Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
//===-- xray_fdr_logging.cc ------------------------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a dynamic runtime instrumentation system.
//
// Here we implement the Flight Data Recorder mode for XRay, where we use
// compact structures to store records in memory as well as when writing out the
// data to files.
//
//===----------------------------------------------------------------------===//
#include "xray_fdr_logging.h"
#include <cassert>
#include <errno.h>
#include <limits>
#include <memory>
#include <pthread.h>
#include <sys/time.h>
#include <time.h>
#include <unistd.h>

#include "sanitizer_common/sanitizer_allocator_internal.h"
#include "sanitizer_common/sanitizer_atomic.h"
#include "sanitizer_common/sanitizer_common.h"
#include "xray/xray_interface.h"
#include "xray/xray_records.h"
#include "xray_allocator.h"
#include "xray_buffer_queue.h"
#include "xray_defs.h"
#include "xray_fdr_controller.h"
#include "xray_fdr_flags.h"
#include "xray_fdr_log_writer.h"
#include "xray_flags.h"
#include "xray_recursion_guard.h"
#include "xray_tsc.h"
#include "xray_utils.h"

namespace __xray {

static atomic_sint32_t LoggingStatus = {
    XRayLogInitStatus::XRAY_LOG_UNINITIALIZED};

namespace {

// Group together thread-local-data in a struct, then hide it behind a function
// call so that it can be initialized on first use instead of as a global. We
// force the alignment to 64-bytes for x86 cache line alignment, as this
// structure is used in the hot path of implementation.
struct XRAY_TLS_ALIGNAS(64) ThreadLocalData {
  BufferQueue::Buffer Buffer{};
  BufferQueue *BQ = nullptr;

  using LogWriterStorage =
      typename std::aligned_storage<sizeof(FDRLogWriter),
                                    alignof(FDRLogWriter)>::type;

  LogWriterStorage LWStorage;
  FDRLogWriter *Writer = nullptr;

  using ControllerStorage =
      typename std::aligned_storage<sizeof(FDRController<>),
                                    alignof(FDRController<>)>::type;
  ControllerStorage CStorage;
  FDRController<> *Controller = nullptr;
};

} // namespace

static_assert(std::is_trivially_destructible<ThreadLocalData>::value,
              "ThreadLocalData must be trivially destructible");

// Use a global pthread key to identify thread-local data for logging.
static pthread_key_t Key;

// Global BufferQueue.
static std::aligned_storage<sizeof(BufferQueue)>::type BufferQueueStorage;
static BufferQueue *BQ = nullptr;

// Global thresholds for function durations.
static atomic_uint64_t ThresholdTicks{0};

// Global for ticks per second.
static atomic_uint64_t TicksPerSec{0};

static atomic_sint32_t LogFlushStatus = {
    XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING};

// This function will initialize the thread-local data structure used by the FDR
// logging implementation and return a reference to it. The implementation
// details require a bit of care to maintain.
//
// First, some requirements on the implementation in general:
//
//   - XRay handlers should not call any memory allocation routines that may
//     delegate to an instrumented implementation. This means functions like
//     malloc() and free() should not be called while instrumenting.
//
//   - We would like to use some thread-local data initialized on first-use of
//     the XRay instrumentation. These allow us to implement unsynchronized
//     routines that access resources associated with the thread.
//
// The implementation here uses a few mechanisms that allow us to provide both
// the requirements listed above. We do this by:
//
//   1. Using a thread-local aligned storage buffer for representing the
//      ThreadLocalData struct. This data will be uninitialized memory by
//      design.
//
//   2. Not requiring a thread exit handler/implementation, keeping the
//      thread-local as purely a collection of references/data that do not
//      require cleanup.
//
// We're doing this to avoid using a `thread_local` object that has a
// non-trivial destructor, because the C++ runtime might call std::malloc(...)
// to register calls to destructors. Deadlocks may arise when, for example, an
// externally provided malloc implementation is XRay instrumented, and
// initializing the thread-locals involves calling into malloc. A malloc
// implementation that does global synchronization might be holding a lock for a
// critical section, calling a function that might be XRay instrumented (and
// thus in turn calling into malloc by virtue of registration of the
// thread_local's destructor).
#if XRAY_HAS_TLS_ALIGNAS
static_assert(alignof(ThreadLocalData) >= 64,
              "ThreadLocalData must be cache line aligned.");
#endif
static ThreadLocalData &getThreadLocalData() {
  thread_local typename std::aligned_storage<
      sizeof(ThreadLocalData), alignof(ThreadLocalData)>::type TLDStorage{};

