Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
*	$NetBSD: round.sa,v 1.3 1994/10/26 07:49:24 cgd Exp $

*	MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
*	M68000 Hi-Performance Microprocessor Division
*	M68040 Software Package 
*
*	M68040 Software Package Copyright (c) 1993, 1994 Motorola Inc.
*	All rights reserved.
*
*	THE SOFTWARE is provided on an "AS IS" basis and without warranty.
*	To the maximum extent permitted by applicable law,
*	MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
*	INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
*	PARTICULAR PURPOSE and any warranty against infringement with
*	regard to the SOFTWARE (INCLUDING ANY MODIFIED VERSIONS THEREOF)
*	and any accompanying written materials. 
*
*	To the maximum extent permitted by applicable law,
*	IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
*	(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS
*	PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR
*	OTHER PECUNIARY LOSS) ARISING OF THE USE OR INABILITY TO USE THE
*	SOFTWARE.  Motorola assumes no responsibility for the maintenance
*	and support of the SOFTWARE.  
*
*	You are hereby granted a copyright license to use, modify, and
*	distribute the SOFTWARE so long as this entire notice is retained
*	without alteration in any modified and/or redistributed versions,
*	and that such modified versions are clearly identified as such.
*	No licenses are granted by implication, estoppel or otherwise
*	under any patents or trademarks of Motorola, Inc.

*
*	round.sa 3.4 7/29/91
*
*	handle rounding and normalization tasks
*

ROUND	IDNT    2,1 Motorola 040 Floating Point Software Package

	section	8

	include	fpsp.h

*
*	round --- round result according to precision/mode
*
*	a0 points to the input operand in the internal extended format 
*	d1(high word) contains rounding precision:
*		ext = $0000xxxx
*		sgl = $0001xxxx
*		dbl = $0002xxxx
*	d1(low word) contains rounding mode:
*		RN  = $xxxx0000
*		RZ  = $xxxx0001
*		RM  = $xxxx0010
*		RP  = $xxxx0011
*	d0{31:29} contains the g,r,s bits (extended)
*
*	On return the value pointed to by a0 is correctly rounded,
*	a0 is preserved and the g-r-s bits in d0 are cleared.
*	The result is not typed - the tag field is invalid.  The
*	result is still in the internal extended format.
*
*	The INEX bit of USER_FPSR will be set if the rounded result was
*	inexact (i.e. if any of the g-r-s bits were set).
*

	xdef	round
round:
* If g=r=s=0 then result is exact and round is done, else set 
* the inex flag in status reg and continue.  
*
	bsr.b	ext_grs			;this subroutine looks at the 
*					:rounding precision and sets 
*					;the appropriate g-r-s bits.
	tst.l	d0			;if grs are zero, go force
	bne.w	rnd_cont		;lower bits to zero for size
	
	swap	d1			;set up d1.w for round prec.
	bra.w	truncate

rnd_cont:
*
* Use rounding mode as an index into a jump table for these modes.
*
	or.l	#inx2a_mask,USER_FPSR(a6) ;set inex2/ainex
	lea	mode_tab,a1
	move.l	(a1,d1.w*4),a1
	jmp	(a1)
*
* Jump table indexed by rounding mode in d1.w.  All following assumes
* grs != 0.
*
mode_tab:
	dc.l	rnd_near
	dc.l	rnd_zero
	dc.l	rnd_mnus
	dc.l	rnd_plus
*
*	ROUND PLUS INFINITY
*
*	If sign of fp number = 0 (positive), then add 1 to l.
*
rnd_plus:
	swap 	d1			;set up d1 for round prec.
	tst.b	LOCAL_SGN(a0)		;check for sign
	bmi.w	truncate		;if positive then truncate
	move.l	#$ffffffff,d0		;force g,r,s to be all f's
	lea	add_to_l,a1
	move.l	(a1,d1.w*4),a1
	jmp	(a1)
*
*	ROUND MINUS INFINITY
*
*	If sign of fp number = 1 (negative), then add 1 to l.
*
rnd_mnus:
	swap 	d1			;set up d1 for round prec.
	tst.b	LOCAL_SGN(a0)		;check for sign	
	bpl.w	truncate		;if negative then truncate
	move.l	#$ffffffff,d0		;force g,r,s to be all f's
	lea	add_to_l,a1
	move.l	(a1,d1.w*4),a1
	jmp	(a1)
*
*	ROUND ZERO
*
*	Always truncate.
rnd_zero:
	swap 	d1			;set up d1 for round prec.
	bra.w	truncate
*
*
*	ROUND NEAREST
*
*	If (g=1), then add 1 to l and if (r=s=0), then clear l
*	Note that this will round to even in case of a tie.
*
rnd_near:
	swap 	d1			;set up d1 for round prec.
	add.l	d0,d0			;shift g-bit to c-bit
	bcc.w	truncate		;if (g=1) then
	lea	add_to_l,a1
	move.l	(a1,d1.w*4),a1
	jmp	(a1)

