/* $NetBSD: tlp.c,v 1.9 2010/01/19 15:28:52 tsutsui Exp $ */
/*-
* Copyright (c) 2007 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Tohru Nishimura.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/param.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <lib/libsa/stand.h>
#include <lib/libsa/net.h>
#include <mips/cpuregs.h>
#include <machine/cpu.h>
#include "boot.h"
/*
* - little endian access for CSR register.
* - assume KSEG0 on vtophys() translation.
* - PIPT writeback cache aware.
*/
#define CSR_WRITE(l, r, v) \
do { \
*(volatile uint32_t *)((l)->csr + (r)) = (v); \
} while (0)
#define CSR_READ(l, r) (*(volatile uint32_t *)((l)->csr + (r)))
#define VTOPHYS(va) MIPS_KSEG0_TO_PHYS(va)
#define wb(adr, siz) pdcache_wb((uint32_t)(adr), (u_int)(siz))
#define wbinv(adr, siz) pdcache_wbinv((uint32_t)(adr), (u_int)(siz))
#define inv(adr, siz) pdcache_inv((uint32_t)(adr), (u_int)(siz))
#define DELAY(n) delay(n)
#define ALLOC(T, A) (T *)((uint32_t)alloc(sizeof(T) + (A)) & ~((A) - 1))
#define T0_OWN (1U<<31) /* desc is ready to tx */
#define T0_ES (1U<<15) /* Tx error summary */
#define T1_LS (1U<<30) /* last segment */
#define T1_FS (1U<<29) /* first segment */
#define T1_SET (1U<<27) /* "setup packet" */
#define T1_TER (1U<<25) /* end of ring mark */
#define T1_TCH (1U<<24) /* Second address chained */
#define T1_TBS_MASK 0x7ff /* segment size 10:0 */
#define R0_OWN (1U<<31) /* desc is empty */
#define R0_FS (1U<<30) /* first desc of frame */
#define R0_LS (1U<<8) /* last desc of frame */
#define R0_ES (1U<<15) /* Rx error summary */
#define R1_RCH (1U<<24) /* Second address chained */
#define R1_RER (1U<<25) /* end of ring mark */
#define R0_FL_MASK 0x3fff0000 /* frame length 29:16 */
#define R1_RBS_MASK 0x7ff /* segment size 10:0 */
#define DESCSIZE 16
struct desc {
volatile uint32_t xd0, xd1, xd2, xd3;
#if CACHELINESIZE > DESCSIZE
uint8_t pad[CACHELINESIZE - DESCSIZE];
#endif
};
#define TLP_BMR 0x00 /* 0: bus mode */
#define BMR_RST (1U<< 0) /* software reset */
#define BMR_BAR (1U<< 1) /* bus arbitration */
#define BMR_PBL8 (1U<<11) /* burst length 8 longword */
#define BMR_CAL8 (1U<<13) /* cache alignment 8 longword */
#define TLP_TPD 0x08 /* 1: instruct Tx to start */
#define TPD_POLL (1U<< 0) /* transmit poll demand */
#define TLP_RPD 0x10 /* 2: instruct Rx to start */
#define RPD_POLL (1U<< 0) /* receive poll demand */
#define TLP_RRBA 0x18 /* 3: Rx descriptor base */
#define TLP_TRBA 0x20 /* 4: Tx descriptor base */
#define TLP_STS 0x28 /* 5: status */
#define STS_TS 0x00700000 /* Tx status */
#define STS_RS 0x000e0000 /* Rx status */
#define TLP_OMR 0x30 /* 6: operation mode */
#define OMR_SDP (1U<<25) /* always ON */
#define OMR_PS (1U<<18) /* port select */
#define OMR_PM (1U<< 6) /* promicuous */
#define OMR_TEN (1U<<13) /* instruct start/stop Tx */
#define OMR_REN (1U<< 1) /* instruct start/stop Rx */
#define OMR_FD (1U<< 9) /* FDX */
#define TLP_IEN 0x38 /* 7: interrupt enable mask */
#define TLP_APROM 0x48 /* 9: SEEPROM and MII management */
#define SROM_RD (1U <<14) /* read operation */