  if (pthread_getspecific(Key) == NULL) {
    new (reinterpret_cast<ThreadLocalData *>(&TLDStorage)) ThreadLocalData{};
    pthread_setspecific(Key, &TLDStorage);
  }

  return *reinterpret_cast<ThreadLocalData *>(&TLDStorage);
}

static XRayFileHeader &fdrCommonHeaderInfo() {
  static std::aligned_storage<sizeof(XRayFileHeader)>::type HStorage;
  static pthread_once_t OnceInit = PTHREAD_ONCE_INIT;
  static bool TSCSupported = true;
  static uint64_t CycleFrequency = NanosecondsPerSecond;
  pthread_once(
      &OnceInit, +[] {
        XRayFileHeader &H = reinterpret_cast<XRayFileHeader &>(HStorage);
        // Version 2 of the log writes the extents of the buffer, instead of
        // relying on an end-of-buffer record.
        // Version 3 includes PID metadata record.
        // Version 4 includes CPU data in the custom event records.
        // Version 5 uses relative deltas for custom and typed event records,
        // and removes the CPU data in custom event records (similar to how
        // function records use deltas instead of full TSCs and rely on other
        // metadata records for TSC wraparound and CPU migration).
        H.Version = 5;
        H.Type = FileTypes::FDR_LOG;

        // Test for required CPU features and cache the cycle frequency
        TSCSupported = probeRequiredCPUFeatures();
        if (TSCSupported)
          CycleFrequency = getTSCFrequency();
        H.CycleFrequency = CycleFrequency;

        // FIXME: Actually check whether we have 'constant_tsc' and
        // 'nonstop_tsc' before setting the values in the header.
        H.ConstantTSC = 1;
        H.NonstopTSC = 1;
      });
  return reinterpret_cast<XRayFileHeader &>(HStorage);
}

// This is the iterator implementation, which knows how to handle FDR-mode
// specific buffers. This is used as an implementation of the iterator function
// needed by __xray_set_buffer_iterator(...). It maintains a global state of the
// buffer iteration for the currently installed FDR mode buffers. In particular:
//
//   - If the argument represents the initial state of XRayBuffer ({nullptr, 0})
//     then the iterator returns the header information.
//   - If the argument represents the header information ({address of header
//     info, size of the header info}) then it returns the first FDR buffer's
//     address and extents.
//   - It will keep returning the next buffer and extents as there are more
//     buffers to process. When the input represents the last buffer, it will
//     return the initial state to signal completion ({nullptr, 0}).
//
// See xray/xray_log_interface.h for more details on the requirements for the
// implementations of __xray_set_buffer_iterator(...) and
// __xray_log_process_buffers(...).
XRayBuffer fdrIterator(const XRayBuffer B) {
  DCHECK(internal_strcmp(__xray_log_get_current_mode(), "xray-fdr") == 0);
  DCHECK(BQ->finalizing());

  if (BQ == nullptr || !BQ->finalizing()) {
    if (Verbosity())
      Report(
          "XRay FDR: Failed global buffer queue is null or not finalizing!\n");
    return {nullptr, 0};
  }

  // We use a global scratch-pad for the header information, which only gets
  // initialized the first time this function is called. We'll update one part
  // of this information with some relevant data (in particular the number of
  // buffers to expect).
  static std::aligned_storage<sizeof(XRayFileHeader)>::type HeaderStorage;
  static pthread_once_t HeaderOnce = PTHREAD_ONCE_INIT;
  pthread_once(
      &HeaderOnce, +[] {
        reinterpret_cast<XRayFileHeader &>(HeaderStorage) =
            fdrCommonHeaderInfo();
      });