*
*	ext_grs --- extract guard, round and sticky bits
*
* Input:	d1 =		PREC:ROUND
* Output:  	d0{31:29}=	guard, round, sticky
*
* The ext_grs extract the guard/round/sticky bits according to the
* selected rounding precision. It is called by the round subroutine
* only.  All registers except d0 are kept intact. d0 becomes an 
* updated guard,round,sticky in d0{31:29}
*
* Notes: the ext_grs uses the round PREC, and therefore has to swap d1
*	 prior to usage, and needs to restore d1 to original.
*
ext_grs:
	swap	d1			;have d1.w point to round precision
	tst.w	d1
	bne.b	sgl_or_dbl
	bra.b	end_ext_grs
 
sgl_or_dbl:
	movem.l	d2/d3,-(a7)		;make some temp registers
	cmpi.w	#1,d1
	bne.b	grs_dbl
grs_sgl:
	bfextu	LOCAL_HI(a0){24:2},d3	;sgl prec. g-r are 2 bits right
	move.l	#30,d2			;of the sgl prec. limits
	lsl.l	d2,d3			;shift g-r bits to MSB of d3
	move.l	LOCAL_HI(a0),d2		;get word 2 for s-bit test
	andi.l	#$0000003f,d2		;s bit is the or of all other 
	bne.b	st_stky			;bits to the right of g-r
	tst.l	LOCAL_LO(a0)		;test lower mantissa
	bne.b	st_stky			;if any are set, set sticky
	tst.l	d0			;test original g,r,s
	bne.b	st_stky			;if any are set, set sticky
	bra.b	end_sd			;if words 3 and 4 are clr, exit
grs_dbl:    
	bfextu	LOCAL_LO(a0){21:2},d3	;dbl-prec. g-r are 2 bits right
	move.l	#30,d2			;of the dbl prec. limits
	lsl.l	d2,d3			;shift g-r bits to the MSB of d3
	move.l	LOCAL_LO(a0),d2		;get lower mantissa  for s-bit test
	andi.l	#$000001ff,d2		;s bit is the or-ing of all 
	bne.b	st_stky			;other bits to the right of g-r
	tst.l	d0			;test word original g,r,s
	bne.b	st_stky			;if any are set, set sticky
	bra.b	end_sd			;if clear, exit
st_stky:
	bset	#rnd_stky_bit,d3
end_sd:
	move.l	d3,d0			;return grs to d0
	movem.l	(a7)+,d2/d3		;restore scratch registers
end_ext_grs:
	swap	d1			;restore d1 to original
	rts

********************  Local Equates
ad_1_sgl equ	$00000100	constant to add 1 to l-bit in sgl prec
ad_1_dbl equ	$00000800	constant to add 1 to l-bit in dbl prec


*Jump table for adding 1 to the l-bit indexed by rnd prec

add_to_l:
	dc.l	add_ext
	dc.l	add_sgl
	dc.l	add_dbl
	dc.l	add_dbl
*
*	ADD SINGLE
*
add_sgl:
	add.l	#ad_1_sgl,LOCAL_HI(a0)
	bcc.b	scc_clr			;no mantissa overflow
	roxr.w  LOCAL_HI(a0)		;shift v-bit back in
	roxr.w  LOCAL_HI+2(a0)		;shift v-bit back in
	add.w	#$1,LOCAL_EX(a0)	;and incr exponent
scc_clr:
	tst.l	d0			;test for rs = 0
	bne.b	sgl_done
	andi.w  #$fe00,LOCAL_HI+2(a0)	;clear the l-bit
sgl_done:
	andi.l	#$ffffff00,LOCAL_HI(a0) ;truncate bits beyond sgl limit
	clr.l	LOCAL_LO(a0)		;clear d2
	rts

