Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
/*	$NetBSD: tlp.c,v 1.9 2010/01/19 15:28:52 tsutsui Exp $	*/

/*-
 * Copyright (c) 2007 The NetBSD Foundation, Inc.
 * All rights reserved.
 *
 * This code is derived from software contributed to The NetBSD Foundation
 * by Tohru Nishimura.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <sys/param.h>
#include <sys/socket.h>

#include <netinet/in.h>
#include <netinet/in_systm.h>

#include <lib/libsa/stand.h>
#include <lib/libsa/net.h>

#include <mips/cpuregs.h>

#include <machine/cpu.h>

#include "boot.h"

/*
 * - little endian access for CSR register.
 * - assume KSEG0 on vtophys() translation. 
 * - PIPT writeback cache aware.
 */
#define CSR_WRITE(l, r, v)					 	\
do {									\
	*(volatile uint32_t *)((l)->csr + (r)) = (v);			\
} while (0)
#define CSR_READ(l, r)		(*(volatile uint32_t *)((l)->csr + (r)))
#define VTOPHYS(va) 		MIPS_KSEG0_TO_PHYS(va)
#define wb(adr, siz)		pdcache_wb((uint32_t)(adr), (u_int)(siz))
#define wbinv(adr, siz)		pdcache_wbinv((uint32_t)(adr), (u_int)(siz))
#define inv(adr, siz)		pdcache_inv((uint32_t)(adr), (u_int)(siz))
#define DELAY(n)		delay(n)
#define ALLOC(T, A)	(T *)((uint32_t)alloc(sizeof(T) + (A)) & ~((A) - 1))

#define T0_OWN		(1U<<31)	/* desc is ready to tx */
#define T0_ES		(1U<<15)	/* Tx error summary */
#define T1_LS		(1U<<30)	/* last segment */
#define T1_FS		(1U<<29)	/* first segment */
#define T1_SET		(1U<<27)	/* "setup packet" */
#define T1_TER		(1U<<25)	/* end of ring mark */
#define T1_TCH		(1U<<24)	/* Second address chained */
#define T1_TBS_MASK	0x7ff		/* segment size 10:0 */
#define R0_OWN		(1U<<31)	/* desc is empty */
#define R0_FS		(1U<<30)	/* first desc of frame */
#define R0_LS		(1U<<8)		/* last desc of frame */
#define R0_ES		(1U<<15)	/* Rx error summary */
#define R1_RCH		(1U<<24)	/* Second address chained */
#define R1_RER		(1U<<25)	/* end of ring mark */
#define R0_FL_MASK	0x3fff0000	/* frame length 29:16 */
#define R1_RBS_MASK	0x7ff		/* segment size 10:0 */

#define DESCSIZE	16
struct desc {
	volatile uint32_t xd0, xd1, xd2, xd3;
#if CACHELINESIZE > DESCSIZE
	uint8_t pad[CACHELINESIZE - DESCSIZE];
#endif
};

#define TLP_BMR		0x00		/* 0: bus mode */
#define  BMR_RST	(1U<< 0)	/* software reset */
#define  BMR_BAR	(1U<< 1)	/* bus arbitration */
#define  BMR_PBL8	(1U<<11)	/* burst length 8 longword */
#define  BMR_CAL8	(1U<<13)	/* cache alignment 8 longword */
#define TLP_TPD		0x08		/* 1: instruct Tx to start */
#define  TPD_POLL	(1U<< 0)	/* transmit poll demand */
#define TLP_RPD		0x10		/* 2: instruct Rx to start */
#define  RPD_POLL	(1U<< 0)	/* receive poll demand */
#define TLP_RRBA	0x18		/* 3: Rx descriptor base */
#define TLP_TRBA	0x20		/* 4: Tx descriptor base */
#define TLP_STS		0x28		/* 5: status */
#define  STS_TS		0x00700000	/* Tx status */
#define  STS_RS		0x000e0000	/* Rx status */
#define TLP_OMR		0x30		/* 6: operation mode */
#define  OMR_SDP	(1U<<25)	/* always ON */
#define  OMR_PS		(1U<<18)	/* port select */
#define  OMR_PM		(1U<< 6)	/* promicuous */
#define  OMR_TEN	(1U<<13)	/* instruct start/stop Tx */
#define  OMR_REN	(1U<< 1)	/* instruct start/stop Rx */
#define  OMR_FD		(1U<< 9)	/* FDX */
#define TLP_IEN		0x38		/* 7: interrupt enable mask */
#define TLP_APROM	0x48		/* 9: SEEPROM and MII management */
#define  SROM_RD	(1U <<14)	/* read operation */
#define  SROM_WR	(1U <<13)	/* write openration */
#define  SROM_SR	(1U <<11)	/* SEEPROM select */
#define TLP_CSR12	0x60		/* SIA status */

