = bus_space_read_4(bst, bsh,
CRU_BASE + CRU_GENPLL_CONTROL5);
bcs->bcs_genpll_control6 = bus_space_read_4(bst, bsh,
CRU_BASE + CRU_GENPLL_CONTROL6);
bcs->bcs_genpll_control7 = bus_space_read_4(bst, bsh,
CRU_BASE + CRU_GENPLL_CONTROL7);
bcs->bcs_usb2_control = bus_space_read_4(bst, bsh,
CRU_BASE + CRU_USB2_CONTROL);
bcs->bcs_ddr_phy_ctl_pll_status = bus_space_read_4(bst, bsh,
DDR_BASE + DDR_PHY_CTL_PLL_STATUS);
bcs->bcs_ddr_phy_ctl_pll_dividers = bus_space_read_4(bst, bsh,
DDR_BASE + DDR_PHY_CTL_PLL_DIVIDERS);
}
static void
bcm53xx_get_chip_armcore_state(struct bcm53xx_chip_state *bcs,
bus_space_tag_t bst, bus_space_handle_t bsh)
{
bcs->bcs_armcore_clk_policy = bus_space_read_4(bst, bsh,
ARMCORE_CLK_POLICY_FREQ);
bcs->bcs_armcore_clk_pllarma = bus_space_read_4(bst, bsh,
ARMCORE_CLK_PLLARMA);
bcs->bcs_armcore_clk_pllarmb = bus_space_read_4(bst, bsh,
ARMCORE_CLK_PLLARMB);
}
void
bcm53xx_cpu_softc_init(struct cpu_info *ci)
{
struct cpu_softc * const cpu = ci->ci_softc;
cpu->cpu_ioreg_bst = bcm53xx_ioreg_bst;
cpu->cpu_ioreg_bsh = bcm53xx_ioreg_bsh;
cpu->cpu_armcore_bst = bcm53xx_armcore_bst;
cpu->cpu_armcore_bsh = bcm53xx_armcore_bsh;
const uint32_t chipid = bus_space_read_4(cpu->cpu_ioreg_bst,
cpu->cpu_ioreg_bsh, CCA_MISC_BASE + MISC_CHIPID);
cpu->cpu_chipid = __SHIFTOUT(chipid, CHIPID_ID);
}
void
bcm53xx_print_clocks(void)
{
#if defined(VERBOSE_INIT_ARM)
const struct bcm53xx_clock_info * const clk = &cpu_softc.cpu_clk;
printf("ref clk = %u (%#x)\n", clk->clk_ref, clk->clk_ref);
printf("sys clk = %u (%#x)\n", clk->clk_sys, clk->clk_sys);
printf("lcpll clk = %u (%#x)\n", clk->clk_lcpll, clk->clk_lcpll);
printf("pcie ref clk = %u (%#x) [CH0]\n", clk->clk_pcie_ref, clk->clk_pcie_ref);
printf("sdio clk = %u (%#x) [CH1]\n", clk->clk_sdio, clk->clk_sdio);
printf("ddr ref clk = %u (%#x) [CH2]\n", clk->clk_ddr_ref, clk->clk_ddr_ref);
printf("axi clk = %u (%#x) [CH3]\n", clk->clk_axi, clk->clk_axi);
printf("genpll clk = %u (%#x)\n", clk->clk_genpll, clk->clk_genpll);
printf("mac clk = %u (%#x) [CH0]\n", clk->clk_mac, clk->clk_mac);
printf("robo clk = %u (%#x) [CH1]\n", clk->clk_robo, clk->clk_robo);
printf("usb2 clk = %u (%#x) [CH2]\n", clk->clk_usb2, clk->clk_usb2);
printf("iproc clk = %u (%#x) [CH3]\n", clk->clk_iproc, clk->clk_iproc);
printf("ddr clk = %u (%#x)\n", clk->clk_ddr, clk->clk_ddr);
printf("ddr mhz = %u (%#x)\n", clk->clk_ddr_mhz, clk->clk_ddr_mhz);
printf("cpu clk = %u (%#x)\n", clk->clk_cpu, clk->clk_cpu);
printf("apb clk = %u (%#x)\n", clk->clk_apb, clk->clk_apb);
printf("usb ref clk = %u (%#x)\n", clk->clk_usb_ref, clk->clk_usb_ref);
#endif
}
void
bcm53xx_bootstrap(vaddr_t iobase)
{
struct bcm53xx_chip_state bcs;
int error;
#ifdef BCM53XX_CONSOLE_EARLY
com_base = iobase + CCA_UART0_BASE;