*
*	ADD EXTENDED
*
add_ext:
	addq.l  #1,LOCAL_LO(a0)		;add 1 to l-bit
	bcc.b	xcc_clr			;test for carry out
	addq.l  #1,LOCAL_HI(a0)		;propogate carry
	bcc.b	xcc_clr
	roxr.w  LOCAL_HI(a0)		;mant is 0 so restore v-bit
	roxr.w  LOCAL_HI+2(a0)		;mant is 0 so restore v-bit
	roxr.w	LOCAL_LO(a0)
	roxr.w	LOCAL_LO+2(a0)
	add.w	#$1,LOCAL_EX(a0)	;and inc exp
xcc_clr:
	tst.l	d0			;test rs = 0
	bne.b	add_ext_done
	andi.b	#$fe,LOCAL_LO+3(a0)	;clear the l bit
add_ext_done:
	rts
*
*	ADD DOUBLE
*
add_dbl:
	add.l	#ad_1_dbl,LOCAL_LO(a0)
	bcc.b	dcc_clr
	addq.l	#1,LOCAL_HI(a0)		;propogate carry
	bcc.b	dcc_clr
	roxr.w	LOCAL_HI(a0)		;mant is 0 so restore v-bit
	roxr.w	LOCAL_HI+2(a0)		;mant is 0 so restore v-bit
	roxr.w	LOCAL_LO(a0)
	roxr.w	LOCAL_LO+2(a0)
	add.w	#$1,LOCAL_EX(a0)	;incr exponent
dcc_clr:
	tst.l	d0			;test for rs = 0
	bne.b	dbl_done
	andi.w	#$f000,LOCAL_LO+2(a0)	;clear the l-bit

dbl_done:
	andi.l	#$fffff800,LOCAL_LO(a0) ;truncate bits beyond dbl limit
	rts

error:
	rts
*
* Truncate all other bits
*
trunct:
	dc.l	end_rnd
	dc.l	sgl_done
	dc.l	dbl_done
	dc.l	dbl_done

truncate:
	lea	trunct,a1
	move.l	(a1,d1.w*4),a1
	jmp	(a1)

end_rnd:
	rts

*
*	NORMALIZE
*
* These routines (nrm_zero & nrm_set) normalize the unnorm.  This 
* is done by shifting the mantissa left while decrementing the 
* exponent.
*
* NRM_SET shifts and decrements until there is a 1 set in the integer 
* bit of the mantissa (msb in d1).
*
* NRM_ZERO shifts and decrements until there is a 1 set in the integer 
* bit of the mantissa (msb in d1) unless this would mean the exponent 
* would go less than 0.  In that case the number becomes a denorm - the 
* exponent (d0) is set to 0 and the mantissa (d1 & d2) is not 
* normalized.
*
* Note that both routines have been optimized (for the worst case) and 
* therefore do not have the easy to follow decrement/shift loop.
*
*	NRM_ZERO
*
*	Distance to first 1 bit in mantissa = X
*	Distance to 0 from exponent = Y
*	If X < Y
*	Then
*	  nrm_set
*	Else
*	  shift mantissa by Y
*	  set exponent = 0
*
*input:
*	FP_SCR1 = exponent, ms mantissa part, ls mantissa part
*output:
*	L_SCR1{4} = fpte15 or ete15 bit
*
	xdef	nrm_zero
nrm_zero:
	move.w	LOCAL_EX(a0),d0
	cmp.w   #64,d0          ;see if exp > 64 
	bmi.b	d0_less
	bsr	nrm_set		;exp > 64 so exp won't exceed 0 
	rts
d0_less:
	movem.l	d2/d3/d5/d6,-(a7)
	move.l	LOCAL_HI(a0),d1
	move.l	LOCAL_LO(a0),d2