#define SROM_WR (1U <<13) /* write openration */
#define SROM_SR (1U <<11) /* SEEPROM select */
#define TLP_CSR12 0x60 /* SIA status */
#define TLP_CSR13 0x68 /* SIA connectivity register */
#define SIACONN_10BT 0x0000ef01 /* 10BASE-T for 21041 */
#define TLP_CSR14 0x70 /* SIA TX RX register */
#define SIATXRX_10BT 0x0000ffff /* 10BASE-T for 21041 pass 2 */
#define TLP_CSR15 0x78 /* SIA general register */
#define SIAGEN_MD0 (1U<<16)
#define SIAGEN_CWE (1U<<28)
#define SIAGEN_10BT 0x00000000 /* 10BASE-T for 21041 */
#define TLP_SETUP_NADDR 16
#define TLP_SETUPLEN 192 /* 16 * 3 * sizeof(uint32_t) */
#define FRAMESIZE 1536
#define BUFSIZE 2048
#define NTXBUF 2
#define NEXT_TXBUF(x) (((x) + 1) & (NTXBUF - 1))
#define NRXBUF 2
#define NEXT_RXBUF(x) (((x) + 1) & (NRXBUF - 1))
struct local {
struct desc txd[NTXBUF];
struct desc rxd[NRXBUF];
uint8_t txstore[TLP_SETUPLEN];
uint8_t rxstore[NRXBUF][BUFSIZE];
uint32_t csr, omr;
u_int tx;
u_int rx;
u_int sromsft;
u_int phy;
uint32_t bmsr, anlpar;
};
#define COBALT_TLP0_BASE 0x10100000
#define SROM_MAC_OFFSET 0
static void size_srom(struct local *);
static u_int read_srom(struct local *, int);
#if 0
static u_int tlp_mii_read(struct local *, int, int);
static void tlp_mii_write(struct local *, int, int, int);
static void mii_initphy(struct local *);
#endif
void *
tlp_init(void *cookie)
{
uint32_t val, tag;
struct local *l;
struct desc *txd, *rxd;
uint8_t *en, *p;
int i;
int is21041;
if (cobalt_id == COBALT_ID_QUBE2700)
is21041 = 1;
else
is21041 = 0;
l = ALLOC(struct local, CACHELINESIZE);
memset(l, 0, sizeof(struct local));
DPRINTF(("tlp: l = %p, txd[0] = %p, txd[1] = %p\n",
l, &l->txd[0], &l->txd[1]));
DPRINTF(("tlp: rxd[0] = %p, rxd[1] = %p\n",
&l->rxd[0], &l->rxd[1]));
DPRINTF(("tlp: txstore = %p, rxstore[0] = %p, rxstore[1] = %p\n",
l->txstore, l->rxstore[0], l->rxstore[1]));
#if 1
/* XXX assume tlp0 at pci0 dev 7 function 0 */
tag = (0 << 16) | ( 7 << 11) | (0 << 8);
/* memory map is not initialized by the firmware on cobalt */
l->csr = MIPS_PHYS_TO_KSEG1(pcicfgread(tag, 0x10) & ~3U);
DPRINTF(("%s: CSR = 0x%x\n", __func__, l->csr));
#else
l->csr = MIPS_PHYS_TO_KSEG1(COBALT_TLP0_BASE);
#endif
val = CSR_READ(l, TLP_BMR);
CSR_WRITE(l, TLP_BMR, val | BMR_RST);
DELAY(1000);
CSR_WRITE(l, TLP_BMR, val);
DELAY(1000);
(void)CSR_READ(l, TLP_BMR);
if (is21041) {
/* reset SIA for 10BASE-T */
CSR_WRITE(l, TLP_CSR13, 0);
DELAY(1000);
CSR_WRITE(l, TLP_CSR15, SIAGEN_10BT);
CSR_WRITE(l, TLP_CSR14, SIATXRX_10BT);
CSR_WRITE(l, TLP_CSR13, SIACONN_10BT);
} else {
/* reset PHY (cobalt quirk from if_tlp_pci.c) */
CSR_WRITE(l, TLP_CSR15, SIAGEN_CWE | SIAGEN_MD0);
DELAY(10);
CSR_WRITE(l, TLP_CSR15, SIAGEN_CWE);
DELAY(10);
}
l->omr = OMR_PS | OMR_SDP;
CSR_WRITE(l, TLP_OMR, l->omr);
CSR_WRITE(l, TLP_IEN, 0);
CSR_WRITE(l, TLP_STS, ~0);
#if 0
mii_initphy(l);
#endif
size_srom(l);
en = cookie;
/* MAC address is stored at offset 0 in SROM on cobalt */
val = read_srom(l, SROM_MAC_OFFSET / 2 + 0);
en[0] = val;
en[1] = val >> 8;
val = read_srom(l, SROM_MAC_OFFSET / 2 + 1);
en[2] = val;
