/* $NetBSD: if_bwfm_sdio.c,v 1.3.8.4 2020/08/17 11:22:45 martin Exp $ */
/* $OpenBSD: if_bwfm_sdio.c,v 1.1 2017/10/11 17:19:50 patrick Exp $ */
/*
* Copyright (c) 2010-2016 Broadcom Corporation
* Copyright (c) 2016,2017 Patrick Wildt <patrick@blueri.se>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/buf.h>
#include <sys/endian.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/device.h>
#include <sys/queue.h>
#include <sys/socket.h>
#include <sys/mutex.h>
#include <sys/kmem.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_ether.h>
#include <netinet/in.h>
#include <dev/ofw/openfirm.h>
#include <dev/fdt/fdtvar.h>
#include <dev/firmload.h>
#include <net80211/ieee80211_var.h>
#include <dev/sdmmc/sdmmcdevs.h>
#include <dev/sdmmc/sdmmcvar.h>
#include <dev/ic/bwfmvar.h>
#include <dev/ic/bwfmreg.h>
#include <dev/sdmmc/if_bwfm_sdio.h>
#ifdef BWFM_DEBUG
#define DPRINTF(x) do { if (bwfm_debug > 0) printf x; } while (0)
#define DPRINTFN(n, x) do { if (bwfm_debug >= (n)) printf x; } while (0)
static int bwfm_debug = 2;
#else
#define DPRINTF(x) do { ; } while (0)
#define DPRINTFN(n, x) do { ; } while (0)
#endif
#define DEVNAME(sc) device_xname((sc)->sc_sc.sc_dev)
enum bwfm_sdio_clkstate {
CLK_NONE,
CLK_SDONLY,
CLK_PENDING,
CLK_AVAIL
};
struct bwfm_sdio_softc {
struct bwfm_softc sc_sc;
kmutex_t sc_lock;
bool sc_bwfm_attached;
struct sdmmc_function **sc_sf;
size_t sc_sf_size;
uint32_t sc_bar0;
enum bwfm_sdio_clkstate sc_clkstate;
bool sc_sr_enabled;
bool sc_alp_only;
bool sc_sleeping;
bool sc_rxskip;
struct sdmmc_task sc_task;
bool sc_task_queued;
uint8_t sc_tx_seq;
uint8_t sc_tx_max_seq;
int sc_tx_count;
MBUFQ_HEAD() sc_tx_queue;
struct mbuf *sc_rxctl_queue;
kcondvar_t sc_rxctl_cv;
void *sc_ih;
struct bwfm_core *sc_cc;
char *sc_bounce_buf;
size_t sc_bounce_size;
uint32_t sc_console_addr;
char *sc_console_buf;
size_t sc_console_buf_size;
uint32_t sc_console_readidx;
int sc_phandle;
void *sc_fdtih;
};
static int bwfm_sdio_match(device_t, cfdata_t, void *);
static void bwfm_sdio_attach(device_t, device_t, void *);
static int bwfm_sdio_detach(device_t, int);
static void bwfm_sdio_attachhook(device_t);
static int bwfm_fdt_find_phandle(device_t, device_t);
static const char *bwfm_fdt_get_model(void);
static void bwfm_sdio_backplane(struct bwfm_sdio_softc *, uint32_t);
static uint8_t bwfm_sdio_read_1(struct bwfm_sdio_softc *, uint32_t);
static uint32_t bwfm_sdio_read_4(struct bwfm_sdio_softc *, uint32_t);
static void bwfm_sdio_write_1(struct bwfm_sdio_softc *, uint32_t,
uint8_t);
static void bwfm_sdio_write_4(struct bwfm_sdio_softc *, uint32_t,
uint32_t);
static uint32_t bwfm_sdio_dev_read(struct bwfm_sdio_softc *, uint32_t);
static void bwfm_sdio_dev_write(struct bwfm_sdio_softc *, uint32_t,
uint32_t);
static uint32_t bwfm_sdio_buscore_read(struct bwfm_softc *, uint32_t);
static void bwfm_sdio_buscore_write(struct bwfm_softc *, uint32_t,
uint32_t);
static int bwfm_sdio_buscore_prepare(struct bwfm_softc *);
static void bwfm_sdio_buscore_activate(struct bwfm_softc *, uint32_t);
static int bwfm_sdio_buf_read(struct bwfm_sdio_softc *,
struct sdmmc_function *, uint32_t, char *, size_t);
static int bwfm_sdio_buf_write(struct bwfm_sdio_softc *,
struct sdmmc_function *, uint32_t, char *, size_t);
static struct mbuf *bwfm_sdio_newbuf(void);
static void bwfm_qput(struct mbuf **, struct mbuf *);
static struct mbuf *bwfm_qget(struct mbuf **);
static uint32_t bwfm_sdio_ram_read_write(struct bwfm_sdio_softc *,
uint32_t, char *, size_t, int);
static uint32_t bwfm_sdio_frame_read_write(struct bwfm_sdio_softc *,
char *, size_t, int);
static int bwfm_sdio_intr1(void *, const char *);
static int bwfm_sdio_intr(void *);
static void bwfm_sdio_task(void *);
static void bwfm_sdio_task1(struct bwfm_sdio_softc *);
static int bwfm_nvram_convert(u_char *, size_t, size_t *);
static int bwfm_sdio_load_microcode(struct bwfm_sdio_softc *,
u_char *, size_t, u_char *, size_t);
static void bwfm_sdio_clkctl(struct bwfm_sdio_softc *,
enum bwfm_sdio_clkstate, bool);
static void bwfm_sdio_htclk(struct bwfm_sdio_softc *, bool, bool);
#ifdef notyet
static int bwfm_sdio_bus_sleep(struct bwfm_sdio_softc *, bool, bool);
#endif
static void bwfm_sdio_drivestrength(struct bwfm_sdio_softc *, unsigned);
static void bwfm_sdio_readshared(struct bwfm_sdio_softc *);
static int bwfm_sdio_txcheck(struct bwfm_softc *);
static int bwfm_sdio_txdata(struct bwfm_softc *, struct mbuf **);
static int bwfm_sdio_txctl(struct bwfm_softc *, char *, size_t);
static int bwfm_sdio_rxctl(struct bwfm_softc *, char *, size_t *);
static int bwfm_sdio_tx_ok(struct bwfm_sdio_softc *);
static void bwfm_sdio_tx_frames(struct bwfm_sdio_softc *);
static void bwfm_sdio_tx_ctrlframe(struct bwfm_sdio_softc *,
struct mbuf *);
static void bwfm_sdio_tx_dataframe(struct bwfm_sdio_softc *,
struct mbuf *);
static void bwfm_sdio_rx_frames(struct bwfm_sdio_softc *);
static void bwfm_sdio_rx_glom(struct bwfm_sdio_softc *,
uint16_t *, int, uint16_t *);
#ifdef BWFM_DEBUG
static void bwfm_sdio_debug_console(struct bwfm_sdio_softc *);
#endif
struct bwfm_bus_ops bwfm_sdio_bus_ops = {
.bs_init = NULL,
.bs_stop = NULL,
.bs_txcheck = bwfm_sdio_txcheck,
.bs_txdata = bwfm_sdio_txdata,
.bs_txctl = bwfm_sdio_txctl,
.bs_rxctl = bwfm_sdio_rxctl,
};
struct bwfm_buscore_ops bwfm_sdio_buscore_ops = {
.bc_read = bwfm_sdio_buscore_read,
.bc_write = bwfm_sdio_buscore_write,
.bc_prepare = bwfm_sdio_buscore_prepare,
.bc_reset = NULL,
.bc_setup = NULL,
.bc_activate = bwfm_sdio_buscore_activate,
};
CFATTACH_DECL_NEW(bwfm_sdio, sizeof(struct bwfm_sdio_softc),
bwfm_sdio_match, bwfm_sdio_attach, bwfm_sdio_detach, NULL);
static const struct bwfm_sdio_product {
uint32_t manufacturer;
uint32_t product;
const char *cisinfo[4];
} bwfm_sdio_products[] = {
{
SDMMC_VENDOR_BROADCOM,