cn_tab = &bcm53xx_earlycons;
#endif
bcm53xx_ioreg_bsh = (bus_space_handle_t) iobase;
error = bus_space_map(bcm53xx_ioreg_bst, BCM53XX_IOREG_PBASE,
BCM53XX_IOREG_SIZE, 0, &bcm53xx_ioreg_bsh);
if (error)
panic("%s: failed to map BCM53xx %s registers: %d",
__func__, "io", error);
bcm53xx_armcore_bsh = (bus_space_handle_t) iobase + BCM53XX_IOREG_SIZE;
error = bus_space_map(bcm53xx_armcore_bst, BCM53XX_ARMCORE_PBASE,
BCM53XX_ARMCORE_SIZE, 0, &bcm53xx_armcore_bsh);
if (error)
panic("%s: failed to map BCM53xx %s registers: %d",
__func__, "armcore", error);
curcpu()->ci_softc = &cpu_softc;
bcm53xx_get_chip_ioreg_state(&bcs, bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh);
bcm53xx_get_chip_armcore_state(&bcs, bcm53xx_armcore_bst, bcm53xx_armcore_bsh);
struct bcm53xx_clock_info * const clk = &cpu_softc.cpu_clk;
bcm53xx_clock_init(clk);
bcm53xx_lcpll_clock_init(clk, bcs.bcs_lcpll_control1,
bcs.bcs_lcpll_control2);
bcm53xx_genpll_clock_init(clk, bcs.bcs_genpll_control5,
bcs.bcs_genpll_control6, bcs.bcs_genpll_control7);
bcm53xx_usb_clock_init(clk, bcs.bcs_usb2_control);
bcm53xx_get_ddr_freq(clk, bcs.bcs_ddr_phy_ctl_pll_status,
bcs.bcs_ddr_phy_ctl_pll_dividers);
bcm53xx_get_cpu_freq(clk, bcs.bcs_armcore_clk_pllarma,
bcs.bcs_armcore_clk_pllarmb, bcs.bcs_armcore_clk_policy);
curcpu()->ci_data.cpu_cc_freq = clk->clk_cpu;
#if NARML2CC > 0
arml2cc_init(bcm53xx_armcore_bst, bcm53xx_armcore_bsh,
ARMCORE_L2C_BASE);
#endif
}
void
bcm53xx_dma_bootstrap(psize_t memsize)
{
if (memsize <= 256*1024*1024) {
bcm53xx_dma_ranges[0].dr_len = memsize;
bcm53xx_coherent_dma_ranges[0].dr_len = memsize;
bcm53xx_dma_tag._nranges = 1;
bcm53xx_coherent_dma_tag._nranges = 1;
} else {
/*
* By setting up two ranges, bus_dmamem_alloc will always
* try to allocate from range 0 first resulting in allocations
* below 256MB which for PCI and GMAC are coherent.
*/
bcm53xx_dma_ranges[1].dr_len = memsize - 0x10000000;
bcm53xx_coherent_dma_ranges[1].dr_len = memsize - 0x10000000;
}
KASSERT(bcm53xx_dma_tag._ranges[0].dr_flags == 0);
KASSERT(bcm53xx_coherent_dma_tag._ranges[0].dr_flags == _BUS_DMAMAP_COHERENT);
#ifdef _ARM32_NEED_BUS_DMA_BOUNCE
KASSERT(bcm53xx_bounce_dma_tag._ranges[0].dr_flags == _BUS_DMAMAP_COHERENT);
#endif
}
#ifdef MULTIPROCESSOR
void
bcm53xx_cpu_hatch(struct cpu_info *ci)
{
a9tmr_init_cpu_clock(ci);
}
#endif
void
bcm53xx_device_register(device_t self, void *aux)
{
prop_dictionary_t dict = device_properties(self);
if (device_is_a(self, "armperiph")
&& device_is_a(device_parent(self), "mainbus")) {
/*
* XXX KLUDGE ALERT XXX
* The iot mainbus supplies is completely wrong since it scales
* addresses by 2. The simplest remedy is to replace with our
* bus space used for the armcore registers (which armperiph uses).