en[3] = val >> 8;
val = read_srom(l, SROM_MAC_OFFSET / 2 + 2);
en[4] = val;
en[5] = val >> 8;
DPRINTF(("tlp: MAC address %02x:%02x:%02x:%02x:%02x:%02x\n",
en[0], en[1], en[2], en[3], en[4], en[5]));
rxd = &l->rxd[0];
for (i = 0; i < NRXBUF; i++) {
rxd[i].xd3 = htole32(VTOPHYS(&rxd[NEXT_RXBUF(i)]));
rxd[i].xd2 = htole32(VTOPHYS(l->rxstore[i]));
rxd[i].xd1 = htole32(R1_RCH|FRAMESIZE);
rxd[i].xd0 = htole32(R0_OWN);
}
txd = &l->txd[0];
for (i = 0; i < NTXBUF; i++) {
txd[i].xd3 = htole32(VTOPHYS(&txd[NEXT_TXBUF(i)]));
txd[i].xd0 = htole32(0);
}
/* prepare setup packet */
p = l->txstore;
memset(p, 0, TLP_SETUPLEN);
/* put broadcast first */
p[0] = p[1] = p[4] = p[5] = p[8] = p[9] = 0xff;
for (i = 1; i < TLP_SETUP_NADDR; i++) {
/* put own station address to the rest */
p[i * 12 + 0] = en[0];
p[i * 12 + 1] = en[1];
p[i * 12 + 4] = en[2];
p[i * 12 + 5] = en[3];
p[i * 12 + 8] = en[4];
p[i * 12 + 9] = en[5];
}
txd = &l->txd[0];
txd->xd2 = htole32(VTOPHYS(l->txstore));
txd->xd1 = htole32(T1_SET | T1_TCH | TLP_SETUPLEN);
txd->xd0 = htole32(T0_OWN);
/* make sure the entire descriptors transfered to memory */
wbinv(l, sizeof(struct local));
CSR_WRITE(l, TLP_RRBA, VTOPHYS(rxd));
CSR_WRITE(l, TLP_TRBA, VTOPHYS(txd));
l->tx = NEXT_TXBUF(0);
l->rx = 0;
l->omr |= OMR_TEN | OMR_REN;
if (!is21041)
l->omr |= OMR_FD;
/* enable Tx/Rx */
CSR_WRITE(l, TLP_OMR, l->omr);
/* start TX and send setup packet */
CSR_WRITE(l, TLP_TPD, TPD_POLL);
DELAY(50000);
/* start RX */
CSR_WRITE(l, TLP_RPD, RPD_POLL);
return l;
}
int
tlp_send(void *dev, char *buf, u_int len)
{
struct local *l = dev;
struct desc *txd;
u_int loop;
wb(buf, len);
txd = &l->txd[l->tx];
txd->xd2 = htole32(VTOPHYS(buf));
txd->xd1 = htole32(T1_FS | T1_LS | T1_TCH | (len & T1_TBS_MASK));
txd->xd0 = htole32(T0_OWN);
wbinv(txd, sizeof(struct desc));
CSR_WRITE(l, TLP_TPD, TPD_POLL);
l->tx = NEXT_TXBUF(l->tx);
loop = 100;
do {
if ((le32toh(txd->xd0) & T0_OWN) == 0)
goto done;
inv(txd, sizeof(struct desc));
DELAY(10);
} while (--loop > 0);
printf("xmit failed\n");
return -1;
done:
return len;
}
int
tlp_recv(void *dev, char *buf, u_int maxlen, u_int timo)
{
struct local *l = dev;
struct desc *rxd;
u_int bound, len;
uint32_t rxstat;
uint8_t *ptr;
bound = timo * 1000000;
again:
rxd = &l->rxd[l->rx];
do {
rxstat = le32toh(rxd->xd0);
inv(rxd, sizeof(struct desc));
if ((rxstat & R0_OWN) == 0)
goto gotone;
DELAY(1);
} while (--bound > 0);
errno = 0;
CSR_WRITE(l, TLP_RPD, RPD_POLL);
return -1;
gotone:
if (rxstat & R0_ES) {
rxd->xd0 = htole32(R0_OWN);
wbinv(rxd, sizeof(struct desc));
l->rx = NEXT_RXBUF(l->rx);
CSR_WRITE(l, TLP_RPD, RPD_POLL);
goto again;
}
/* good frame */
len = ((rxstat & R0_FL_MASK) >> 16) - 4; /* HASFCS */
if (len > maxlen)
len = maxlen;
ptr = l->rxstore[l->rx];
memcpy(buf, ptr, len);
inv(ptr, FRAMESIZE);
rxd->xd0 = htole32(R0_OWN);
wbinv(rxd, sizeof(struct desc));
l->rx = NEXT_RXBUF(l->rx);
CSR_WRITE(l, TLP_OMR, l->omr); /* necessary? */
return len;
}
static void
size_srom(struct local *l)
{
/* determine 8/6 bit addressing SEEPROM */
l->sromsft = 8;