SDMMC_PRODUCT_BROADCOM_BCM4330,
SDMMC_CIS_BROADCOM_BCM4330
},
{
SDMMC_VENDOR_BROADCOM,
SDMMC_PRODUCT_BROADCOM_BCM4334,
SDMMC_CIS_BROADCOM_BCM4334
},
{
SDMMC_VENDOR_BROADCOM,
SDMMC_PRODUCT_BROADCOM_BCM43143,
SDMMC_CIS_BROADCOM_BCM43143
},
{
SDMMC_VENDOR_BROADCOM,
SDMMC_PRODUCT_BROADCOM_BCM43430,
SDMMC_CIS_BROADCOM_BCM43430
},
{
SDMMC_VENDOR_BROADCOM,
SDMMC_PRODUCT_BROADCOM_BCM43455,
SDMMC_CIS_BROADCOM_BCM43455
},
{
SDMMC_VENDOR_BROADCOM,
SDMMC_PRODUCT_BROADCOM_BCM43362,
SDMMC_CIS_BROADCOM_BCM43362
},
};
static const char *compatible[] = {
"brcm,bcm4329-fmac",
NULL
};
static int
bwfm_sdio_match(device_t parent, cfdata_t match, void *aux)
{
struct sdmmc_attach_args *saa = aux;
struct sdmmc_function *sf = saa->sf;
struct sdmmc_cis *cis;
const struct bwfm_sdio_product *bsp;
int i;
/* Not SDIO. */
if (sf == NULL)
return 0;
cis = &sf->sc->sc_fn0->cis;
for (i = 0; i < __arraycount(bwfm_sdio_products); ++i) {
bsp = &bwfm_sdio_products[i];
if (cis->manufacturer == bsp->manufacturer &&
cis->product == bsp->product)
break;
}
if (i >= __arraycount(bwfm_sdio_products))
return 0;
/* We need both functions, but ... */
if (sf->sc->sc_function_count <= 1)
return 0;
/* ... only attach for one. */
if (sf->number != 1)
return 0;
return 1;
}
static void
bwfm_sdio_attach(device_t parent, device_t self, void *aux)
{
struct bwfm_sdio_softc *sc = device_private(self);
struct sdmmc_attach_args *saa = aux;
struct sdmmc_function *sf = saa->sf;
struct bwfm_core *core;
uint32_t reg;
sc->sc_sc.sc_dev = self;
aprint_naive("\n");
aprint_normal("\n");
sc->sc_phandle = bwfm_fdt_find_phandle(self, parent);
mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE);
cv_init(&sc->sc_rxctl_cv, "bwfmctl");
sdmmc_init_task(&sc->sc_task, bwfm_sdio_task, sc);
sc->sc_bounce_size = 64 * 1024;
sc->sc_bounce_buf = kmem_alloc(sc->sc_bounce_size, KM_SLEEP);
sc->sc_tx_seq = 0xff;
MBUFQ_INIT(&sc->sc_tx_queue);
sc->sc_rxctl_queue = NULL;
sc->sc_sf_size = (sf->sc->sc_function_count + 1)
* sizeof(struct sdmmc_function *);
sc->sc_sf = kmem_zalloc(sc->sc_sf_size, KM_SLEEP);
/* Copy all function pointers. */
SIMPLEQ_FOREACH(sf, &saa->sf->sc->sf_head, sf_list) {
sc->sc_sf[sf->number] = sf;
}
sdmmc_io_set_blocklen(sc->sc_sf[1], 64);
sdmmc_io_set_blocklen(sc->sc_sf[2], 512);
/* Enable Function 1. */
if (sdmmc_io_function_enable(sc->sc_sf[1]) != 0) {
printf("%s: cannot enable function 1\n", DEVNAME(sc));
return;
}
DPRINTF(("%s: F1 signature read @0x18000000=%x\n", DEVNAME(sc),
bwfm_sdio_read_4(sc, 0x18000000)));
/* Force PLL off */
bwfm_sdio_write_1(sc, BWFM_SDIO_FUNC1_CHIPCLKCSR,
BWFM_SDIO_FUNC1_CHIPCLKCSR_FORCE_HW_CLKREQ_OFF |
BWFM_SDIO_FUNC1_CHIPCLKCSR_ALP_AVAIL_REQ);
sc->sc_sc.sc_buscore_ops = &bwfm_sdio_buscore_ops;
if (bwfm_chip_attach(&sc->sc_sc) != 0) {
aprint_error_dev(self, "cannot attach chip\n");
return;
}
sc->sc_cc = bwfm_chip_get_core(&sc->sc_sc, BWFM_AGENT_CORE_CHIPCOMMON);
if (sc->sc_cc == NULL) {
aprint_error_dev(self, "cannot find chipcommon core\n");
return;
}
core = bwfm_chip_get_core(&sc->sc_sc, BWFM_AGENT_CORE_SDIO_DEV);
if (core->co_rev >= 12) {
reg = bwfm_sdio_read_1(sc, BWFM_SDIO_FUNC1_SLEEPCSR);
if ((reg & BWFM_SDIO_FUNC1_SLEEPCSR_KSO) == 0) {
reg |= BWFM_SDIO_FUNC1_SLEEPCSR_KSO;
bwfm_sdio_write_1(sc, BWFM_SDIO_FUNC1_SLEEPCSR, reg);
}
}
/* Default, override from "brcm,drive-strength" */
bwfm_sdio_drivestrength(sc, 6);
bwfm_sdio_write_1(sc, BWFM_SDIO_CCCR_CARDCTRL,
bwfm_sdio_read_1(sc, BWFM_SDIO_CCCR_CARDCTRL) |
BWFM_SDIO_CCCR_CARDCTRL_WLANRESET);
core = bwfm_chip_get_pmu(&sc->sc_sc);
bwfm_sdio_write_4(sc, core->co_base + BWFM_CHIP_REG_PMUCONTROL,
bwfm_sdio_read_4(sc, core->co_base + BWFM_CHIP_REG_PMUCONTROL) |
(BWFM_CHIP_REG_PMUCONTROL_RES_RELOAD <<
BWFM_CHIP_REG_PMUCONTROL_RES_SHIFT));
sdmmc_io_function_disable(sc->sc_sf[2]);
bwfm_sdio_write_1(sc, BWFM_SDIO_FUNC1_CHIPCLKCSR, 0);
sc->sc_clkstate = CLK_SDONLY;
config_mountroot(self, bwfm_sdio_attachhook);
}
static void
bwfm_sdio_attachhook(device_t self)
{
struct bwfm_sdio_softc *sc = device_private(self);
struct bwfm_softc *bwfm = &sc->sc_sc;
firmware_handle_t fwh;
const char *name, *nvname, *model;
char *nvnamebuf;
u_char *ucode, *nvram;
size_t size, nvlen, nvsize;
uint32_t reg, clk;
int error;
DPRINTF(("%s: chip 0x%08x rev %u\n", DEVNAME(sc),
bwfm->sc_chip.ch_chip, bwfm->sc_chip.ch_chiprev));
switch (bwfm->sc_chip.ch_chip) {
case BRCM_CC_4330_CHIP_ID:
name = "brcmfmac4330-sdio.bin";
nvname = "brcmfmac4330-sdio.txt";
break;
case BRCM_CC_4334_CHIP_ID:
name = "brcmfmac4334-sdio.bin";
nvname = "brcmfmac4334-sdio.txt";
break;
case BRCM_CC_4345_CHIP_ID:
if ((0x200 & __BIT(bwfm->sc_chip.ch_chiprev)) != 0) {
name = "brcmfmac43456-sdio.bin";
nvname = "brcmfmac43456-sdio.txt";
} else {
name = "brcmfmac43455-sdio.bin";
nvname = "brcmfmac43455-sdio.txt";
}
break;
case BRCM_CC_43340_CHIP_ID:
name = "brcmfmac43340-sdio.bin";
nvname = "brcmfmac43340-sdio.txt";
break;
case BRCM_CC_4335_CHIP_ID:
if (bwfm->sc_chip.ch_chiprev < 2) {
name = "brcmfmac4335-sdio.bin";
nvname = "brcmfmac4335-sdio.txt";
} else {
name = "brcmfmac4339-sdio.bin";
nvname = "brcmfmac4339-sdio.txt";
bwfm->sc_chip.ch_chip = BRCM_CC_4339_CHIP_ID;
}
break;
case BRCM_CC_4339_CHIP_ID:
name = "brcmfmac4339-sdio.bin";
nvname = "brcmfmac4339-sdio.txt";
break;
case BRCM_CC_43430_CHIP_ID:
if (bwfm->sc_chip.ch_chiprev == 0) {
name = "brcmfmac43430a0-sdio.bin";
nvname = "brcmfmac43430a0-sdio.txt";
} else {
name = "brcmfmac43430-sdio.bin";
nvname = "brcmfmac43430-sdio.txt";
}
break;
case BRCM_CC_4356_CHIP_ID:
name = "brcmfmac4356-sdio.bin";
nvname = "brcmfmac4356-sdio.txt";
break;
default:
printf("%s: unknown firmware for chip %s\n",
DEVNAME(sc), bwfm->sc_chip.ch_name);
goto err;
}
/* compute a model specific filename for the NV config */
nvnamebuf = NULL;
model = bwfm_fdt_get_model();
if (model != NULL) {