#define TLP_CSR13	0x68		/* SIA connectivity register */
#define  SIACONN_10BT	0x0000ef01	/* 10BASE-T for 21041 */

#define TLP_CSR14	0x70		/* SIA TX RX register */
#define  SIATXRX_10BT	0x0000ffff	/* 10BASE-T for 21041 pass 2 */

#define TLP_CSR15	0x78		/* SIA general register */
#define  SIAGEN_MD0	(1U<<16)
#define  SIAGEN_CWE	(1U<<28)
#define  SIAGEN_10BT	0x00000000	/* 10BASE-T for 21041 */

#define TLP_SETUP_NADDR	16
#define TLP_SETUPLEN	192		/* 16 * 3 * sizeof(uint32_t) */

#define FRAMESIZE	1536
#define BUFSIZE		2048
#define NTXBUF		2
#define NEXT_TXBUF(x)	(((x) + 1) & (NTXBUF - 1))
#define NRXBUF		2
#define NEXT_RXBUF(x)	(((x) + 1) & (NRXBUF - 1))

struct local {
	struct desc txd[NTXBUF];
	struct desc rxd[NRXBUF];
	uint8_t txstore[TLP_SETUPLEN];
	uint8_t rxstore[NRXBUF][BUFSIZE];
	uint32_t csr, omr;
	u_int tx;
	u_int rx;
	u_int sromsft;
	u_int phy;
	uint32_t bmsr, anlpar;
};

#define COBALT_TLP0_BASE	0x10100000
#define SROM_MAC_OFFSET		0

static void size_srom(struct local *);
static u_int read_srom(struct local *, int);
#if 0
static u_int tlp_mii_read(struct local *, int, int);
static void tlp_mii_write(struct local *, int, int, int);
static void mii_initphy(struct local *);
#endif

void *
tlp_init(void *cookie)
{
	uint32_t val, tag;
	struct local *l;
	struct desc *txd, *rxd;
	uint8_t *en, *p;
	int i;
	int is21041;

	if (cobalt_id == COBALT_ID_QUBE2700)
		is21041 = 1;
	else
		is21041 = 0;

	l = ALLOC(struct local, CACHELINESIZE);
	memset(l, 0, sizeof(struct local));

	DPRINTF(("tlp: l = %p, txd[0] = %p, txd[1] = %p\n",
	    l, &l->txd[0], &l->txd[1]));
	DPRINTF(("tlp: rxd[0] = %p, rxd[1] = %p\n",
	    &l->rxd[0], &l->rxd[1]));
	DPRINTF(("tlp: txstore = %p, rxstore[0] = %p, rxstore[1] = %p\n",
	    l->txstore, l->rxstore[0], l->rxstore[1]));