	bfffo	d1{0:32},d3	;get the distance to the first 1 
*				;in ms mant
	beq.b	ms_clr		;branch if no bits were set
	cmp.w	d3,d0		;of X>Y
	bmi.b	greater		;then exp will go past 0 (neg) if 
*				;it is just shifted
	bsr	nrm_set		;else exp won't go past 0
	movem.l	(a7)+,d2/d3/d5/d6
	rts	
greater:
	move.l	d2,d6		;save ls mant in d6
	lsl.l	d0,d2		;shift ls mant by count
	lsl.l	d0,d1		;shift ms mant by count
	move.l	#32,d5
	sub.l	d0,d5		;make op a denorm by shifting bits 
	lsr.l	d5,d6		;by the number in the exp, then 
*				;set exp = 0.
	or.l	d6,d1		;shift the ls mant bits into the ms mant
	clr.l	d0		;same as if decremented exp to 0 
*				;while shifting
	move.w	d0,LOCAL_EX(a0)
	move.l	d1,LOCAL_HI(a0)
	move.l	d2,LOCAL_LO(a0)
	movem.l	(a7)+,d2/d3/d5/d6
	rts
ms_clr:
	bfffo	d2{0:32},d3	;check if any bits set in ls mant
	beq.b	all_clr		;branch if none set
	add.w	#32,d3
	cmp.w	d3,d0		;if X>Y
	bmi.b	greater		;then branch
	bsr	nrm_set		;else exp won't go past 0
	movem.l	(a7)+,d2/d3/d5/d6
	rts
all_clr:
	clr.w	LOCAL_EX(a0)	;no mantissa bits set. Set exp = 0.
	movem.l	(a7)+,d2/d3/d5/d6
	rts
*
*	NRM_SET
*
	xdef	nrm_set
nrm_set:
	move.l	d7,-(a7)
	bfffo	LOCAL_HI(a0){0:32},d7 ;find first 1 in ms mant to d7)
	beq.b	lower		;branch if ms mant is all 0's

	move.l	d6,-(a7)

	sub.w	d7,LOCAL_EX(a0)	;sub exponent by count
	move.l	LOCAL_HI(a0),d0	;d0 has ms mant
	move.l	LOCAL_LO(a0),d1 ;d1 has ls mant

	lsl.l	d7,d0		;shift first 1 to j bit position
	move.l	d1,d6		;copy ls mant into d6
	lsl.l	d7,d6		;shift ls mant by count
	move.l	d6,LOCAL_LO(a0)	;store ls mant into memory
	moveq.l	#32,d6
	sub.l	d7,d6		;continue shift
	lsr.l	d6,d1		;shift off all bits but those that will
*				;be shifted into ms mant
	or.l	d1,d0		;shift the ls mant bits into the ms mant
	move.l	d0,LOCAL_HI(a0)	;store ms mant into memory
	movem.l	(a7)+,d7/d6	;restore registers
	rts

*
* We get here if ms mant was = 0, and we assume ls mant has bits 
* set (otherwise this would have been tagged a zero not a denorm).
*
lower:
	move.w	LOCAL_EX(a0),d0	;d0 has exponent
	move.l	LOCAL_LO(a0),d1	;d1 has ls mant
	sub.w	#32,d0		;account for ms mant being all zeros
	bfffo	d1{0:32},d7	;find first 1 in ls mant to d7)
	sub.w	d7,d0		;subtract shift count from exp
	lsl.l	d7,d1		;shift first 1 to integer bit in ms mant
	move.w	d0,LOCAL_EX(a0)	;store ms mant
	move.l	d1,LOCAL_HI(a0)	;store exp
	clr.l	LOCAL_LO(a0)	;clear ls mant
	move.l	(a7)+,d7
	rts
*
*	denorm --- denormalize an intermediate result
*
*	Used by underflow.
*
* Input: 
*	a0	 points to the operand to be denormalized
*		 (in the internal extended format)
*		 
*	d0: 	 rounding precision
* Output:
*	a0	 points to the denormalized result
*		 (in the internal extended format)
*
*	d0 	is guard,round,sticky
*
* d0 comes into this routine with the rounding precision. It 
* is then loaded with the denormalized exponent threshold for the 
* rounding precision.
*

	xdef	denorm
denorm:
	btst.b	#6,LOCAL_EX(a0)	;check for exponents between $7fff-$4000
	beq.b	no_sgn_ext	
	bset.b	#7,LOCAL_EX(a0)	;sign extend if it is so
no_sgn_ext:

	tst.b	d0		;if 0 then extended precision
	bne.b	not_ext		;else branch

	clr.l	d1		;load d1 with ext threshold
	clr.l	d0		;clear the sticky flag
	bsr	dnrm_lp		;denormalize the number
	tst.b	d1		;check for inex
	beq.w	no_inex		;if clr, no inex
	bra.b	dnrm_inex	;if set, set inex

not_ext:
	cmpi.l	#1,d0		;if 1 then single precision
	beq.b	load_sgl	;else must be 2, double prec