/* assume nvname ends in ".txt" */
nvnamebuf = kmem_asprintf("%.*s.%s.txt",
(int)(strlen(nvname) - 4),
nvname, model);
}
aprint_verbose_dev(self, "Firmware %s\n", name);
aprint_verbose_dev(self, "Default Config %s\n", nvname);
if (nvnamebuf != NULL)
aprint_verbose_dev(self, "Model Config %s\n", nvnamebuf);
if (firmware_open("if_bwfm", name, &fwh) != 0) {
printf("%s: failed firmware_open of file %s\n",
DEVNAME(sc), name);
goto err;
}
size = firmware_get_size(fwh);
ucode = firmware_malloc(size);
if (ucode == NULL) {
printf("%s: failed firmware_open of file %s\n",
DEVNAME(sc), name);
firmware_close(fwh);
goto err;
}
error = firmware_read(fwh, 0, ucode, size);
firmware_close(fwh);
if (error != 0) {
printf("%s: failed to read firmware (error %d)\n",
DEVNAME(sc), error);
goto err1;
}
if ((nvnamebuf == NULL || firmware_open("if_bwfm", nvnamebuf, &fwh) != 0)
&& firmware_open("if_bwfm", nvname, &fwh) != 0) {
printf("%s: failed firmware_open of file %s\n",
DEVNAME(sc), nvname);
goto err1;
}
nvlen = firmware_get_size(fwh);
nvram = firmware_malloc(nvlen);
if (nvram == NULL) {
printf("%s: failed firmware_open of file %s\n",
DEVNAME(sc), name);
firmware_close(fwh);
goto err1;
}
error = firmware_read(fwh, 0, nvram, nvlen);
firmware_close(fwh);
if (error != 0) {
printf("%s: failed to read firmware (error %d)\n",
DEVNAME(sc), error);
goto err2;
}
if (bwfm_nvram_convert(nvram, nvlen, &nvsize)) {
printf("%s: failed to convert nvram\n", DEVNAME(sc));
goto err2;
}
sc->sc_alp_only = true;
if (bwfm_sdio_load_microcode(sc, ucode, size, nvram, nvsize) != 0) {
printf("%s: could not load microcode\n",
DEVNAME(sc));
goto err2;
}
sc->sc_alp_only = false;
firmware_free(nvram, nvlen);
firmware_free(ucode, size);
if (nvnamebuf != NULL)
kmem_free(nvnamebuf, strlen(nvnamebuf)+1);
sdmmc_pause(hztoms(1)*1000, NULL);
bwfm_sdio_clkctl(sc, CLK_AVAIL, false);
if (sc->sc_clkstate != CLK_AVAIL) {
printf("%s: could not access clock\n",
DEVNAME(sc));
goto err;
}
clk = bwfm_sdio_read_1(sc, BWFM_SDIO_FUNC1_CHIPCLKCSR);
bwfm_sdio_write_1(sc, BWFM_SDIO_FUNC1_CHIPCLKCSR,
clk | BWFM_SDIO_FUNC1_CHIPCLKCSR_FORCE_HT);
bwfm_sdio_dev_write(sc, SDPCMD_TOSBMAILBOXDATA,
SDPCM_PROT_VERSION << SDPCM_PROT_VERSION_SHIFT);
if (sdmmc_io_function_enable(sc->sc_sf[2])) {
printf("%s: cannot enable function 2\n", DEVNAME(sc));
goto err;
}
bwfm_sdio_dev_write(sc, SDPCMD_HOSTINTMASK,
SDPCMD_INTSTATUS_HMB_SW_MASK | SDPCMD_INTSTATUS_CHIPACTIVE);
bwfm_sdio_write_1(sc, BWFM_SDIO_WATERMARK, 8);
if (bwfm_chip_sr_capable(bwfm)) {
reg = bwfm_sdio_read_1(sc, BWFM_SDIO_FUNC1_WAKEUPCTRL);
reg |= BWFM_SDIO_FUNC1_WAKEUPCTRL_HTWAIT;
bwfm_sdio_write_1(sc, BWFM_SDIO_FUNC1_WAKEUPCTRL, reg);
bwfm_sdio_write_1(sc, BWFM_SDIO_CCCR_CARDCAP,
BWFM_SDIO_CCCR_CARDCAP_CMD14_SUPPORT |
BWFM_SDIO_CCCR_CARDCAP_CMD14_EXT);
bwfm_sdio_write_1(sc, BWFM_SDIO_FUNC1_CHIPCLKCSR,
BWFM_SDIO_FUNC1_CHIPCLKCSR_FORCE_HT);
sc->sc_sr_enabled = 1;
} else {
bwfm_sdio_write_1(sc, BWFM_SDIO_FUNC1_CHIPCLKCSR, clk);
}
#ifdef notyet
if (sc->sc_phandle >= 0) {
sc->sc_fdtih = fdtbus_intr_establish(sc->sc_phandle,
0, IPL_SDMMC, IST_LEVEL, bwfm_sdio_intr, sc);
}
#endif
if (sc->sc_fdtih != NULL) {
aprint_normal_dev(self, "enabling GPIO interrupt\n");
} else {
sc->sc_ih = sdmmc_intr_establish(device_parent(self),
bwfm_sdio_intr, sc, DEVNAME(sc));
}
if (sc->sc_ih == NULL && sc->sc_fdtih == NULL) {
aprint_error_dev(self, "could not establish interrupt\n");
bwfm_sdio_clkctl(sc, CLK_NONE, false);
return;
}
sdmmc_intr_enable(sc->sc_sf[1]);
sdmmc_pause(100000, NULL);
sc->sc_sc.sc_bus_ops = &bwfm_sdio_bus_ops;
sc->sc_sc.sc_proto_ops = &bwfm_proto_bcdc_ops;
bwfm_attach(&sc->sc_sc);
sc->sc_bwfm_attached = true;
return;
err2:
firmware_free(nvram, nvlen);
err1:
firmware_free(ucode, size);
if (nvnamebuf != NULL)
kmem_free(nvnamebuf, strlen(nvnamebuf)+1);
err:
return;
}
static int
bwfm_fdt_find_phandle(device_t self, device_t parent)
{
prop_dictionary_t dict;
device_t dev;
const char *str;
int phandle;
/* locate in FDT */
dict = device_properties(self);
if (prop_dictionary_get_cstring_nocopy(dict, "fdt-path", &str)) {
/* search in FDT */
phandle = OF_finddevice(str);
} else {
/* parent parent is sdhc controller */
dev = device_parent(parent);
if (dev == NULL)
return -1;
/* locate in FDT */
dict = device_properties(dev);
if (!prop_dictionary_get_cstring_nocopy(dict, "fdt-path", &str))
return -1;
/* are we the only FDT child ? */
phandle = OF_child(OF_finddevice(str));
}
if (!of_match_compatible(phandle, compatible))
return -1;
return phandle;
}
static const char *
bwfm_fdt_get_model(void)
{
int phandle;
phandle = OF_finddevice("/");
return fdtbus_get_string_index(phandle, "compatible", 0);
}
static int
bwfm_sdio_detach(device_t self, int flags)
{
struct bwfm_sdio_softc *sc = (struct bwfm_sdio_softc *)self;
#ifdef BWFM_DEBUG
bwfm_sdio_debug_console(sc);
#endif
if (sc->sc_ih || sc->sc_fdtih) {
sdmmc_intr_disable(sc->sc_sf[1]);
if (sc->sc_ih)
sdmmc_intr_disestablish(sc->sc_ih);
if (sc->sc_fdtih)
fdtbus_intr_disestablish(sc->sc_phandle, sc->sc_fdtih);
}
if (sc->sc_bwfm_attached)
bwfm_detach(&sc->sc_sc, flags);
sdmmc_del_task(sc->sc_sf[1]->sc, &sc->sc_task, NULL);
kmem_free(sc->sc_sf, sc->sc_sf_size);
kmem_free(sc->sc_bounce_buf, sc->sc_bounce_size);
cv_destroy(&sc->sc_rxctl_cv);
mutex_destroy(&sc->sc_lock);
return 0;
}
static void
bwfm_sdio_backplane(struct bwfm_sdio_softc *sc, uint32_t addr)
{
uint32_t bar0 = addr & ~BWFM_SDIO_SB_OFT_ADDR_MASK;
if (sc->sc_bar0 == bar0)
return;
bwfm_sdio_write_1(sc, BWFM_SDIO_FUNC1_SBADDRLOW,
(bar0 >> 8) & 0xff);
bwfm_sdio_write_1(sc, BWFM_SDIO_FUNC1_SBADDRMID,
(bar0 >> 16) & 0xff);
bwfm_sdio_write_1(sc, BWFM_SDIO_FUNC1_SBADDRHIGH,
(bar0 >> 24) & 0xff);
sc->sc_bar0 = bar0;
}
static uint8_t
bwfm_sdio_read_1(struct bwfm_sdio_softc *sc, uint32_t addr)
{
struct sdmmc_function *sf;
