/* $NetBSD: bufq_priocscan.c,v 1.21 2017/05/04 11:03:27 kamil Exp $ */
/*-
* Copyright (c)2004,2005,2006,2008,2009,2011,2012 YAMAMOTO Takashi,
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: bufq_priocscan.c,v 1.21 2017/05/04 11:03:27 kamil Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/buf.h>
#include <sys/bufq.h>
#include <sys/bufq_impl.h>
#include <sys/kmem.h>
#include <sys/rbtree.h>
#include <sys/module.h>
#undef PRIOCSCAN_USE_GLOBAL_POSITION
/*
* Cyclical scan (CSCAN)
*/
struct cscan_key {
daddr_t k_rawblkno;
int k_cylinder;
};
struct cscan_queue {
rb_tree_t cq_buffers; /* ordered list of buffers */
#if !defined(PRIOCSCAN_USE_GLOBAL_POSITION)
struct cscan_key cq_lastkey; /* key of last request */
#endif /* !defined(PRIOCSCAN_USE_GLOBAL_POSITION) */
int cq_sortby; /* BUFQ_SORT_MASK */
rb_tree_ops_t cq_ops;
};
static signed int
buf_cmp(const struct buf *b1, const struct buf *b2, int sortby)
{
if (buf_inorder(b2, b1, sortby)) {
return 1; /* b1 > b2 */
}
if (buf_inorder(b1, b2, sortby)) {
return -1; /* b1 < b2 */
}
return 0;
}
/* return positive if n1 > n2 */
static signed int
cscan_tree_compare_nodes(void *context, const void *n1, const void *n2)
{
const struct cscan_queue * const q = context;
const struct buf * const b1 = n1;
const struct buf * const b2 = n2;
const int sortby = q->cq_sortby;
const int diff = buf_cmp(b1, b2, sortby);
/*
* XXX rawblkno/cylinder might not be unique. eg. unbuffered i/o
*/
if (diff != 0) {
return diff;
}
/*
* XXX rawblkno/cylinder might not be unique. eg. unbuffered i/o
*/
if (b1 > b2) {
return 1;
}
if (b1 < b2) {
return -1;
}
return 0;
}
/* return positive if n1 > k2 */
static signed int
cscan_tree_compare_key(void *context, const void *n1, const void *k2)
{
const struct cscan_queue * const q = context;
const struct buf * const b1 = n1;
const struct cscan_key * const key = k2;
const struct buf tmp = {
.b_rawblkno = key->k_rawblkno,
.b_cylinder = key->k_cylinder,
};
const struct buf *b2 = &tmp;
const int sortby = q->cq_sortby;
return buf_cmp(b1, b2, sortby);
}
static void __unused
cscan_dump(struct cscan_queue *cq)
{
const int sortby = cq->cq_sortby;
struct buf *bp;
RB_TREE_FOREACH(bp, &cq->cq_buffers) {
if (sortby == BUFQ_SORT_RAWBLOCK) {
printf(" %jd", (intmax_t)bp->b_rawblkno);
} else {
printf(" %jd/%jd",
(intmax_t)bp->b_cylinder, (intmax_t)bp->b_rawblkno);
}
}
}
static inline bool
cscan_empty(struct cscan_queue *q)
{
/* XXX this might do more work than necessary */
return rb_tree_iterate(&q->cq_buffers, NULL, RB_DIR_LEFT) == NULL;
}
static void
cscan_put(struct cscan_queue *q, struct buf *bp)
{
struct buf *obp __diagused;
obp = rb_tree_insert_node(&q->cq_buffers, bp);
KASSERT(obp == bp); /* see cscan_tree_compare_nodes */
}
static struct buf *
cscan_get(struct cscan_queue *q, int remove, struct cscan_key *key)
{
struct buf *bp;
bp = rb_tree_find_node_geq(&q->cq_buffers, key);
KDASSERT(bp == NULL || cscan_tree_compare_key(q, bp, key) >= 0);
if (bp == NULL) {
bp = rb_tree_iterate(&q->cq_buffers, NULL, RB_DIR_LEFT);
KDASSERT(cscan_tree_compare_key(q, bp, key) < 0);
}
if (bp != NULL && remove) {
#if defined(DEBUG)
struct buf *nbp;
#endif /* defined(DEBUG) */
rb_tree_remove_node(&q->cq_buffers, bp);
/*
* remember the head position.