l->sromsft = (read_srom(l, 255) & 0x40000) ? 8 : 6;
}
/*
* bare SEEPROM access with bitbang'ing
*/
#define R110 6 /* SEEPROM read op */
#define CS (1U << 0) /* hold chip select */
#define CLK (1U << 1) /* clk bit */
#define D1 (1U << 2) /* bit existence */
#define D0 0 /* bit absence */
#define VV (1U << 3) /* taken 0/1 from SEEPROM */
static u_int
read_srom(struct local *l, int off)
{
u_int idx, cnt, ret;
uint32_t val, x1, x0, bit;
idx = off & 0xff; /* A7-A0 */
idx |= R110 << l->sromsft; /* 110 for READ */
val = SROM_RD | SROM_SR;
CSR_WRITE(l, TLP_APROM, val);
val |= CS; /* hold CS */
CSR_WRITE(l, TLP_APROM, val);
x1 = val | D1; /* 1 */
x0 = val | D0; /* 0 */
/* instruct R110 op. at off in MSB first order */
for (cnt = (1 << (l->sromsft + 2)); cnt > 0; cnt >>= 1) {
bit = (idx & cnt) ? x1 : x0;
CSR_WRITE(l, TLP_APROM, bit);
DELAY(10);
CSR_WRITE(l, TLP_APROM, bit | CLK);
DELAY(10);
}
/* read 16bit quantity in MSB first order */
ret = 0;
for (cnt = 16; cnt > 0; cnt--) {
CSR_WRITE(l, TLP_APROM, val);
DELAY(10);
CSR_WRITE(l, TLP_APROM, val | CLK);
DELAY(10);
ret = (ret << 1) | !!(CSR_READ(l, TLP_APROM) & VV);
}
val &= ~CS; /* turn off chip select */
CSR_WRITE(l, TLP_APROM, val);
return ret;
}
#if 0
static u_int
tlp_mii_read(struct local *l, int phy, int reg)
{
/* later ... */
return 0;
}
static void
tlp_mii_write(struct local *l, int phy, int reg, int val)
{
/* later ... */
}
#define MII_BMCR 0x00 /* Basic mode control register (rw) */
#define BMCR_RESET 0x8000 /* reset */
#define BMCR_AUTOEN 0x1000 /* autonegotiation enable */
#define BMCR_ISO 0x0400 /* isolate */
#define BMCR_STARTNEG 0x0200 /* restart autonegotiation */
#define MII_BMSR 0x01 /* Basic mode status register (ro) */
static void
mii_initphy(struct local *l)
{
int phy, bound;
uint32_t ctl, sts;
for (phy = 0; phy < 32; phy++) {
ctl = tlp_mii_read(l, phy, MII_BMCR);
sts = tlp_mii_read(l, phy, MII_BMSR);
if (ctl != 0xffff && sts != 0xffff)
goto found;
}
printf("MII: no PHY found\n");
return;
found:
ctl = tlp_mii_read(l, phy, MII_BMCR);
tlp_mii_write(l, phy, MII_BMCR, ctl | BMCR_RESET);
bound = 100;
do {
DELAY(10);
ctl = tlp_mii_read(l, phy, MII_BMCR);
if (ctl == 0xffff) {
printf("MII: PHY %d has died after reset\n", phy);
return;
}
} while (bound-- > 0 && (ctl & BMCR_RESET));
if (bound == 0) {
printf("PHY %d reset failed\n", phy);
}
ctl &= ~BMCR_ISO;
tlp_mii_write(l, phy, MII_BMCR, ctl);
sts = tlp_mii_read(l, phy, MII_BMSR) |
tlp_mii_read(l, phy, MII_BMSR); /* read twice */
l->phy = phy;
l->bmsr = sts;
}
static void
mii_dealan(struct local *, u_int timo)
{
uint32_t anar;
u_int bound;
anar = ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA;
tlp_mii_write(l, l->phy, MII_ANAR, anar);
tlp_mii_write(l, l->phy, MII_BMCR, BMCR_AUTOEN | BMCR_STARTNEG);
l->anlpar = 0;
bound = getsecs() + timo;
do {
l->bmsr = tlp_mii_read(l, l->phy, MII_BMSR) |
tlp_mii_read(l, l->phy, MII_BMSR); /* read twice */
if ((l->bmsr & BMSR_LINK) && (l->bmsr & BMSR_ACOMP)) {
l->anlpar = tlp_mii_read(l, l->phy, MII_ANLPAR);
break;
}
DELAY(10 * 1000);
} while (getsecs() < bound);
return;
}
#endif