uint8_t rv;
/*
* figure out how to read the register based on address range
* 0x00 ~ 0x7FF: function 0 CCCR and FBR
* 0x10000 ~ 0x1FFFF: function 1 miscellaneous registers
* The rest: function 1 silicon backplane core registers
*/
if ((addr & ~0x7ff) == 0)
sf = sc->sc_sf[0];
else
sf = sc->sc_sf[1];
rv = sdmmc_io_read_1(sf, addr);
return rv;
}
static uint32_t
bwfm_sdio_read_4(struct bwfm_sdio_softc *sc, uint32_t addr)
{
struct sdmmc_function *sf;
uint32_t rv;
bwfm_sdio_backplane(sc, addr);
addr &= BWFM_SDIO_SB_OFT_ADDR_MASK;
addr |= BWFM_SDIO_SB_ACCESS_2_4B_FLAG;
/*
* figure out how to read the register based on address range
* 0x00 ~ 0x7FF: function 0 CCCR and FBR
* 0x10000 ~ 0x1FFFF: function 1 miscellaneous registers
* The rest: function 1 silicon backplane core registers
*/
if ((addr & ~0x7ff) == 0)
sf = sc->sc_sf[0];
else
sf = sc->sc_sf[1];
rv = sdmmc_io_read_4(sf, addr);
return htole32(rv);
}
static void
bwfm_sdio_write_1(struct bwfm_sdio_softc *sc, uint32_t addr, uint8_t data)
{
struct sdmmc_function *sf;
/*
* figure out how to read the register based on address range
* 0x00 ~ 0x7FF: function 0 CCCR and FBR
* 0x10000 ~ 0x1FFFF: function 1 miscellaneous registers
* The rest: function 1 silicon backplane core registers
*/
if ((addr & ~0x7ff) == 0)
sf = sc->sc_sf[0];
else
sf = sc->sc_sf[1];
sdmmc_io_write_1(sf, addr, data);
}
static void
bwfm_sdio_write_4(struct bwfm_sdio_softc *sc, uint32_t addr, uint32_t data)
{
struct sdmmc_function *sf;
bwfm_sdio_backplane(sc, addr);
addr &= BWFM_SDIO_SB_OFT_ADDR_MASK;
addr |= BWFM_SDIO_SB_ACCESS_2_4B_FLAG;
/*
* figure out how to read the register based on address range
* 0x00 ~ 0x7FF: function 0 CCCR and FBR
* 0x10000 ~ 0x1FFFF: function 1 miscellaneous registers
* The rest: function 1 silicon backplane core registers
*/
if ((addr & ~0x7ff) == 0)
sf = sc->sc_sf[0];
else
sf = sc->sc_sf[1];
sdmmc_io_write_4(sf, addr, htole32(data));
}
static int
bwfm_sdio_buf_read(struct bwfm_sdio_softc *sc, struct sdmmc_function *sf,
uint32_t reg, char *data, size_t size)
{
int err;
KASSERT(((vaddr_t)data & 0x3) == 0);
KASSERT((size & 0x3) == 0);
if (sf == sc->sc_sf[1])
err = sdmmc_io_read_region_1(sf, reg, data, size);
else
err = sdmmc_io_read_multi_1(sf, reg, data, size);
if (err)
printf("%s: error %d\n", __func__, err);
return err;
}
static int
bwfm_sdio_buf_write(struct bwfm_sdio_softc *sc, struct sdmmc_function *sf,
uint32_t reg, char *data, size_t size)
{
int err;
KASSERT(((vaddr_t)data & 0x3) == 0);
KASSERT((size & 0x3) == 0);
err = sdmmc_io_write_region_1(sf, reg, data, size);
if (err)
printf("%s: error %d\n", __func__, err);
return err;
}
static uint32_t
bwfm_sdio_ram_read_write(struct bwfm_sdio_softc *sc, uint32_t reg,
char *data, size_t left, int write)
{
uint32_t sbaddr, sdaddr, off;
size_t size;
int err;
err = off = 0;
while (left > 0) {
sbaddr = reg + off;
bwfm_sdio_backplane(sc, sbaddr);
sdaddr = sbaddr & BWFM_SDIO_SB_OFT_ADDR_MASK;
size = ulmin(left, (BWFM_SDIO_SB_OFT_ADDR_PAGE - sdaddr));
sdaddr |= BWFM_SDIO_SB_ACCESS_2_4B_FLAG;
if (write) {
memcpy(sc->sc_bounce_buf, data + off, size);
if (roundup(size, 4) != size)
memset(sc->sc_bounce_buf + size, 0,
roundup(size, 4) - size);
err = bwfm_sdio_buf_write(sc, sc->sc_sf[1], sdaddr,
sc->sc_bounce_buf, roundup(size, 4));
} else {
err = bwfm_sdio_buf_read(sc, sc->sc_sf[1], sdaddr,
sc->sc_bounce_buf, roundup(size, 4));
memcpy(data + off, sc->sc_bounce_buf, size);
}
if (err)
break;
off += size;
left -= size;
}
if (err)
printf("%s: error %d\n", __func__, err);
return err;
}
static uint32_t
bwfm_sdio_frame_read_write(struct bwfm_sdio_softc *sc,
char *data, size_t size, int write)
{
uint32_t addr;
int err;
addr = sc->sc_cc->co_base;
bwfm_sdio_backplane(sc, addr);
addr &= BWFM_SDIO_SB_OFT_ADDR_MASK;
addr |= BWFM_SDIO_SB_ACCESS_2_4B_FLAG;
if (write)
err = bwfm_sdio_buf_write(sc, sc->sc_sf[2], addr, data, size);
else
err = bwfm_sdio_buf_read(sc, sc->sc_sf[2], addr, data, size);
if (err)
printf("%s: error %d\n", __func__, err);
return err;
}
static uint32_t
bwfm_sdio_dev_read(struct bwfm_sdio_softc *sc, uint32_t reg)
{
struct bwfm_core *core;
uint32_t val;
core = bwfm_chip_get_core(&sc->sc_sc, BWFM_AGENT_CORE_SDIO_DEV);
val = bwfm_sdio_read_4(sc, core->co_base + reg);
/* TODO: Workaround for 4335/4339 */
return val;
}
static void
bwfm_sdio_dev_write(struct bwfm_sdio_softc *sc, uint32_t reg, uint32_t val)
{
struct bwfm_core *core;
core = bwfm_chip_get_core(&sc->sc_sc, BWFM_AGENT_CORE_SDIO_DEV);
bwfm_sdio_write_4(sc, core->co_base + reg, val);
}
static uint32_t
bwfm_sdio_buscore_read(struct bwfm_softc *bwfm, uint32_t reg)
{
struct bwfm_sdio_softc *sc = (void *)bwfm;
uint32_t val;
mutex_enter(&sc->sc_lock);
val = bwfm_sdio_read_4(sc, reg);
/* TODO: Workaround for 4335/4339 */
mutex_exit(&sc->sc_lock);
return val;
}
static void
bwfm_sdio_buscore_write(struct bwfm_softc *bwfm, uint32_t reg, uint32_t val)
{
struct bwfm_sdio_softc *sc = (void *)bwfm;
mutex_enter(&sc->sc_lock);
bwfm_sdio_write_4(sc, reg, val);
mutex_exit(&sc->sc_lock);
}
static int
bwfm_sdio_buscore_prepare(struct bwfm_softc *bwfm)
{
struct bwfm_sdio_softc *sc = (void *)bwfm;
uint8_t clkval, clkset, clkmask;
int i, error = 0;
mutex_enter(&sc->sc_lock);
clkset = BWFM_SDIO_FUNC1_CHIPCLKCSR_ALP_AVAIL_REQ |
BWFM_SDIO_FUNC1_CHIPCLKCSR_FORCE_HW_CLKREQ_OFF;
bwfm_sdio_write_1(sc, BWFM_SDIO_FUNC1_CHIPCLKCSR, clkset);
clkmask = BWFM_SDIO_FUNC1_CHIPCLKCSR_ALP_AVAIL |
BWFM_SDIO_FUNC1_CHIPCLKCSR_HT_AVAIL;
clkval = bwfm_sdio_read_1(sc, BWFM_SDIO_FUNC1_CHIPCLKCSR);
if ((clkval & ~clkmask) != clkset) {
printf("%s: wrote 0x%02x read 0x%02x\n", DEVNAME(sc),
clkset, clkval);
error = 1;
goto done;
}
for (i = 1000; i > 0; i--) {
clkval = bwfm_sdio_read_1(sc,
BWFM_SDIO_FUNC1_CHIPCLKCSR);
if (clkval & clkmask)
break;
}
if (i == 0) {