*/
key->k_cylinder = bp->b_cylinder;
key->k_rawblkno = bp->b_rawblkno + (bp->b_bcount >> DEV_BSHIFT);
#if defined(DEBUG)
nbp = rb_tree_find_node_geq(&q->cq_buffers, key);
if (nbp != NULL && cscan_tree_compare_nodes(q, nbp, bp) < 0) {
panic("%s: wrong order %p < %p\n", __func__,
nbp, bp);
}
#endif /* defined(DEBUG) */
}
return bp;
}
static void
cscan_init(struct cscan_queue *q, int sortby)
{
static const rb_tree_ops_t cscan_tree_ops = {
.rbto_compare_nodes = cscan_tree_compare_nodes,
.rbto_compare_key = cscan_tree_compare_key,
.rbto_node_offset = offsetof(struct buf, b_u.u_rbnode),
.rbto_context = NULL,
};
q->cq_sortby = sortby;
/* XXX copy ops to workaround rbtree.h API limitation */
q->cq_ops = cscan_tree_ops;
q->cq_ops.rbto_context = q;
rb_tree_init(&q->cq_buffers, &q->cq_ops);
}
/*
* Per-prioritiy CSCAN.
*
* XXX probably we should have a way to raise
* priority of the on-queue requests.
*/
#define PRIOCSCAN_NQUEUE 3
struct priocscan_queue {
struct cscan_queue q_queue;
unsigned int q_burst;
};
struct bufq_priocscan {
struct priocscan_queue bq_queue[PRIOCSCAN_NQUEUE];
#if defined(PRIOCSCAN_USE_GLOBAL_POSITION)
/*
* XXX using "global" head position can reduce positioning time
* when switching between queues.
* although it might affect against fairness.
*/
struct cscan_key bq_lastkey;
#endif
};
/*
* how many requests to serve when having pending requests on other queues.
*
* XXX tune
* be careful: while making these values larger likely
* increases the total throughput, it can also increase latencies
* for some workloads.
*/
const int priocscan_burst[] = {
64, 16, 4
};
static void bufq_priocscan_init(struct bufq_state *);
static void bufq_priocscan_put(struct bufq_state *, struct buf *);
static struct buf *bufq_priocscan_get(struct bufq_state *, int);
BUFQ_DEFINE(priocscan, 40, bufq_priocscan_init);
static inline struct cscan_queue *bufq_priocscan_selectqueue(
struct bufq_priocscan *, const struct buf *);
static inline struct cscan_queue *
bufq_priocscan_selectqueue(struct bufq_priocscan *q, const struct buf *bp)
{
static const int priocscan_priomap[] = {
[BPRIO_TIMENONCRITICAL] = 2,
[BPRIO_TIMELIMITED] = 1,
[BPRIO_TIMECRITICAL] = 0
};
return &q->bq_queue[priocscan_priomap[BIO_GETPRIO(bp)]].q_queue;
}
static void
bufq_priocscan_put(struct bufq_state *bufq, struct buf *bp)
{
struct bufq_priocscan *q = bufq_private(bufq);
struct cscan_queue *cq;
cq = bufq_priocscan_selectqueue(q, bp);
cscan_put(cq, bp);
}
static struct buf *
bufq_priocscan_get(struct bufq_state *bufq, int remove)
{
struct bufq_priocscan *q = bufq_private(bufq);
struct priocscan_queue *pq, *npq;
struct priocscan_queue *first; /* highest priority non-empty queue */
const struct priocscan_queue *epq;
struct buf *bp;
bool single; /* true if there's only one non-empty queue */
/*
* find the highest priority non-empty queue.
*/
pq = &q->bq_queue[0];
epq = pq + PRIOCSCAN_NQUEUE;
for (; pq < epq; pq++) {
if (!cscan_empty(&pq->q_queue)) {
break;
}
}
if (pq == epq) {
/*
* all our queues are empty. there's nothing to serve.
*/
return NULL;
}
first = pq;
/*
* scan the rest of queues.
*
* if we have two or more non-empty queues, we serve the highest
* priority one with non-zero burst count.