  // We use a convenience alias for code referring to Header from here on out.
  auto &Header = reinterpret_cast<XRayFileHeader &>(HeaderStorage);
  if (B.Data == nullptr && B.Size == 0) {
    Header.FdrData = FdrAdditionalHeaderData{BQ->ConfiguredBufferSize()};
    return XRayBuffer{static_cast<void *>(&Header), sizeof(Header)};
  }

  static BufferQueue::const_iterator It{};
  static BufferQueue::const_iterator End{};
  static uint8_t *CurrentBuffer{nullptr};
  static size_t SerializedBufferSize = 0;
  if (B.Data == static_cast<void *>(&Header) && B.Size == sizeof(Header)) {
    // From this point on, we provide raw access to the raw buffer we're getting
    // from the BufferQueue. We're relying on the iterators from the current
    // Buffer queue.
    It = BQ->cbegin();
    End = BQ->cend();
  }

  if (CurrentBuffer != nullptr) {
    deallocateBuffer(CurrentBuffer, SerializedBufferSize);
    CurrentBuffer = nullptr;
  }

  if (It == End)
    return {nullptr, 0};

  // Set up the current buffer to contain the extents like we would when writing
  // out to disk. The difference here would be that we still write "empty"
  // buffers, or at least go through the iterators faithfully to let the
  // handlers see the empty buffers in the queue.
  //
  // We need this atomic fence here to ensure that writes happening to the
  // buffer have been committed before we load the extents atomically. Because
  // the buffer is not explicitly synchronised across threads, we rely on the
  // fence ordering to ensure that writes we expect to have been completed
  // before the fence are fully committed before we read the extents.
  atomic_thread_fence(memory_order_acquire);
  auto BufferSize = atomic_load(It->Extents, memory_order_acquire);
  SerializedBufferSize = BufferSize + sizeof(MetadataRecord);
  CurrentBuffer = allocateBuffer(SerializedBufferSize);
  if (CurrentBuffer == nullptr)
    return {nullptr, 0};

  // Write out the extents as a Metadata Record into the CurrentBuffer.
  MetadataRecord ExtentsRecord;
  ExtentsRecord.Type = uint8_t(RecordType::Metadata);
  ExtentsRecord.RecordKind =
      uint8_t(MetadataRecord::RecordKinds::BufferExtents);
  internal_memcpy(ExtentsRecord.Data, &BufferSize, sizeof(BufferSize));
  auto AfterExtents =
      static_cast<char *>(internal_memcpy(CurrentBuffer, &ExtentsRecord,
                                          sizeof(MetadataRecord))) +
      sizeof(MetadataRecord);
  internal_memcpy(AfterExtents, It->Data, BufferSize);

  XRayBuffer Result;
  Result.Data = CurrentBuffer;
  Result.Size = SerializedBufferSize;
  ++It;
  return Result;
}

// Must finalize before flushing.
XRayLogFlushStatus fdrLoggingFlush() XRAY_NEVER_INSTRUMENT {
  if (atomic_load(&LoggingStatus, memory_order_acquire) !=
      XRayLogInitStatus::XRAY_LOG_FINALIZED) {
    if (Verbosity())
      Report("Not flushing log, implementation is not finalized.\n");
    return XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING;
  }

  s32 Result = XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING;
  if (!atomic_compare_exchange_strong(&LogFlushStatus, &Result,
                                      XRayLogFlushStatus::XRAY_LOG_FLUSHING,
                                      memory_order_release)) {
    if (Verbosity())
      Report("Not flushing log, implementation is still finalizing.\n");
    return static_cast<XRayLogFlushStatus>(Result);
  }

  if (BQ == nullptr) {
    if (Verbosity())
      Report("Cannot flush when global buffer queue is null.\n");
    return XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING;
  }

  // We wait a number of milliseconds to allow threads to see that we've
  // finalised before attempting to flush the log.
  SleepForMillis(fdrFlags()->grace_period_ms);

  // At this point, we're going to uninstall the iterator implementation, before
  // we decide to do anything further with the global buffer queue.
  __xray_log_remove_buffer_iterator();

  // Once flushed, we should set the global status of the logging implementation
  // to "uninitialized" to allow for FDR-logging multiple runs.
  auto ResetToUnitialized = at_scope_exit([] {
    atomic_store(&LoggingStatus, XRayLogInitStatus::XRAY_LOG_UNINITIALIZED,
                 memory_order_release);
  });

  auto CleanupBuffers = at_scope_exit([] {
    auto &TLD = getThreadLocalData();
    if (TLD.Controller != nullptr)
      TLD.Controller->flush();
  });

  if (fdrFlags()->no_file_flush) {
    if (Verbosity())
      Report("XRay FDR: Not flushing to file, 'no_file_flush=true'.\n");

    atomic_store(&LogFlushStatus, XRayLogFlushStatus::XRAY_LOG_FLUSHED,
                 memory_order_release);
    return XRayLogFlushStatus::XRAY_LOG_FLUSHED;
  }