printf("%s: timeout on ALPAV wait, clkval 0x%02x\n",
DEVNAME(sc), clkval);
error = 1;
goto done;
}
clkset = BWFM_SDIO_FUNC1_CHIPCLKCSR_FORCE_HW_CLKREQ_OFF |
BWFM_SDIO_FUNC1_CHIPCLKCSR_FORCE_ALP;
bwfm_sdio_write_1(sc, BWFM_SDIO_FUNC1_CHIPCLKCSR, clkset);
delay(65);
bwfm_sdio_write_1(sc, BWFM_SDIO_FUNC1_SDIOPULLUP, 0);
done:
mutex_exit(&sc->sc_lock);
return error;
}
static void
bwfm_sdio_buscore_activate(struct bwfm_softc *bwfm, uint32_t rstvec)
{
struct bwfm_sdio_softc *sc = (void *)bwfm;
struct bwfm_core *core;
core = bwfm_chip_get_core(&sc->sc_sc, BWFM_AGENT_CORE_SDIO_DEV);
bwfm_sdio_buscore_write(&sc->sc_sc,
core->co_base + BWFM_SDPCMD_INTSTATUS, 0xFFFFFFFF);
mutex_enter(&sc->sc_lock);
if (rstvec)
bwfm_sdio_ram_read_write(sc, 0, (char *)&rstvec,
sizeof(rstvec), 1);
mutex_exit(&sc->sc_lock);
}
static struct mbuf *
bwfm_sdio_newbuf(void)
{
struct mbuf *m;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
return NULL;
MCLGET(m, M_DONTWAIT);
if (!(m->m_flags & M_EXT)) {
m_freem(m);
return NULL;
}
m->m_len = m->m_pkthdr.len = MCLBYTES;
return m;
}
static struct mbuf *
bwfm_qget(struct mbuf **q)
{
struct mbuf *m = NULL;
if (*q != NULL) {
m = *q;
*q = m->m_next;
m->m_next = NULL;
}
return m;
}
static void
bwfm_qput(struct mbuf **q, struct mbuf *m)
{
if (*q == NULL)
*q = m;
else
m_cat(*q, m);
}
static int
bwfm_sdio_txcheck(struct bwfm_softc *bwfm)
{
struct bwfm_sdio_softc *sc = (void *)bwfm;
int error = 0;
mutex_enter(&sc->sc_lock);
if (sc->sc_tx_count >= 64)
error = ENOBUFS;
mutex_exit(&sc->sc_lock);
return error;
}
static int
bwfm_sdio_txdata(struct bwfm_softc *bwfm, struct mbuf **mp)
{
struct bwfm_sdio_softc *sc = (void *)bwfm;
if (sc->sc_tx_count >= 64) {
printf("%s: tx count limit reached\n",DEVNAME(sc));
return ENOBUFS;
}
mutex_enter(&sc->sc_lock);
sc->sc_tx_count++;
MBUFQ_ENQUEUE(&sc->sc_tx_queue, *mp);
mutex_exit(&sc->sc_lock);
bwfm_sdio_intr1(sc, "sdio_txdata");
return 0;
}
static int
bwfm_sdio_txctl(struct bwfm_softc *bwfm, char *buf, size_t len)
{
struct bwfm_sdio_softc *sc = (void *)bwfm;
struct mbuf *m;
KASSERT(len <= MCLBYTES);
MGET(m, M_DONTWAIT, MT_CONTROL);
if (m == NULL)
goto fail;
if (len > MLEN) {
MCLGET(m, M_DONTWAIT);
if (!(m->m_flags & M_EXT)) {
m_freem(m);
goto fail;
}
}
memcpy(mtod(m, char *), buf, len);
m->m_len = len;
mutex_enter(&sc->sc_lock);
MBUFQ_ENQUEUE(&sc->sc_tx_queue, m);
mutex_exit(&sc->sc_lock);
bwfm_sdio_intr1(sc, "sdio_txctl");
return 0;
fail:
return ENOBUFS;
}
static int
bwfm_nvram_convert(u_char *buf, size_t len, size_t *newlenp)
{
u_char *src, *dst, *end = buf + len;
bool skip = false;
size_t count = 0, pad;
uint32_t token;
for (src = buf, dst = buf; src != end; ++src) {
if (*src == '\n') {
if (count > 0)
*dst++ = '\0';
count = 0;
skip = false;
continue;
}
if (skip)
continue;
if (*src == '#' && count == 0) {
skip = true;
continue;
}
if (*src == '\r')
continue;
*dst++ = *src;
++count;
}
count = dst - buf;
pad = roundup(count + 1, 4) - count;
if (count + pad + sizeof(token) > len)
return 1;
memset(dst, 0, pad);
count += pad;
dst += pad;
token = (count / 4) & 0xffff;
token |= ~token << 16;
token = htole32(token);
memcpy(dst, &token, sizeof(token));
count += sizeof(token);
*newlenp = count ;
return 0;
}
static int
bwfm_sdio_load_microcode(struct bwfm_sdio_softc *sc, u_char *ucode, size_t size,
u_char *nvram, size_t nvlen)
{
struct bwfm_softc *bwfm = &sc->sc_sc;
char *verify = NULL;
int err = 0;
bwfm_sdio_clkctl(sc, CLK_AVAIL, false);
DPRINTF(("ucode %zu bytes to 0x%08lx\n", size,
(u_long)bwfm->sc_chip.ch_rambase));
/* Upload firmware */
err = bwfm_sdio_ram_read_write(sc, bwfm->sc_chip.ch_rambase,
ucode, size, 1);
if (err)
goto out;
/* Verify firmware */
verify = kmem_zalloc(size, KM_SLEEP);
err = bwfm_sdio_ram_read_write(sc, bwfm->sc_chip.ch_rambase,
verify, size, 0);
if (err || memcmp(verify, ucode, size)) {
printf("%s: firmware verification failed\n",
DEVNAME(sc));
kmem_free(verify, size);
goto out;
}
kmem_free(verify, size);
DPRINTF(("nvram %zu bytes to 0x%08lx\n", nvlen,
(u_long)bwfm->sc_chip.ch_rambase + bwfm->sc_chip.ch_ramsize
- nvlen));
/* Upload nvram */
err = bwfm_sdio_ram_read_write(sc, bwfm->sc_chip.ch_rambase +
bwfm->sc_chip.ch_ramsize - nvlen, nvram, nvlen, 1);
if (err)
goto out;
/* Verify nvram */
verify = kmem_zalloc(nvlen, KM_SLEEP);
err = bwfm_sdio_ram_read_write(sc, bwfm->sc_chip.ch_rambase +
bwfm->sc_chip.ch_ramsize - nvlen, verify, nvlen, 0);
if (err || memcmp(verify, nvram, nvlen)) {
printf("%s: nvram verification failed\n",
DEVNAME(sc));
kmem_free(verify, nvlen);
goto out;
}
kmem_free(verify, nvlen);
DPRINTF(("Reset core 0x%08x\n", *(uint32_t *)ucode));
/* Load reset vector from firmware and kickstart core. */
bwfm_chip_set_active(bwfm, *(uint32_t *)ucode);
out:
bwfm_sdio_clkctl(sc, CLK_SDONLY, false);
return err;
}
static void
bwfm_sdio_clkctl(struct bwfm_sdio_softc *sc, enum bwfm_sdio_clkstate newstate,
bool pendok)
{
enum bwfm_sdio_clkstate oldstate;
oldstate = sc->sc_clkstate;
if (oldstate == newstate)
return;
switch (newstate) {
case CLK_AVAIL:
if (oldstate == CLK_NONE)
sc->sc_clkstate = CLK_SDONLY; /* XXX */
bwfm_sdio_htclk(sc, true, pendok);
break;
case CLK_SDONLY:
if (oldstate == CLK_NONE)
sc->sc_clkstate = newstate;
else if (oldstate == CLK_AVAIL)
bwfm_sdio_htclk(sc, false, false);
else
printf("%s: clkctl %d -> %d\n", DEVNAME(sc),
sc->sc_clkstate, newstate);
break;
case CLK_NONE:
if (oldstate == CLK_AVAIL)
bwfm_sdio_htclk(sc, false, false);
sc->sc_clkstate = newstate;
break;
default:
break;
}
DPRINTF(("%s: %d -> %d = %d\n", DEVNAME(sc), oldstate, newstate,
sc->sc_clkstate));
}
static void
bwfm_sdio_htclk(struct bwfm_sdio_softc *sc, bool on, bool pendok)
{
uint32_t clkctl, devctl, req;
int i;
if (sc->sc_sr_enabled) {
if (on)
sc->sc_clkstate = CLK_AVAIL;
else
sc->sc_clkstate = CLK_SDONLY;
return;
}
if (on) {