*/
struct mainbus_attach_args * const mb = aux;
mb->mb_iot = bcm53xx_armcore_bst;
return;
}
/*
* We need to tell the A9 Global/Watchdog Timer
* what frequency it runs at.
*/
if (device_is_a(self, "arma9tmr") || device_is_a(self, "a9wdt")) {
/*
* This clock always runs at (arm_clk div 2) and only goes
* to timers that are part of the A9 MP core subsystem.
*/
prop_dictionary_set_uint32(dict, "frequency",
cpu_softc.cpu_clk.clk_cpu / 2);
return;
}
if (device_is_a(self, "bcmeth")) {
const struct bcmccb_attach_args * const ccbaa = aux;
const uint8_t enaddr[ETHER_ADDR_LEN] = {
0x00, 0x01, 0x02, 0x03, 0x04,
0x05 + 2 * ccbaa->ccbaa_loc.loc_port,
};
prop_data_t pd = prop_data_create_data(enaddr, ETHER_ADDR_LEN);
KASSERT(pd != NULL);
if (prop_dictionary_set(device_properties(self), "mac-address", pd) == false) {
printf("WARNING: Unable to set mac-address property for %s\n", device_xname(self));
}
prop_object_release(pd);
}
}
#ifdef SRAB_BASE
static kmutex_t srab_lock __cacheline_aligned;
void
bcm53xx_srab_init(void)
{
mutex_init(&srab_lock, MUTEX_DEFAULT, IPL_VM);
bcm53xx_srab_write_4(0x0079, 0x90); // reset switch
for (u_int port = 0; port < 8; port++) {
/* per port control: no stp */
bcm53xx_srab_write_4(port, 0x00);
}
bcm53xx_srab_write_4(0x0008, 0x1c); // IMP port (enab UC/MC/BC)
bcm53xx_srab_write_4(0x000e, 0xbb); // IMP port force-link 1G
bcm53xx_srab_write_4(0x005d, 0x7b); // port5 force-link 1G
bcm53xx_srab_write_4(0x005f, 0x7b); // port7 force-link 1G
bcm53xx_srab_write_4(0x000b, 0x7); // management mode
bcm53xx_srab_write_4(0x0203, 0x0); // disable BRCM tag
bcm53xx_srab_write_4(0x0200, 0x80); // enable IMP=port8
}
static inline void
bcm53xx_srab_busywait(bus_space_tag_t bst, bus_space_handle_t bsh)
{
while (bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT) & SRA_GORDYN) {
delay(10);
}
}
uint32_t
bcm53xx_srab_read_4(u_int pageoffset)
{
bus_space_tag_t bst = bcm53xx_ioreg_bst;
bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
uint32_t rv;
mutex_spin_enter(&srab_lock);
bcm53xx_srab_busywait(bst, bsh);
bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
__SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_GORDYN);
bcm53xx_srab_busywait(bst, bsh);
rv = bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDL);
mutex_spin_exit(&srab_lock);
return rv;
}
uint64_t
bcm53xx_srab_read_8(u_int pageoffset)
{
bus_space_tag_t bst = bcm53xx_ioreg_bst;
bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
uint64_t rv;
mutex_spin_enter(&srab_lock);
bcm53xx_srab_busywait(bst, bsh);
bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
__SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_GORDYN);
bcm53xx_srab_busywait(bst, bsh);
rv = bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDH);
rv <<= 32;
rv |= bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDL);
mutex_spin_exit(&srab_lock);
return rv;
}
void
bcm53xx_srab_write_4(u_int pageoffset, uint32_t val)
{
bus_space_tag_t bst = bcm53xx_ioreg_bst;
bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
mutex_spin_enter(&srab_lock);
bcm53xx_srab_busywait(bst, bsh);
bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDL, val);
bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
__SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_WRITE | SRA_GORDYN);
bcm53xx_srab_busywait(bst, bsh);
mutex_spin_exit(&srab_lock);
}
void
bcm53xx_srab_write_8(u_int pageoffset, uint64_t val)
{
bus_space_tag_t bst = bcm53xx_ioreg_bst;
bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
mutex_spin_enter(&srab_lock);
bcm53xx_srab_busywait(bst, bsh);
bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDL, val);
bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDH, val >> 32);
bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
__SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_WRITE | SRA_GORDYN);
bcm53xx_srab_busywait(bst, bsh);
mutex_spin_exit(&srab_lock);
}
#endif