  // We write out the file in the following format:
  //
  //   1) We write down the XRay file header with version 1, type FDR_LOG.
  //   2) Then we use the 'apply' member of the BufferQueue that's live, to
  //      ensure that at this point in time we write down the buffers that have
  //      been released (and marked "used") -- we dump the full buffer for now
  //      (fixed-sized) and let the tools reading the buffers deal with the data
  //      afterwards.
  //
  LogWriter *LW = LogWriter::Open();
  if (LW == nullptr) {
    auto Result = XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING;
    atomic_store(&LogFlushStatus, Result, memory_order_release);
    return Result;
  }

  XRayFileHeader Header = fdrCommonHeaderInfo();
  Header.FdrData = FdrAdditionalHeaderData{BQ->ConfiguredBufferSize()};
  LW->WriteAll(reinterpret_cast<char *>(&Header),
               reinterpret_cast<char *>(&Header) + sizeof(Header));

  // Release the current thread's buffer before we attempt to write out all the
  // buffers. This ensures that in case we had only a single thread going, that
  // we are able to capture the data nonetheless.
  auto &TLD = getThreadLocalData();
  if (TLD.Controller != nullptr)
    TLD.Controller->flush();

  BQ->apply([&](const BufferQueue::Buffer &B) {
    // Starting at version 2 of the FDR logging implementation, we only write
    // the records identified by the extents of the buffer. We use the Extents
    // from the Buffer and write that out as the first record in the buffer.  We
    // still use a Metadata record, but fill in the extents instead for the
    // data.
    MetadataRecord ExtentsRecord;
    auto BufferExtents = atomic_load(B.Extents, memory_order_acquire);
    DCHECK(BufferExtents <= B.Size);
    ExtentsRecord.Type = uint8_t(RecordType::Metadata);
    ExtentsRecord.RecordKind =
        uint8_t(MetadataRecord::RecordKinds::BufferExtents);
    internal_memcpy(ExtentsRecord.Data, &BufferExtents, sizeof(BufferExtents));
    if (BufferExtents > 0) {
      LW->WriteAll(reinterpret_cast<char *>(&ExtentsRecord),
                   reinterpret_cast<char *>(&ExtentsRecord) +
                       sizeof(MetadataRecord));
      LW->WriteAll(reinterpret_cast<char *>(B.Data),
                   reinterpret_cast<char *>(B.Data) + BufferExtents);
    }
  });

  atomic_store(&LogFlushStatus, XRayLogFlushStatus::XRAY_LOG_FLUSHED,
               memory_order_release);
  return XRayLogFlushStatus::XRAY_LOG_FLUSHED;
}

XRayLogInitStatus fdrLoggingFinalize() XRAY_NEVER_INSTRUMENT {
  s32 CurrentStatus = XRayLogInitStatus::XRAY_LOG_INITIALIZED;
  if (!atomic_compare_exchange_strong(&LoggingStatus, &CurrentStatus,
                                      XRayLogInitStatus::XRAY_LOG_FINALIZING,
                                      memory_order_release)) {
    if (Verbosity())
      Report("Cannot finalize log, implementation not initialized.\n");
    return static_cast<XRayLogInitStatus>(CurrentStatus);
  }

  // Do special things to make the log finalize itself, and not allow any more
  // operations to be performed until re-initialized.
  if (BQ == nullptr) {
    if (Verbosity())
      Report("Attempting to finalize an uninitialized global buffer!\n");
  } else {
    BQ->finalize();
  }

  atomic_store(&LoggingStatus, XRayLogInitStatus::XRAY_LOG_FINALIZED,
               memory_order_release);
  return XRayLogInitStatus::XRAY_LOG_FINALIZED;
}

struct TSCAndCPU {
  uint64_t TSC = 0;
  unsigned char CPU = 0;
};

static TSCAndCPU getTimestamp() XRAY_NEVER_INSTRUMENT {
  // We want to get the TSC as early as possible, so that we can check whether
  // we've seen this CPU before. We also do it before we load anything else,
  // to allow for forward progress with the scheduling.
  TSCAndCPU Result;