if (sc->sc_alp_only)
req = BWFM_SDIO_FUNC1_CHIPCLKCSR_ALP_AVAIL_REQ;
else
req = BWFM_SDIO_FUNC1_CHIPCLKCSR_HT_AVAIL_REQ;
bwfm_sdio_write_1(sc, BWFM_SDIO_FUNC1_CHIPCLKCSR, req);
clkctl = bwfm_sdio_read_1(sc, BWFM_SDIO_FUNC1_CHIPCLKCSR);
if (!BWFM_SDIO_FUNC1_CHIPCLKCSR_CLKAV(clkctl, sc->sc_alp_only)
&& pendok) {
devctl = bwfm_sdio_read_1(sc, BWFM_SDIO_DEVICE_CTL);
devctl |= BWFM_SDIO_DEVICE_CTL_CA_INT_ONLY;
bwfm_sdio_write_1(sc, BWFM_SDIO_DEVICE_CTL, devctl);
sc->sc_clkstate = CLK_PENDING;
return;
} else if (sc->sc_clkstate == CLK_PENDING) {
devctl = bwfm_sdio_read_1(sc, BWFM_SDIO_DEVICE_CTL);
devctl &= ~BWFM_SDIO_DEVICE_CTL_CA_INT_ONLY;
bwfm_sdio_write_1(sc, BWFM_SDIO_DEVICE_CTL, devctl);
}
for (i = 0; i < 50; i++) {
if (BWFM_SDIO_FUNC1_CHIPCLKCSR_CLKAV(clkctl,
sc->sc_alp_only))
break;
clkctl = bwfm_sdio_read_1(sc, BWFM_SDIO_FUNC1_CHIPCLKCSR
);
sdmmc_pause(100000, NULL);
}
if (i >= 50) {
printf("%s: HT avail timeout\n", DEVNAME(sc));
return;
}
sc->sc_clkstate = CLK_AVAIL;
} else {
if (sc->sc_clkstate == CLK_PENDING) {
devctl = bwfm_sdio_read_1(sc, BWFM_SDIO_DEVICE_CTL);
devctl &= ~BWFM_SDIO_DEVICE_CTL_CA_INT_ONLY;
bwfm_sdio_write_1(sc, BWFM_SDIO_DEVICE_CTL, devctl);
}
sc->sc_clkstate = CLK_SDONLY;
bwfm_sdio_write_1(sc, BWFM_SDIO_FUNC1_CHIPCLKCSR, 0);
}
}
struct bwfm_sdio_dstab {
uint8_t milli;
uint8_t val;
};
static struct bwfm_sdio_dstab pmu11_1v8[] = {
{32, 0x6},
{26, 0x7},
{22, 0x4},
{16, 0x5},
{12, 0x2},
{8, 0x3},
{4, 0x0},
{0, 0x1}
}, pmu13_1v8[] = {
{6, 0x7},
{5, 0x6},
{4, 0x5},
{3, 0x4},
{2, 0x2},
{1, 0x1},
{0, 0x0}
}, pmu17_1v8[] = {
{3, 0x3},
{2, 0x2},
{1, 0x1},
{0, 0x0}
}, pmu17_3v3[] = {
{16, 0x7},
{12, 0x5},
{8, 0x3},
{4, 0x1},
{0, 0x0}
};
static void
bwfm_sdio_drivestrength(struct bwfm_sdio_softc *sc, unsigned milli)
{
struct bwfm_softc *bwfm = &sc->sc_sc;
struct bwfm_core *core;
struct bwfm_sdio_dstab *tab;
uint32_t tmp, mask;
unsigned i;
if ((bwfm->sc_chip.ch_cc_caps & BWFM_CHIP_REG_CAPABILITIES_PMU) == 0)
return;
switch (bwfm->sc_chip.ch_chip) {
case BRCM_CC_4330_CHIP_ID:
tab = pmu11_1v8;
mask = __BITS(11,13);
break;
case BRCM_CC_4334_CHIP_ID:
tab = pmu17_1v8;
mask = __BITS(11,12);
break;
case BRCM_CC_43143_CHIP_ID:
tab = pmu17_3v3;
mask = __BITS(0,3);
break;
case BRCM_CC_43362_CHIP_ID:
tab = pmu13_1v8;
mask = __BITS(11,13);
break;
default:
return;
}
for (i=0; tab[i].milli != 0; ++i) {
if (milli >= tab[i].milli)
break;
}
if (tab[i].milli == 0)
return;
core = bwfm_chip_get_pmu(&sc->sc_sc);
tmp = bwfm_sdio_read_4(sc, core->co_base + BWFM_CHIP_REG_CHIPCONTROL_ADDR);
tmp &= mask;
tmp |= __SHIFTIN(tab[i].val, mask);
bwfm_sdio_write_4(sc, core->co_base + BWFM_CHIP_REG_CHIPCONTROL_ADDR, tmp);
}
#if notyet
static int
bwfm_sdio_bus_sleep(struct bwfm_sdio_softc *sc, bool sleep, bool pendok)
{
uint32_t clkctl;
if (sc->sleeping == sleep)
return 0;
if (sc->sc_sr_enabled) {
if (sleep) {
clkctl = bwfm_sdio_read_1(sc, BWFM_SDIO_FUNC1_CHIPCLKCSR);
if ((clkctl & BWFM_SDIO_FUNC1_CHIPCLKCSR_CSR_MASK) == 0)
bwfm_sdio_write_1(sc, BWFM_SDIO_FUNC1_CHIPCLKCSR, BWFM_SDIO_FUNC1_CHIPCLKCSR_ALP_AVAIL_REQ);
}
/* kso_ctrl(sc, sleep) */
}
if (sleep) {
if (!sc->sc_sr_enabled)
bwfm_sdio_clkctl(sc, CLK_NONE, pendok);
} else {
bwfm_sdio_clkctl(sc, CLK_AVAIL, pendok);
}
sc->sleeping = sleep;
return 0;
}
#endif
static void
bwfm_sdio_readshared(struct bwfm_sdio_softc *sc)
{
struct bwfm_softc *bwfm = &sc->sc_sc;
struct bwfm_sdio_sdpcm sdpcm;
uint32_t addr, shaddr;
int err;
bwfm_sdio_clkctl(sc, CLK_AVAIL, false);
if (sc->sc_clkstate != CLK_AVAIL)
return;
shaddr = bwfm->sc_chip.ch_rambase + bwfm->sc_chip.ch_ramsize - 4;
if (!bwfm->sc_chip.ch_rambase && sc->sc_sr_enabled)
shaddr -= bwfm->sc_chip.ch_srsize;
err = bwfm_sdio_ram_read_write(sc, shaddr, (char *)&addr,
sizeof(addr), 0);
if (err)
return;
addr = le32toh(addr);
if (addr == 0 || ((~addr >> 16) & 0xffff) == (addr & 0xffff))
return;
err = bwfm_sdio_ram_read_write(sc, addr, (char *)&sdpcm,
sizeof(sdpcm), 0);
if (err)
return;
sc->sc_console_addr = le32toh(sdpcm.console_addr);
}
static int
bwfm_sdio_intr1(void *v, const char *name)
{
struct bwfm_sdio_softc *sc = (void *)v;
DPRINTF(("%s: %s\n", DEVNAME(sc), name));
sdmmc_add_task(sc->sc_sf[1]->sc, &sc->sc_task);
return 1;
}
static int
bwfm_sdio_intr(void *v)
{
return bwfm_sdio_intr1(v, "sdio_intr");
}
static void
bwfm_sdio_task(void *v)
{
struct bwfm_sdio_softc *sc = (void *)v;
mutex_enter(&sc->sc_lock);
bwfm_sdio_task1(sc);
#ifdef BWFM_DEBUG
bwfm_sdio_debug_console(sc);
#endif
mutex_exit(&sc->sc_lock);
}
static void
bwfm_sdio_task1(struct bwfm_sdio_softc *sc)
{
uint32_t clkctl, devctl, intstat, hostint;
bool dorecv, dosend;
if (!sc->sc_sr_enabled && sc->sc_clkstate == CLK_PENDING) {
clkctl = bwfm_sdio_read_1(sc, BWFM_SDIO_FUNC1_CHIPCLKCSR);
if (BWFM_SDIO_FUNC1_CHIPCLKCSR_HTAV(clkctl)) {
devctl = bwfm_sdio_read_1(sc, BWFM_SDIO_DEVICE_CTL);
devctl &= ~BWFM_SDIO_DEVICE_CTL_CA_INT_ONLY;
bwfm_sdio_write_1(sc, BWFM_SDIO_DEVICE_CTL, devctl);
sc->sc_clkstate = CLK_AVAIL;
}
}
dorecv = dosend = sc->sc_clkstate == CLK_AVAIL;
intstat = bwfm_sdio_dev_read(sc, BWFM_SDPCMD_INTSTATUS);
DPRINTF(("%s: intstat 0x%" PRIx32 "\n", DEVNAME(sc), intstat));
if (intstat)
bwfm_sdio_dev_write(sc, BWFM_SDPCMD_INTSTATUS, intstat);
if (intstat & SDPCMD_INTSTATUS_CHIPACTIVE)
printf("%s: CHIPACTIVE\n", DEVNAME(sc));
if (intstat & SDPCMD_INTSTATUS_HMB_HOST_INT) {
hostint = bwfm_sdio_dev_read(sc, SDPCMD_TOHOSTMAILBOXDATA);
DPRINTF(("%s: hostint 0x%" PRIx32 "\n", DEVNAME(sc), hostint));
bwfm_sdio_dev_write(sc, SDPCMD_TOSBMAILBOX,
SDPCMD_TOSBMAILBOX_INT_ACK);
if (hostint & SDPCMD_TOHOSTMAILBOXDATA_NAKHANDLED)
sc->sc_rxskip = false;
if (hostint & SDPCMD_TOHOSTMAILBOXDATA_DEVREADY ||
hostint & SDPCMD_TOHOSTMAILBOXDATA_FWREADY)
bwfm_sdio_readshared(sc);
}
if (intstat & SDPCMD_INTSTATUS_HMB_FRAME_IND) {