load_dbl:
	move.w	#dbl_thresh,d1	;put copy of threshold in d1
	move.l	d1,d0		;copy d1 into d0
	sub.w	LOCAL_EX(a0),d0	;diff = threshold - exp
	cmp.w	#67,d0		;if diff > 67 (mant + grs bits)
	bpl.b	chk_stky	;then branch (all bits would be 
*				; shifted off in denorm routine)
	clr.l	d0		;else clear the sticky flag
	bsr	dnrm_lp		;denormalize the number
	tst.b	d1		;check flag
	beq.b	no_inex		;if clr, no inex
	bra.b	dnrm_inex	;if set, set inex

load_sgl:
	move.w	#sgl_thresh,d1	;put copy of threshold in d1
	move.l	d1,d0		;copy d1 into d0
	sub.w	LOCAL_EX(a0),d0	;diff = threshold - exp
	cmp.w	#67,d0		;if diff > 67 (mant + grs bits)
	bpl.b	chk_stky	;then branch (all bits would be 
*				; shifted off in denorm routine)
	clr.l	d0		;else clear the sticky flag
	bsr	dnrm_lp		;denormalize the number
	tst.b	d1		;check flag
	beq.b	no_inex		;if clr, no inex
	bra.b	dnrm_inex	;if set, set inex

chk_stky:
	tst.l	LOCAL_HI(a0)	;check for any bits set
	bne.b	set_stky
	tst.l	LOCAL_LO(a0)	;check for any bits set
	bne.b	set_stky
	bra.b	clr_mant
set_stky:
	or.l	#inx2a_mask,USER_FPSR(a6) ;set inex2/ainex
	move.l	#$20000000,d0	;set sticky bit in return value
clr_mant:
	move.w	d1,LOCAL_EX(a0)		;load exp with threshold
	clr.l	LOCAL_HI(a0) 	;set d1 = 0 (ms mantissa)
	clr.l	LOCAL_LO(a0)		;set d2 = 0 (ms mantissa)
	rts
dnrm_inex:
	or.l	#inx2a_mask,USER_FPSR(a6) ;set inex2/ainex
no_inex:
	rts