  // Test once for required CPU features
  static pthread_once_t OnceProbe = PTHREAD_ONCE_INIT;
  static bool TSCSupported = true;
  pthread_once(
      &OnceProbe, +[] { TSCSupported = probeRequiredCPUFeatures(); });

  if (TSCSupported) {
    Result.TSC = __xray::readTSC(Result.CPU);
  } else {
    // FIXME: This code needs refactoring as it appears in multiple locations
    timespec TS;
    int result = clock_gettime(CLOCK_REALTIME, &TS);
    if (result != 0) {
      Report("clock_gettime(2) return %d, errno=%d", result, int(errno));
      TS = {0, 0};
    }
    Result.CPU = 0;
    Result.TSC = TS.tv_sec * __xray::NanosecondsPerSecond + TS.tv_nsec;
  }
  return Result;
}

thread_local atomic_uint8_t Running{0};

static bool setupTLD(ThreadLocalData &TLD) XRAY_NEVER_INSTRUMENT {
  // Check if we're finalizing, before proceeding.
  {
    auto Status = atomic_load(&LoggingStatus, memory_order_acquire);
    if (Status == XRayLogInitStatus::XRAY_LOG_FINALIZING ||
        Status == XRayLogInitStatus::XRAY_LOG_FINALIZED) {
      if (TLD.Controller != nullptr) {
        TLD.Controller->flush();
        TLD.Controller = nullptr;
      }
      return false;
    }
  }

  if (UNLIKELY(TLD.Controller == nullptr)) {
    // Set up the TLD buffer queue.
    if (UNLIKELY(BQ == nullptr))
      return false;
    TLD.BQ = BQ;

    // Check that we have a valid buffer.
    if (TLD.Buffer.Generation != BQ->generation() &&
        TLD.BQ->releaseBuffer(TLD.Buffer) != BufferQueue::ErrorCode::Ok)
      return false;

    // Set up a buffer, before setting up the log writer. Bail out on failure.
    if (TLD.BQ->getBuffer(TLD.Buffer) != BufferQueue::ErrorCode::Ok)
      return false;

    // Set up the Log Writer for this thread.
    if (UNLIKELY(TLD.Writer == nullptr)) {
      auto *LWStorage = reinterpret_cast<FDRLogWriter *>(&TLD.LWStorage);
      new (LWStorage) FDRLogWriter(TLD.Buffer);
      TLD.Writer = LWStorage;
    } else {
      TLD.Writer->resetRecord();
    }

    auto *CStorage = reinterpret_cast<FDRController<> *>(&TLD.CStorage);
    new (CStorage)
        FDRController<>(TLD.BQ, TLD.Buffer, *TLD.Writer, clock_gettime,
                        atomic_load_relaxed(&ThresholdTicks));
    TLD.Controller = CStorage;
  }

  DCHECK_NE(TLD.Controller, nullptr);
  return true;
}

void fdrLoggingHandleArg0(int32_t FuncId,
                          XRayEntryType Entry) XRAY_NEVER_INSTRUMENT {
  auto TC = getTimestamp();
  auto &TSC = TC.TSC;
  auto &CPU = TC.CPU;
  RecursionGuard Guard{Running};
  if (!Guard)
    return;

  auto &TLD = getThreadLocalData();
  if (!setupTLD(TLD))
    return;

  switch (Entry) {
  case XRayEntryType::ENTRY:
  case XRayEntryType::LOG_ARGS_ENTRY:
    TLD.Controller->functionEnter(FuncId, TSC, CPU);
    return;
  case XRayEntryType::EXIT:
    TLD.Controller->functionExit(FuncId, TSC, CPU);
    return;
  case XRayEntryType::TAIL:
    TLD.Controller->functionTailExit(FuncId, TSC, CPU);
    return;
  case XRayEntryType::CUSTOM_EVENT:
  case XRayEntryType::TYPED_EVENT:
    break;
  }
}

void fdrLoggingHandleArg1(int32_t FuncId, XRayEntryType Entry,
                          uint64_t Arg) XRAY_NEVER_INSTRUMENT {
  auto TC = getTimestamp();
  auto &TSC = TC.TSC;
  auto &CPU = TC.CPU;
  RecursionGuard Guard{Running};
  if (!Guard)
    return;

  auto &TLD = getThreadLocalData();
  if (!setupTLD(TLD))
    return;