#if 1
	/* XXX assume tlp0 at pci0 dev 7 function 0 */
	tag = (0 << 16) | ( 7 << 11) | (0 << 8);
	/* memory map is not initialized by the firmware on cobalt */
	l->csr = MIPS_PHYS_TO_KSEG1(pcicfgread(tag, 0x10) & ~3U);
	DPRINTF(("%s: CSR = 0x%x\n", __func__, l->csr));
#else
	l->csr = MIPS_PHYS_TO_KSEG1(COBALT_TLP0_BASE);
#endif

	val = CSR_READ(l, TLP_BMR);
	CSR_WRITE(l, TLP_BMR, val | BMR_RST);
	DELAY(1000);
	CSR_WRITE(l, TLP_BMR, val);
	DELAY(1000);
	(void)CSR_READ(l, TLP_BMR);

	if (is21041) {
		/* reset SIA for 10BASE-T */
		CSR_WRITE(l, TLP_CSR13, 0);
		DELAY(1000);
		CSR_WRITE(l, TLP_CSR15, SIAGEN_10BT);
		CSR_WRITE(l, TLP_CSR14, SIATXRX_10BT);
		CSR_WRITE(l, TLP_CSR13, SIACONN_10BT);
	} else {
		/* reset PHY (cobalt quirk from if_tlp_pci.c) */
		CSR_WRITE(l, TLP_CSR15, SIAGEN_CWE | SIAGEN_MD0);
		DELAY(10);
		CSR_WRITE(l, TLP_CSR15, SIAGEN_CWE);
		DELAY(10);
	}

	l->omr = OMR_PS | OMR_SDP;
	CSR_WRITE(l, TLP_OMR, l->omr);
	CSR_WRITE(l, TLP_IEN, 0);
	CSR_WRITE(l, TLP_STS, ~0);

#if 0
	mii_initphy(l);
#endif
	size_srom(l);

	en = cookie;
	/* MAC address is stored at offset 0 in SROM on cobalt */
	val = read_srom(l, SROM_MAC_OFFSET / 2 + 0);
	en[0] = val;
	en[1] = val >> 8;
	val = read_srom(l, SROM_MAC_OFFSET / 2 + 1);
	en[2] = val;
	en[3] = val >> 8;
	val = read_srom(l, SROM_MAC_OFFSET / 2 + 2);
	en[4] = val;
	en[5] = val >> 8;

	DPRINTF(("tlp: MAC address %02x:%02x:%02x:%02x:%02x:%02x\n",
	    en[0], en[1], en[2], en[3], en[4], en[5]));

	rxd = &l->rxd[0];
	for (i = 0; i < NRXBUF; i++) {
		rxd[i].xd3 = htole32(VTOPHYS(&rxd[NEXT_RXBUF(i)]));
		rxd[i].xd2 = htole32(VTOPHYS(l->rxstore[i]));
		rxd[i].xd1 = htole32(R1_RCH|FRAMESIZE);
		rxd[i].xd0 = htole32(R0_OWN);
	}

	txd = &l->txd[0];
	for (i = 0; i < NTXBUF; i++) {
		txd[i].xd3 = htole32(VTOPHYS(&txd[NEXT_TXBUF(i)]));
		txd[i].xd0 = htole32(0);
	}

	/* prepare setup packet */
	p = l->txstore;
	memset(p, 0, TLP_SETUPLEN);
	/* put broadcast first */
	p[0] = p[1] = p[4] = p[5] = p[8] = p[9] = 0xff;
	for (i = 1; i < TLP_SETUP_NADDR; i++) {
		/* put own station address to the rest */
		p[i * 12 + 0] = en[0];
		p[i * 12 + 1] = en[1];
		p[i * 12 + 4] = en[2];
		p[i * 12 + 5] = en[3];
		p[i * 12 + 8] = en[4];
		p[i * 12 + 9] = en[5];
	}

	txd = &l->txd[0];
	txd->xd2 = htole32(VTOPHYS(l->txstore));
	txd->xd1 = htole32(T1_SET | T1_TCH | TLP_SETUPLEN);
	txd->xd0 = htole32(T0_OWN);

	/* make sure the entire descriptors transfered to memory */
	wbinv(l, sizeof(struct local));