*/
single = true;
for (npq = pq + 1; npq < epq; npq++) {
if (!cscan_empty(&npq->q_queue)) {
/*
* we found another non-empty queue.
* it means that a queue needs to consume its burst
* count to be served.
*/
single = false;
/*
* check if our current candidate queue has already
* exhausted its burst count.
*/
if (pq->q_burst > 0) {
break;
}
pq = npq;
}
}
if (single) {
/*
* there's only a non-empty queue.
* just serve it without consuming its burst count.
*/
KASSERT(pq == first);
} else {
/*
* there are two or more non-empty queues.
*/
if (pq->q_burst == 0) {
/*
* no queues can be served because they have already
* exhausted their burst count.
*/
unsigned int i;
#ifdef DEBUG
for (i = 0; i < PRIOCSCAN_NQUEUE; i++) {
pq = &q->bq_queue[i];
if (!cscan_empty(&pq->q_queue) && pq->q_burst) {
panic("%s: inconsist", __func__);
}
}
#endif /* DEBUG */
/*
* reset burst counts.
*/
if (remove) {
for (i = 0; i < PRIOCSCAN_NQUEUE; i++) {
pq = &q->bq_queue[i];
pq->q_burst = priocscan_burst[i];
}
}
/*
* serve the highest priority non-empty queue.
*/
pq = first;
}
/*
* consume the burst count.
*
* XXX account only by number of requests. is it good enough?
*/
if (remove) {
KASSERT(pq->q_burst > 0);
pq->q_burst--;
}
}
/*
* finally, get a request from the selected queue.
*/
KDASSERT(!cscan_empty(&pq->q_queue));
bp = cscan_get(&pq->q_queue, remove,
#if defined(PRIOCSCAN_USE_GLOBAL_POSITION)
&q->bq_lastkey
#else /* defined(PRIOCSCAN_USE_GLOBAL_POSITION) */
&pq->q_queue.cq_lastkey
#endif /* defined(PRIOCSCAN_USE_GLOBAL_POSITION) */
);
KDASSERT(bp != NULL);
KDASSERT(&pq->q_queue == bufq_priocscan_selectqueue(q, bp));
return bp;
}
static struct buf *
bufq_priocscan_cancel(struct bufq_state *bufq, struct buf *bp)
{
struct bufq_priocscan * const q = bufq_private(bufq);
unsigned int i;
for (i = 0; i < PRIOCSCAN_NQUEUE; i++) {
struct cscan_queue * const cq = &q->bq_queue[i].q_queue;
struct buf *it;
/*
* XXX probably could be faster but the cancel functionality
* is not widely used anyway.
*/
RB_TREE_FOREACH(it, &cq->cq_buffers) {
if (it == bp) {
rb_tree_remove_node(&cq->cq_buffers, bp);
return bp;
}
}
}
return NULL;
}
static void
bufq_priocscan_fini(struct bufq_state *bufq)
{
KASSERT(bufq->bq_private != NULL);
kmem_free(bufq->bq_private, sizeof(struct bufq_priocscan));
}
static void
bufq_priocscan_init(struct bufq_state *bufq)
{
struct bufq_priocscan *q;
const int sortby = bufq->bq_flags & BUFQ_SORT_MASK;
unsigned int i;
bufq->bq_get = bufq_priocscan_get;
bufq->bq_put = bufq_priocscan_put;
bufq->bq_cancel = bufq_priocscan_cancel;
bufq->bq_fini = bufq_priocscan_fini;
bufq->bq_private = kmem_zalloc(sizeof(struct bufq_priocscan), KM_SLEEP);
q = bufq->bq_private;
for (i = 0; i < PRIOCSCAN_NQUEUE; i++) {
struct cscan_queue *cq = &q->bq_queue[i].q_queue;
cscan_init(cq, sortby);
}
}
MODULE(MODULE_CLASS_BUFQ, bufq_priocscan, NULL);
static int
bufq_priocscan_modcmd(modcmd_t cmd, void *opaque)
{
switch (cmd) {
case MODULE_CMD_INIT:
return bufq_register(&bufq_strat_priocscan);
case MODULE_CMD_FINI:
return bufq_unregister(&bufq_strat_priocscan);
default:
return ENOTTY;
}
}