/* ignore receive indications while recovering */
if (dorecv && !sc->sc_rxskip) {
DPRINTF(("%s: recv\n", DEVNAME(sc)));
bwfm_sdio_rx_frames(sc);
}
}
if (intstat & SDPCMD_INTSTATUS_HMB_FC_STATE)
dosend = false;
if (intstat & SDPCMD_INTSTATUS_HMB_FC_CHANGE) {
if (dosend) {
intstat = bwfm_sdio_dev_read(sc, BWFM_SDPCMD_INTSTATUS);
DPRINTF(("%s: intstat2 0x%" PRIx32 "\n", DEVNAME(sc), intstat));
if (intstat & (SDPCMD_INTSTATUS_HMB_FC_STATE | SDPCMD_INTSTATUS_HMB_FC_CHANGE))
dosend = false;
}
}
if (!dosend && MBUFQ_FIRST(&sc->sc_tx_queue)) printf("%s: flowctl\n", DEVNAME(sc));
if (dosend && MBUFQ_FIRST(&sc->sc_tx_queue)) {
DPRINTF(("%s: xmit\n", DEVNAME(sc)));
bwfm_sdio_tx_frames(sc);
}
}
static int
bwfm_sdio_tx_ok(struct bwfm_sdio_softc *sc)
{
return (uint8_t)(sc->sc_tx_max_seq - sc->sc_tx_seq) != 0 &&
((uint8_t)(sc->sc_tx_max_seq - sc->sc_tx_seq) & 0x80) == 0;
}
static void
bwfm_sdio_tx_frames(struct bwfm_sdio_softc *sc)
{
struct mbuf *m;
struct ifnet *ifp = sc->sc_sc.sc_ic.ic_ifp;
bool ifstart = false;
int i;
if (!bwfm_sdio_tx_ok(sc))
return;
i = uimin((uint8_t)(sc->sc_tx_max_seq - sc->sc_tx_seq), 32);
while (i--) {
MBUFQ_DEQUEUE(&sc->sc_tx_queue, m);
if (m == NULL)
break;
if (m->m_type == MT_CONTROL)
bwfm_sdio_tx_ctrlframe(sc, m);
else {
bwfm_sdio_tx_dataframe(sc, m);
ifp->if_opackets++;
ifstart = true;
}
m_freem(m);
}
if (ifstart) {
ifp->if_flags &= ~IFF_OACTIVE;
if_schedule_deferred_start(ifp);
}
}
static void
bwfm_sdio_tx_ctrlframe(struct bwfm_sdio_softc *sc, struct mbuf *m)
{
struct bwfm_sdio_hwhdr *hwhdr;
struct bwfm_sdio_swhdr *swhdr;
size_t len, roundto;
len = sizeof(*hwhdr) + sizeof(*swhdr) + m->m_len;
/* Zero-pad to either block-size or 4-byte alignment. */
if (len > 512 && (len % 512) != 0)
roundto = 512;
else
roundto = 4;
KASSERT(roundup(len, roundto) <= sc->sc_bounce_size);
hwhdr = (void *)sc->sc_bounce_buf;
hwhdr->frmlen = htole16(len);
hwhdr->cksum = htole16(~len);
swhdr = (void *)&hwhdr[1];
swhdr->seqnr = sc->sc_tx_seq++;
swhdr->chanflag = BWFM_SDIO_SWHDR_CHANNEL_CONTROL;
swhdr->nextlen = 0;
swhdr->dataoff = sizeof(*hwhdr) + sizeof(*swhdr);
swhdr->maxseqnr = 0;
m_copydata(m, 0, m->m_len, &swhdr[1]);
if (roundup(len, roundto) != len)
memset(sc->sc_bounce_buf + len, 0,
roundup(len, roundto) - len);
bwfm_sdio_frame_read_write(sc, sc->sc_bounce_buf,
roundup(len, roundto), 1);
}
static void
bwfm_sdio_tx_dataframe(struct bwfm_sdio_softc *sc, struct mbuf *m)
{
struct bwfm_sdio_hwhdr *hwhdr;
struct bwfm_sdio_swhdr *swhdr;
struct bwfm_proto_bcdc_hdr *bcdc;
size_t len, roundto;
len = sizeof(*hwhdr) + sizeof(*swhdr) + sizeof(*bcdc)
+ m->m_pkthdr.len;
/* Zero-pad to either block-size or 4-byte alignment. */
if (len > 512 && (len % 512) != 0)
roundto = 512;
else
roundto = 4;
KASSERT(roundup(len, roundto) <= sc->sc_bounce_size);
hwhdr = (void *)sc->sc_bounce_buf;
hwhdr->frmlen = htole16(len);
hwhdr->cksum = htole16(~len);
swhdr = (void *)&hwhdr[1];
swhdr->seqnr = sc->sc_tx_seq++;
swhdr->chanflag = BWFM_SDIO_SWHDR_CHANNEL_DATA;
swhdr->nextlen = 0;
swhdr->dataoff = sizeof(*hwhdr) + sizeof(*swhdr);
swhdr->maxseqnr = 0;
bcdc = (void *)&swhdr[1];
bcdc->data_offset = 0;
bcdc->priority = WME_AC_BE;
bcdc->flags = BWFM_BCDC_FLAG_VER(BWFM_BCDC_FLAG_PROTO_VER);
bcdc->flags2 = 0;
m_copydata(m, 0, m->m_pkthdr.len, &bcdc[1]);
if (roundup(len, roundto) != len)
memset(sc->sc_bounce_buf + len, 0,
roundup(len, roundto) - len);
bwfm_sdio_frame_read_write(sc, sc->sc_bounce_buf,
roundup(len, roundto), 1);
sc->sc_tx_count--;
}
static int
bwfm_sdio_rxctl(struct bwfm_softc *bwfm, char *buf, size_t *lenp)
{
struct bwfm_sdio_softc *sc = (void *)bwfm;
struct mbuf *m;
int err = 0;
mutex_enter(&sc->sc_lock);
while ((m = bwfm_qget(&sc->sc_rxctl_queue)) == NULL) {
err = cv_timedwait(&sc->sc_rxctl_cv, &sc->sc_lock,
mstohz(5000));
if (err == EWOULDBLOCK)
break;
}
mutex_exit(&sc->sc_lock);
if (err)
return 1;
if (m->m_len > *lenp) {
m_freem(m);
return 1;
}
*lenp = m->m_len;
m_copydata(m, 0, m->m_len, buf);
m_freem(m);
return 0;
}
static void
bwfm_sdio_rx_frames(struct bwfm_sdio_softc *sc)
{
struct bwfm_sdio_hwhdr *hwhdr;
struct bwfm_sdio_swhdr *swhdr;
struct bwfm_proto_bcdc_hdr *bcdc;
uint16_t *sublen, nextlen = 0;
struct mbuf *m;
size_t flen, off, hoff;
char *data;
int nsub;
size_t subsize;
hwhdr = (struct bwfm_sdio_hwhdr *)sc->sc_bounce_buf;
swhdr = (struct bwfm_sdio_swhdr *)&hwhdr[1];
data = (char *)&swhdr[1];
for (;;) {
/* If we know the next size, just read ahead. */
if (nextlen) {
if (bwfm_sdio_frame_read_write(sc, sc->sc_bounce_buf,
nextlen, 0))
break;
nextlen = 0;
} else {
if (bwfm_sdio_frame_read_write(sc, sc->sc_bounce_buf,
sizeof(*hwhdr) + sizeof(*swhdr), 0))
break;
}
hwhdr->frmlen = le16toh(hwhdr->frmlen);
hwhdr->cksum = le16toh(hwhdr->cksum);
if (hwhdr->frmlen == 0 && hwhdr->cksum == 0) {
break;
}
if ((hwhdr->frmlen ^ hwhdr->cksum) != 0xffff) {
printf("%s: checksum error\n", DEVNAME(sc));
break;
}
if (hwhdr->frmlen < sizeof(*hwhdr) + sizeof(*swhdr)) {
printf("%s: length error\n", DEVNAME(sc));
break;
}
if (nextlen && hwhdr->frmlen > nextlen) {
printf("%s: read ahead length error (%u > %u)\n",
DEVNAME(sc), hwhdr->frmlen, nextlen);
break;
}
sc->sc_tx_max_seq = swhdr->maxseqnr;
flen = hwhdr->frmlen - (sizeof(*hwhdr) + sizeof(*swhdr));
if (flen == 0) {
nextlen = swhdr->nextlen << 4;
continue;
}
if (!nextlen) {
KASSERT(roundup(flen, 4) <= sc->sc_bounce_size -
(sizeof(*hwhdr) + sizeof(*swhdr)));
if (bwfm_sdio_frame_read_write(sc, data,
roundup(flen, 4), 0)) {
printf("%s: I/O error roundup(%zu, 4) bytes\n",
DEVNAME(sc), flen);
break;
}
}
if (swhdr->dataoff < (sizeof(*hwhdr) + sizeof(*swhdr))) {
printf("%s: data offset %u in header\n",
DEVNAME(sc), swhdr->dataoff);
break;
}
off = swhdr->dataoff - (sizeof(*hwhdr) + sizeof(*swhdr));
if (off > flen) {
printf("%s: offset %zu beyond end %zu\n",
DEVNAME(sc), off, flen);