  switch (Entry) {
  case XRayEntryType::ENTRY:
  case XRayEntryType::LOG_ARGS_ENTRY:
    TLD.Controller->functionEnterArg(FuncId, TSC, CPU, Arg);
    return;
  case XRayEntryType::EXIT:
    TLD.Controller->functionExit(FuncId, TSC, CPU);
    return;
  case XRayEntryType::TAIL:
    TLD.Controller->functionTailExit(FuncId, TSC, CPU);
    return;
  case XRayEntryType::CUSTOM_EVENT:
  case XRayEntryType::TYPED_EVENT:
    break;
  }
}

void fdrLoggingHandleCustomEvent(void *Event,
                                 std::size_t EventSize) XRAY_NEVER_INSTRUMENT {
  auto TC = getTimestamp();
  auto &TSC = TC.TSC;
  auto &CPU = TC.CPU;
  RecursionGuard Guard{Running};
  if (!Guard)
    return;

  // Complain when we ever get at least one custom event that's larger than what
  // we can possibly support.
  if (EventSize >
      static_cast<std::size_t>(std::numeric_limits<int32_t>::max())) {
    static pthread_once_t Once = PTHREAD_ONCE_INIT;
    pthread_once(
        &Once, +[] {
          Report("Custom event size too large; truncating to %d.\n",
                 std::numeric_limits<int32_t>::max());
        });
  }

  auto &TLD = getThreadLocalData();
  if (!setupTLD(TLD))
    return;

  int32_t ReducedEventSize = static_cast<int32_t>(EventSize);
  TLD.Controller->customEvent(TSC, CPU, Event, ReducedEventSize);
}

void fdrLoggingHandleTypedEvent(
    uint16_t EventType, const void *Event,
    std::size_t EventSize) noexcept XRAY_NEVER_INSTRUMENT {
  auto TC = getTimestamp();
  auto &TSC = TC.TSC;
  auto &CPU = TC.CPU;
  RecursionGuard Guard{Running};
  if (!Guard)
    return;

  // Complain when we ever get at least one typed event that's larger than what
  // we can possibly support.
  if (EventSize >
      static_cast<std::size_t>(std::numeric_limits<int32_t>::max())) {
    static pthread_once_t Once = PTHREAD_ONCE_INIT;
    pthread_once(
        &Once, +[] {
          Report("Typed event size too large; truncating to %d.\n",
                 std::numeric_limits<int32_t>::max());
        });
  }

  auto &TLD = getThreadLocalData();
  if (!setupTLD(TLD))
    return;

  int32_t ReducedEventSize = static_cast<int32_t>(EventSize);
  TLD.Controller->typedEvent(TSC, CPU, EventType, Event, ReducedEventSize);
}

XRayLogInitStatus fdrLoggingInit(size_t, size_t, void *Options,
                                 size_t OptionsSize) XRAY_NEVER_INSTRUMENT {
  if (Options == nullptr)
    return XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;

  s32 CurrentStatus = XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
  if (!atomic_compare_exchange_strong(&LoggingStatus, &CurrentStatus,
                                      XRayLogInitStatus::XRAY_LOG_INITIALIZING,
                                      memory_order_release)) {
    if (Verbosity())
      Report("Cannot initialize already initialized implementation.\n");
    return static_cast<XRayLogInitStatus>(CurrentStatus);
  }

  if (Verbosity())
    Report("Initializing FDR mode with options: %s\n",
           static_cast<const char *>(Options));

  // TODO: Factor out the flags specific to the FDR mode implementation. For
  // now, use the global/single definition of the flags, since the FDR mode
  // flags are already defined there.
  FlagParser FDRParser;
  FDRFlags FDRFlags;
  registerXRayFDRFlags(&FDRParser, &FDRFlags);
  FDRFlags.setDefaults();

  // Override first from the general XRAY_DEFAULT_OPTIONS compiler-provided
  // options until we migrate everyone to use the XRAY_FDR_OPTIONS
  // compiler-provided options.
  FDRParser.ParseString(useCompilerDefinedFlags());
  FDRParser.ParseString(useCompilerDefinedFDRFlags());
  auto *EnvOpts = GetEnv("XRAY_FDR_OPTIONS");
  if (EnvOpts == nullptr)
    EnvOpts = "";
  FDRParser.ParseString(EnvOpts);