	CSR_WRITE(l, TLP_RRBA, VTOPHYS(rxd));
	CSR_WRITE(l, TLP_TRBA, VTOPHYS(txd));

	l->tx = NEXT_TXBUF(0);
	l->rx = 0;
	l->omr |= OMR_TEN | OMR_REN;
	if (!is21041)
		l->omr |= OMR_FD;

	/* enable Tx/Rx */
	CSR_WRITE(l, TLP_OMR, l->omr);
	/* start TX and send setup packet */
	CSR_WRITE(l, TLP_TPD, TPD_POLL);
	DELAY(50000);
	/* start RX */
	CSR_WRITE(l, TLP_RPD, RPD_POLL);

	return l;
}

int
tlp_send(void *dev, char *buf, u_int len)
{
	struct local *l = dev;
	struct desc *txd;
	u_int loop;

	wb(buf, len);
	txd = &l->txd[l->tx];
	txd->xd2 = htole32(VTOPHYS(buf));
	txd->xd1 = htole32(T1_FS | T1_LS | T1_TCH | (len & T1_TBS_MASK));
	txd->xd0 = htole32(T0_OWN);
	wbinv(txd, sizeof(struct desc));
	CSR_WRITE(l, TLP_TPD, TPD_POLL);
	l->tx = NEXT_TXBUF(l->tx);
	loop = 100;
	do {
		if ((le32toh(txd->xd0) & T0_OWN) == 0)
			goto done;
		inv(txd, sizeof(struct desc));
		DELAY(10);
	} while (--loop > 0);
	printf("xmit failed\n");
	return -1;
  done:
	return len;
}

int
tlp_recv(void *dev, char *buf, u_int maxlen, u_int timo)
{
	struct local *l = dev;
	struct desc *rxd;
	u_int bound, len;
	uint32_t rxstat;
	uint8_t *ptr;

	bound = timo * 1000000;

  again:
	rxd = &l->rxd[l->rx];
	do {
		rxstat = le32toh(rxd->xd0);
		inv(rxd, sizeof(struct desc));
		if ((rxstat & R0_OWN) == 0)
			goto gotone;
		DELAY(1);
	} while (--bound > 0);
	errno = 0;
	CSR_WRITE(l, TLP_RPD, RPD_POLL);
	return -1;
  gotone:
	if (rxstat & R0_ES) {
		rxd->xd0 = htole32(R0_OWN);
		wbinv(rxd, sizeof(struct desc));
		l->rx = NEXT_RXBUF(l->rx);
		CSR_WRITE(l, TLP_RPD, RPD_POLL);
		goto again;
	}
	/* good frame */
	len = ((rxstat & R0_FL_MASK) >> 16) - 4; /* HASFCS */
        if (len > maxlen)
                len = maxlen;
	ptr = l->rxstore[l->rx];
	memcpy(buf, ptr, len);
	inv(ptr, FRAMESIZE);
	rxd->xd0 = htole32(R0_OWN);
	wbinv(rxd, sizeof(struct desc));
	l->rx = NEXT_RXBUF(l->rx);
	CSR_WRITE(l, TLP_OMR, l->omr); /* necessary? */
	return len;
}

static void
size_srom(struct local *l)
{
	/* determine 8/6 bit addressing SEEPROM */
	l->sromsft = 8;
	l->sromsft = (read_srom(l, 255) & 0x40000) ? 8 : 6;
}

/*
 * bare SEEPROM access with bitbang'ing
 */
#define R110	6		/* SEEPROM read op */
#define CS  	(1U << 0)	/* hold chip select */
#define CLK	(1U << 1)	/* clk bit */
#define D1	(1U << 2)	/* bit existence */
#define D0	0		/* bit absence */
#define VV 	(1U << 3)	/* taken 0/1 from SEEPROM */

static u_int
read_srom(struct local *l, int off)
{
	u_int idx, cnt, ret;
	uint32_t val, x1, x0, bit;

	idx = off & 0xff;		/* A7-A0 */
	idx |= R110 << l->sromsft;	/* 110 for READ */

	val = SROM_RD | SROM_SR;
	CSR_WRITE(l, TLP_APROM, val);
	val |= CS;			/* hold CS */
	CSR_WRITE(l, TLP_APROM, val);