*
*	dnrm_lp --- normalize exponent/mantissa to specified threshhold
*
* Input:
*	a0		points to the operand to be denormalized
*	d0{31:29} 	initial guard,round,sticky
*	d1{15:0}	denormalization threshold
* Output:
*	a0		points to the denormalized operand
*	d0{31:29}	final guard,round,sticky
*	d1.b		inexact flag:  all ones means inexact result
*
* The LOCAL_LO and LOCAL_GRS parts of the value are copied to FP_SCR2
* so that bfext can be used to extract the new low part of the mantissa.
* Dnrm_lp can be called with a0 pointing to ETEMP or WBTEMP and there 
* is no LOCAL_GRS scratch word following it on the fsave frame.
*
	xdef	dnrm_lp
dnrm_lp:
	move.l	d2,-(sp)		;save d2 for temp use
	btst.b	#E3,E_BYTE(a6)		;test for type E3 exception
	beq.b	not_E3			;not type E3 exception
	bfextu	WBTEMP_GRS(a6){6:3},d2	;extract guard,round, sticky  bit
	move.l	#29,d0
	lsl.l	d0,d2			;shift g,r,s to their postions
	move.l	d2,d0
not_E3:
	move.l	(sp)+,d2		;restore d2
	move.l	LOCAL_LO(a0),FP_SCR2+LOCAL_LO(a6)
	move.l	d0,FP_SCR2+LOCAL_GRS(a6)
	move.l	d1,d0			;copy the denorm threshold
	sub.w	LOCAL_EX(a0),d1		;d1 = threshold - uns exponent
	ble.b	no_lp			;d1 <= 0
	cmp.w	#32,d1			
	blt.b	case_1			;0 = d1 < 32 
	cmp.w	#64,d1
	blt.b	case_2			;32 <= d1 < 64
	bra.w	case_3			;d1 >= 64
*
* No normalization necessary
*
no_lp:
	clr.b	d1			;set no inex2 reported
	move.l	FP_SCR2+LOCAL_GRS(a6),d0	;restore original g,r,s
	rts
*
* case (0<d1<32)
*
case_1:
	move.l	d2,-(sp)
	move.w	d0,LOCAL_EX(a0)		;exponent = denorm threshold
	move.l	#32,d0
	sub.w	d1,d0			;d0 = 32 - d1
	bfextu	LOCAL_EX(a0){d0:32},d2
	bfextu	d2{d1:d0},d2		;d2 = new LOCAL_HI
	bfextu	LOCAL_HI(a0){d0:32},d1	;d1 = new LOCAL_LO
	bfextu	FP_SCR2+LOCAL_LO(a6){d0:32},d0	;d0 = new G,R,S
	move.l	d2,LOCAL_HI(a0)		;store new LOCAL_HI
	move.l	d1,LOCAL_LO(a0)		;store new LOCAL_LO
	clr.b	d1
	bftst	d0{2:30}	
	beq.b	c1nstky
	bset.l	#rnd_stky_bit,d0
	st.b	d1
c1nstky:
	move.l	FP_SCR2+LOCAL_GRS(a6),d2	;restore original g,r,s
	andi.l	#$e0000000,d2		;clear all but G,R,S
	tst.l	d2			;test if original G,R,S are clear
	beq.b	grs_clear
	or.l	#$20000000,d0		;set sticky bit in d0
grs_clear:
	andi.l	#$e0000000,d0		;clear all but G,R,S
	move.l	(sp)+,d2
	rts
*
* case (32<=d1<64)
*
case_2:
	move.l	d2,-(sp)
	move.w	d0,LOCAL_EX(a0)		;unsigned exponent = threshold
	sub.w	#32,d1			;d1 now between 0 and 32
	move.l	#32,d0
	sub.w	d1,d0			;d0 = 32 - d1
	bfextu	LOCAL_EX(a0){d0:32},d2
	bfextu	d2{d1:d0},d2		;d2 = new LOCAL_LO
	bfextu	LOCAL_HI(a0){d0:32},d1	;d1 = new G,R,S
	bftst	d1{2:30}
	bne.b	c2_sstky		;bra if sticky bit to be set
	bftst	FP_SCR2+LOCAL_LO(a6){d0:32}
	bne.b	c2_sstky		;bra if sticky bit to be set
	move.l	d1,d0
	clr.b	d1
	bra.b	end_c2
c2_sstky:
	move.l	d1,d0
	bset.l	#rnd_stky_bit,d0
	st.b	d1
end_c2:
	clr.l	LOCAL_HI(a0)		;store LOCAL_HI = 0
	move.l	d2,LOCAL_LO(a0)		;store LOCAL_LO
	move.l	FP_SCR2+LOCAL_GRS(a6),d2	;restore original g,r,s
	andi.l	#$e0000000,d2		;clear all but G,R,S
	tst.l	d2			;test if original G,R,S are clear
	beq.b	clear_grs		
	or.l	#$20000000,d0		;set sticky bit in d0
clear_grs:
	andi.l	#$e0000000,d0		;get rid of all but G,R,S
	move.l	(sp)+,d2
	rts
*
* d1 >= 64 Force the exponent to be the denorm threshold with the
* correct sign.
*
case_3:
	move.w	d0,LOCAL_EX(a0)
	tst.w	LOCAL_SGN(a0)
	bge.b	c3con
c3neg:
	or.l	#$80000000,LOCAL_EX(a0)
c3con:
	cmp.w	#64,d1
	beq.b	sixty_four
	cmp.w	#65,d1
	beq.b	sixty_five
*
* Shift value is out of range.  Set d1 for inex2 flag and
* return a zero with the given threshold.
*
	clr.l	LOCAL_HI(a0)
	clr.l	LOCAL_LO(a0)
	move.l	#$20000000,d0
	st.b	d1
	rts

sixty_four:
	move.l	LOCAL_HI(a0),d0
	bfextu	d0{2:30},d1
	andi.l	#$c0000000,d0
	bra.b	c3com
	
sixty_five:
	move.l	LOCAL_HI(a0),d0
	bfextu	d0{1:31},d1
	andi.l	#$80000000,d0
	lsr.l	#1,d0			;shift high bit into R bit

c3com:
	tst.l	d1
	bne.b	c3ssticky
	tst.l	LOCAL_LO(a0)
	bne.b	c3ssticky
	tst.b	FP_SCR2+LOCAL_GRS(a6)
	bne.b	c3ssticky
	clr.b	d1
	bra.b	c3end

c3ssticky:
	bset.l	#rnd_stky_bit,d0
	st.b	d1
c3end:
	clr.l	LOCAL_HI(a0)
	clr.l	LOCAL_LO(a0)
	rts

	end