  // FIXME: Remove this when we fully remove the deprecated flags.
  if (internal_strlen(EnvOpts) == 0) {
    FDRFlags.func_duration_threshold_us =
        flags()->xray_fdr_log_func_duration_threshold_us;
    FDRFlags.grace_period_ms = flags()->xray_fdr_log_grace_period_ms;
  }

  // The provided options should always override the compiler-provided and
  // environment-variable defined options.
  FDRParser.ParseString(static_cast<const char *>(Options));
  *fdrFlags() = FDRFlags;
  auto BufferSize = FDRFlags.buffer_size;
  auto BufferMax = FDRFlags.buffer_max;

  if (BQ == nullptr) {
    bool Success = false;
    BQ = reinterpret_cast<BufferQueue *>(&BufferQueueStorage);
    new (BQ) BufferQueue(BufferSize, BufferMax, Success);
    if (!Success) {
      Report("BufferQueue init failed.\n");
      return XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
    }
  } else {
    if (BQ->init(BufferSize, BufferMax) != BufferQueue::ErrorCode::Ok) {
      if (Verbosity())
        Report("Failed to re-initialize global buffer queue. Init failed.\n");
      return XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
    }
  }

  static pthread_once_t OnceInit = PTHREAD_ONCE_INIT;
  pthread_once(
      &OnceInit, +[] {
        atomic_store(&TicksPerSec,
                     probeRequiredCPUFeatures() ? getTSCFrequency()
                                                : __xray::NanosecondsPerSecond,
                     memory_order_release);
        pthread_key_create(
            &Key, +[](void *TLDPtr) {
              if (TLDPtr == nullptr)
                return;
              auto &TLD = *reinterpret_cast<ThreadLocalData *>(TLDPtr);
              if (TLD.BQ == nullptr)
                return;
              if (TLD.Buffer.Data == nullptr)
                return;
              auto EC = TLD.BQ->releaseBuffer(TLD.Buffer);
              if (EC != BufferQueue::ErrorCode::Ok)
                Report("At thread exit, failed to release buffer at %p; "
                       "error=%s\n",
                       TLD.Buffer.Data, BufferQueue::getErrorString(EC));
            });
      });

  atomic_store(&ThresholdTicks,
               atomic_load_relaxed(&TicksPerSec) *
                   fdrFlags()->func_duration_threshold_us / 1000000,
               memory_order_release);
  // Arg1 handler should go in first to avoid concurrent code accidentally
  // falling back to arg0 when it should have ran arg1.
  __xray_set_handler_arg1(fdrLoggingHandleArg1);
  // Install the actual handleArg0 handler after initialising the buffers.
  __xray_set_handler(fdrLoggingHandleArg0);
  __xray_set_customevent_handler(fdrLoggingHandleCustomEvent);
  __xray_set_typedevent_handler(fdrLoggingHandleTypedEvent);

  // Install the buffer iterator implementation.
  __xray_log_set_buffer_iterator(fdrIterator);

  atomic_store(&LoggingStatus, XRayLogInitStatus::XRAY_LOG_INITIALIZED,
               memory_order_release);

  if (Verbosity())
    Report("XRay FDR init successful.\n");
  return XRayLogInitStatus::XRAY_LOG_INITIALIZED;
}

bool fdrLogDynamicInitializer() XRAY_NEVER_INSTRUMENT {
  XRayLogImpl Impl{
      fdrLoggingInit,
      fdrLoggingFinalize,
      fdrLoggingHandleArg0,
      fdrLoggingFlush,
  };
  auto RegistrationResult = __xray_log_register_mode("xray-fdr", Impl);
  if (RegistrationResult != XRayLogRegisterStatus::XRAY_REGISTRATION_OK &&
      Verbosity()) {
    Report("Cannot register XRay FDR mode to 'xray-fdr'; error = %d\n",
           RegistrationResult);
    return false;
  }

  if (flags()->xray_fdr_log ||
      !internal_strcmp(flags()->xray_mode, "xray-fdr")) {
    auto SelectResult = __xray_log_select_mode("xray-fdr");
    if (SelectResult != XRayLogRegisterStatus::XRAY_REGISTRATION_OK &&
        Verbosity()) {
      Report("Cannot select XRay FDR mode as 'xray-fdr'; error = %d\n",
             SelectResult);
      return false;
    }
  }
  return true;
}

} // namespace __xray

static auto UNUSED Unused = __xray::fdrLogDynamicInitializer();