break;
}
switch (swhdr->chanflag & BWFM_SDIO_SWHDR_CHANNEL_MASK) {
case BWFM_SDIO_SWHDR_CHANNEL_CONTROL:
m = bwfm_sdio_newbuf();
if (m == NULL)
break;
if (flen - off > m->m_len) {
printf("%s: ctl bigger than anticipated\n",
DEVNAME(sc));
m_freem(m);
break;
}
m->m_len = m->m_pkthdr.len = flen - off;
memcpy(mtod(m, char *), data + off, flen - off);
bwfm_qput(&sc->sc_rxctl_queue, m);
cv_broadcast(&sc->sc_rxctl_cv);
nextlen = swhdr->nextlen << 4;
break;
case BWFM_SDIO_SWHDR_CHANNEL_EVENT:
case BWFM_SDIO_SWHDR_CHANNEL_DATA:
m = bwfm_sdio_newbuf();
if (m == NULL)
break;
if (flen - off > m->m_len) {
printf("%s: frame bigger than anticipated\n",
DEVNAME(sc));
m_freem(m);
break;
}
m->m_len = m->m_pkthdr.len = flen - off;
memcpy(mtod(m, char *), data + off, flen - off);
bcdc = mtod(m, struct bwfm_proto_bcdc_hdr *);
hoff = sizeof(*bcdc) + ((size_t)bcdc->data_offset << 2);
if (m->m_len < hoff) {
printf("%s: short bcdc packet %d < %zu\n",
DEVNAME(sc), m->m_len, hoff);
m_freem(m);
break;
}
m_adj(m, hoff);
/* don't pass empty packet to stack */
if (m->m_len == 0) {
m_freem(m);
break;
}
bwfm_rx(&sc->sc_sc, m);
nextlen = swhdr->nextlen << 4;
break;
case BWFM_SDIO_SWHDR_CHANNEL_GLOM:
if ((flen % sizeof(uint16_t)) != 0) {
printf("%s: odd length (%zu) glom table\n",
DEVNAME(sc), flen);
break;
}
nsub = flen / sizeof(uint16_t);
subsize = nsub * sizeof(uint16_t);
sublen = NULL;
nextlen = 0;
if (subsize > 0)
sublen = kmem_zalloc(subsize, KM_NOSLEEP);
if (sublen != NULL) {
memcpy(sublen, data, subsize);
bwfm_sdio_rx_glom(sc, sublen, nsub, &nextlen);
kmem_free(sublen, subsize);
}
break;
default:
printf("%s: unknown channel\n", DEVNAME(sc));
break;
}
}
}
static void
bwfm_sdio_rx_glom(struct bwfm_sdio_softc *sc, uint16_t *sublen, int nsub,
uint16_t *nextlen)
{
struct bwfm_sdio_hwhdr hwhdr;
struct bwfm_sdio_swhdr swhdr;
struct bwfm_proto_bcdc_hdr *bcdc;
struct mbuf *m, *m0;
size_t flen, off, hoff;
int i;
if (nsub == 0)
return;
m0 = NULL;
for (i = 0; i < nsub; i++) {
m = bwfm_sdio_newbuf();
if (m == NULL) {
m_freem(m0);
return;
}
bwfm_qput(&m0, m);
if (le16toh(sublen[i]) > m->m_len) {
m_freem(m0);
printf("%s: header larger than mbuf\n", DEVNAME(sc));
return;
}
if (bwfm_sdio_frame_read_write(sc, mtod(m, char *),
le16toh(sublen[i]), 0)) {
m_freem(m0);
printf("%s: frame I/O error\n", DEVNAME(sc));
return;
}
m->m_len = m->m_pkthdr.len = le16toh(sublen[i]);
}
if (m0->m_len >= sizeof(hwhdr) + sizeof(swhdr)) {
m_copydata(m0, 0, sizeof(hwhdr), &hwhdr);
m_copydata(m0, sizeof(hwhdr), sizeof(swhdr), &swhdr);
/* TODO: Verify actual superframe header */
/* remove superframe header */
if (m0->m_len >= swhdr.dataoff)
m_adj(m0, swhdr.dataoff);
}
*nextlen = 0;
while ((m = bwfm_qget(&m0)) != NULL) {
if (m->m_len < sizeof(hwhdr) + sizeof(swhdr)) {
printf("%s: tiny mbuf %d < %zu\n", DEVNAME(sc),
m->m_len, sizeof(hwhdr) + sizeof(swhdr));
goto drop;
}
m_copydata(m, 0, sizeof(hwhdr), &hwhdr);
m_copydata(m, sizeof(hwhdr), sizeof(swhdr), &swhdr);
hwhdr.frmlen = le16toh(hwhdr.frmlen);
hwhdr.cksum = le16toh(hwhdr.cksum);
if (hwhdr.frmlen == 0 && hwhdr.cksum == 0)
goto drop;
if ((hwhdr.frmlen ^ hwhdr.cksum) != 0xffff) {
printf("%s: checksum error\n", DEVNAME(sc));
goto drop;
}
if (hwhdr.frmlen < sizeof(hwhdr) + sizeof(swhdr)) {
printf("%s: length error\n", DEVNAME(sc));
goto drop;
}
flen = hwhdr.frmlen - (sizeof(hwhdr) + sizeof(swhdr));
if (flen == 0)
goto drop;
if (hwhdr.frmlen > m->m_len) {
printf("%s: short mbuf %d < %zu\n",
DEVNAME(sc),m->m_len,flen);
goto drop;
}
if (swhdr.dataoff < (sizeof(hwhdr) + sizeof(swhdr))) {
printf("%s: data offset %u in header\n",
DEVNAME(sc), swhdr.dataoff);
goto drop;
}
off = swhdr.dataoff - (sizeof(hwhdr) + sizeof(swhdr));
if (off > flen) {
printf("%s: offset %zu beyond end %zu\n",
DEVNAME(sc), off, flen);
goto drop;
}
m_adj(m, (int)hwhdr.frmlen - m->m_len);
*nextlen = swhdr.nextlen << 4;
switch (swhdr.chanflag & BWFM_SDIO_SWHDR_CHANNEL_MASK) {
case BWFM_SDIO_SWHDR_CHANNEL_CONTROL:
printf("%s: control channel not allowed in glom\n",
DEVNAME(sc));
goto drop;
case BWFM_SDIO_SWHDR_CHANNEL_EVENT:
case BWFM_SDIO_SWHDR_CHANNEL_DATA:
m_adj(m, swhdr.dataoff);
bcdc = mtod(m, struct bwfm_proto_bcdc_hdr *);
hoff = sizeof(*bcdc) + ((size_t)bcdc->data_offset << 2);
if (m->m_len < hoff) {
printf("%s: short bcdc packet %d < %zu\n",
DEVNAME(sc), m->m_len, hoff);
m_freem(m);
break;
}
m_adj(m, hoff);
/* don't pass empty packet to stack */
if (m->m_len == 0) {
m_freem(m);
break;
}
bwfm_rx(&sc->sc_sc, m);
break;
case BWFM_SDIO_SWHDR_CHANNEL_GLOM:
printf("%s: glom not allowed in glom\n",
DEVNAME(sc));
goto drop;
default:
printf("%s: unknown channel\n", DEVNAME(sc));
goto drop;
}
continue;
drop:
printf("rx dropped %p len %d\n",mtod(m, char *),m->m_pkthdr.len);
m_free(m);
break;
}
}
#ifdef BWFM_DEBUG
static void
bwfm_sdio_debug_console(struct bwfm_sdio_softc *sc)
{
struct bwfm_sdio_console c;
uint32_t newidx;
int err;
if (!sc->sc_console_addr)
return;
err = bwfm_sdio_ram_read_write(sc, sc->sc_console_addr,
(char *)&c, sizeof(c), 0);
if (err)
return;
c.log_buf = le32toh(c.log_buf);
c.log_bufsz = le32toh(c.log_bufsz);
c.log_idx = le32toh(c.log_idx);
if (sc->sc_console_buf == NULL) {
sc->sc_console_buf = malloc(c.log_bufsz, M_DEVBUF,
M_WAITOK|M_ZERO);
sc->sc_console_buf_size = c.log_bufsz;
}
newidx = c.log_idx;
if (newidx >= sc->sc_console_buf_size)
return;
err = bwfm_sdio_ram_read_write(sc, c.log_buf, sc->sc_console_buf,
sc->sc_console_buf_size, 0);
if (err)
return;
if (newidx != sc->sc_console_readidx)
DPRINTFN(3, ("BWFM CONSOLE: "));
while (newidx != sc->sc_console_readidx) {
uint8_t ch = sc->sc_console_buf[sc->sc_console_readidx];
sc->sc_console_readidx++;
if (sc->sc_console_readidx == sc->sc_console_buf_size)
sc->sc_console_readidx = 0;
if (ch == '\r')
continue;
DPRINTFN(3, ("%c", ch));
}
}
#endif