	x1 = val | D1;			/* 1 */
	x0 = val | D0;			/* 0 */
	/* instruct R110 op. at off in MSB first order */
	for (cnt = (1 << (l->sromsft + 2)); cnt > 0; cnt >>= 1) {
		bit = (idx & cnt) ? x1 : x0;
		CSR_WRITE(l, TLP_APROM, bit);
		DELAY(10);
		CSR_WRITE(l, TLP_APROM, bit | CLK);
		DELAY(10);
	}
	/* read 16bit quantity in MSB first order */
	ret = 0;
	for (cnt = 16; cnt > 0; cnt--) {
		CSR_WRITE(l, TLP_APROM, val);
		DELAY(10);
		CSR_WRITE(l, TLP_APROM, val | CLK);
		DELAY(10);
		ret = (ret << 1) | !!(CSR_READ(l, TLP_APROM) & VV);
	}
	val &= ~CS; /* turn off chip select */
	CSR_WRITE(l, TLP_APROM, val);

	return ret;
}

#if 0

static u_int
tlp_mii_read(struct local *l, int phy, int reg)
{
	/* later ... */
	return 0;
}

static void
tlp_mii_write(struct local *l, int phy, int reg, int val)
{
	/* later ... */
}

#define MII_BMCR	0x00 	/* Basic mode control register (rw) */
#define  BMCR_RESET	0x8000	/* reset */
#define  BMCR_AUTOEN	0x1000	/* autonegotiation enable */
#define  BMCR_ISO	0x0400	/* isolate */
#define  BMCR_STARTNEG	0x0200	/* restart autonegotiation */
#define MII_BMSR	0x01	/* Basic mode status register (ro) */

static void
mii_initphy(struct local *l)
{
	int phy, bound;
	uint32_t ctl, sts;

	for (phy = 0; phy < 32; phy++) {
		ctl = tlp_mii_read(l, phy, MII_BMCR);
		sts = tlp_mii_read(l, phy, MII_BMSR);
		if (ctl != 0xffff && sts != 0xffff)
			goto found;
	}
	printf("MII: no PHY found\n");
	return;
  found:
	ctl = tlp_mii_read(l, phy, MII_BMCR);
	tlp_mii_write(l, phy, MII_BMCR, ctl | BMCR_RESET);
	bound = 100;
	do {
		DELAY(10);
		ctl = tlp_mii_read(l, phy, MII_BMCR);
		if (ctl == 0xffff) {
			printf("MII: PHY %d has died after reset\n", phy);
			return;
		}
	} while (bound-- > 0 && (ctl & BMCR_RESET));
	if (bound == 0) {
		printf("PHY %d reset failed\n", phy);
	}
	ctl &= ~BMCR_ISO;
	tlp_mii_write(l, phy, MII_BMCR, ctl);
	sts = tlp_mii_read(l, phy, MII_BMSR) |
	    tlp_mii_read(l, phy, MII_BMSR); /* read twice */
	l->phy = phy;
	l->bmsr = sts;
}

static void
mii_dealan(struct local *, u_int timo)
{
	uint32_t anar;
	u_int bound;

	anar = ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA;
	tlp_mii_write(l, l->phy, MII_ANAR, anar);
	tlp_mii_write(l, l->phy, MII_BMCR, BMCR_AUTOEN | BMCR_STARTNEG);
	l->anlpar = 0;
	bound = getsecs() + timo;
	do {
		l->bmsr = tlp_mii_read(l, l->phy, MII_BMSR) |
		   tlp_mii_read(l, l->phy, MII_BMSR); /* read twice */
		if ((l->bmsr & BMSR_LINK) && (l->bmsr & BMSR_ACOMP)) {
			l->anlpar = tlp_mii_read(l, l->phy, MII_ANLPAR);
			break;
		}
		DELAY(10 * 1000);
	} while (getsecs() < bound);
	return;
}
#endif